
Composable Concurrency Models

Dan Stelljes
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
stell124@morris.umn.edu

ABSTRACT
The need to manage concurrent operations in applications
has led to the development of a variety of concurrency mod-
els. Modern programming languages generally provide sev-
eral concurrency models to serve different requirements, and
programmers benefit from being able to use them in tandem.
We discuss challenges surrounding concurrent programming
and examine situations in which conflicts between models
can occur. Additionally, we describe attempts to identify
features of common concurrency models and develop lower-
level abstractions capable of supporting a variety of models.

1. INTRODUCTION
Most interactive computer programs depend on concur-

rency, the ability to perform different tasks at the same
time. A web browser, for instance, might at any point be
rendering documents in multiple tabs, transferring files, and
handling user interaction. On a lower level, the operating
system might be running several other applications, juggling
background processes, and responding to events. If every
long-running process blocked other processes from proceed-
ing, the system would be effectively unusable.
Processes themselves are often composed of multiple con-

current threads of execution that each work on a distinct
task. A processor can only execute one thread at a time, so
multitasking is accomplished by rapidly switching between
threads [8]. Although concurrent threads may appear to be
executed simultaneously, truly parallel execution can only
take place across multiple processors.
Concurrency models enable programmers to reason about

concurrent tasks instead of low-level thread management.
The web browser is a good example of how different models
might be chosen to represent specific types of tasks: The
user interface layer might rely on an event loop, the render-
ing process might operate in shared memory, and sugges-
tions from browsing history or a search engine might require
parallel collection operations to achieve acceptable perfor-
mance [9].

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2016 Morris, MN.

Given that an application is likely to make use of more
than one concurrency model, programmers would prefer that
different types of models could safely interact. However, dif-
ferent models do not necessarily work well together, nor are
they designed to. Recent work has attempted to identify
common “building blocks” that could be used to compose
a variety of models, possibly eliminating subtle problems
when different models interact and allowing models to be
represented at lower levels without resorting to rough ap-
proximations [9, 11, 12].

2. BACKGROUND
In a concurrent program, the history of operations may

not be the same for every execution. An entirely sequen-
tial program could be proved to be correct by showing that
its history (that is, the sequence in which its operations are
performed) always yields a correct result. For a concurrent
program to be proved correct, though, it must be clear that
all possible histories always yield a correct result. Further-
more, concurrent programming frequently involves the use
of shared resources that require coordinated access and ma-
nipulation.

Consistency models, restrictions on possible execution his-
tories, can guarantee that a program will produce a correct
result [12]. If an execution of a program follows an allowed
history, that execution is said to be consistent; if not, it is
said to be inconsistent. If every possible execution of the
program is guaranteed to follow a history allowed by a con-
sistency model, that program conforms to that consistency
model [5].

Thread A:

x 1 2 3

x← 1 x = 1 x← 2 x = 2 x = 2 x← 3

Figure 1: A single thread reads from and writes to
a variable.

Figure 1 illustrates a simple program in which a single
thread A reads (=) and writes (←) values on a variable
x, denoted by a segmented bar containing the value of x
over time. The program satisfies an intuitive model of how
variables should behave—each time x is read, the value re-
turned is equal to the value most recently written and the
consistency model holds. If, however, a read on x failed
to return the most recently written value, the consistency
model would be violated.



Thread A:

Thread B:

x 1 2 3

x← 1

x = 1

x = 1

x← 2

x = 2

x = 2

x← 3

x = 3

Figure 2: Two threads concurrently read from and
write to a variable.

In Figure 2, two threads A and B concurrently read and
write on x. Because the operations of the threads are in-
terleaved, a read operation on x may not yield a value that
matches the value of that thread’s most recent write. The
value may even be inconsistent between consecutive reads.
If a single thread assumed that it had exclusive control of x,
incorrectly applying the single variable consistency model,
this behavior would appear to be inconsistent. Similar errors
that arise due to an unintentional dependency on execution
order are commonly referred to as race conditions.

2.1 Linearizable consistency
The examples above assume that all operations complete

instantaneously. In real systems, though, operations take
time. Even writing to a location in cache memory, an oper-
ation measured in nanoseconds, is not truly instantaneous.
The fact that operations are completed at some time after
they are invoked introduces uncertainty into a history of
operations—the sequence of execution may be influenced by
the time it takes for messages to travel [5].

Thread A:

Thread B:

x 1 2 3

x← 2 x← 3

x = 3

Figure 3: Two threads concurrently (and noninstan-
taneously) write to and read from a variable.

Consider a third example (Figure 3) in which two threads
A and B interact with a variable x noninstantanously. In-
vocation is denoted by the leftmost point of an event and
completion by the rightmost point. The dotted line indicates
the instant at which the operation takes effect. Thread B
invokes a read while the value of x is set to 2. Thread A in-
vokes and completes a write between the time that the read
is invoked and the value is actually read. The read operation
then returns 3 even though x was equal to 2 at the time it
was invoked.
While travel time may introduce ambiguity, there are still

some restrictions on possible sequences of events. Specifi-
cally, an operation cannot take effect before its invocation,
nor can it take effect after its completion; rather, it will
appear to take effect atomically at some point after it is
invoked and before it is completed.
This consistency model is referred to as linearizability

(also referred to as atomicity or indivisibility), and it guar-
antees that the completion of a single operation on a single
object will appear to the rest of the system to be instanta-

neous [3]. In other words, even though linearizable opera-
tions are executed concurrently and take time, they appear
to happen in a simple linear order.

Thread A:

x 1 2

x← 2

Figure 4: A single thread performs an atomic write
operation on a variable.

Figure 4 demonstrates an atomic write on a variable x:
Although the operation takes time, the entire operation (de-
noted by the shaded area) can be collapsed into one appar-
ently instantaneous event. A useful consequence of lineariz-
ability is that the results of an operation must be visible
as soon as the operation is complete. This can prevent is-
sues such as stale reads (in which a read operation returns
a value different from the most recently written value) and
non-monotonic reads (in which a later read operation returns
an older value than an earlier read operation). Linearizabil-
ity is also a composable guarantee [3]—an operation made
up of smaller linearizable operations is itself linearizable.

2.2 Sequential and causal consistency
For operations to be executed concurrently, they must be

able to be executed out of order or in partial order. Lam-
port, in his foundational work on distributed systems [7],
formalized this by defining a “happens before” relation (→)
and its negation “does not happen before” (↛) on a set of
operations: If A and B are operations in the same thread
and A occurs before B, or if A is the sending of a message
by one thread and B is the receipt of the same message by
another thread, then A → B. If A → B and B → C, then
A→ C. Two operations A and B are said to be concurrent
if A ↛ B and B ↛ A.

The first condition of the “happens before” relation, that
A and B are ordered within the same thread, describes se-
quential consistency. Sequential consistency simply requires
that operations in a thread take place in that thread’s order.
Causal consistency, described by the second condition of the
“happens before” relation, enforces the intuitive requirement
that an effect cannot take place before its cause.

2.3 Serializable consistency
A history of operations is said to be serializable if it is

equivalent to a serial (i.e., non-interleaved) ordering of its
operations [3]. Serializability is like linearizability in that
it demands some linear order of execution. However, serial-
izability describes multiple operations over multiple objects
instead of single operations on single objects, and it does
not impose any wall-clock time constraints on the history.
This means that operations may occur in any order as long
as some serial history exists.

Figure 5 illustrates a set of serializable read and write
operations. Even though the executions of each operation
occur out of order and even intersect, the events themselves
can be arranged serially; no side effects are introduced by
the fact that they are executed concurrently.

Serializability alone is a fairly weak consistency model be-
cause it does not place any restrictions on time or order [5].
Events may happen out of sequence, and, unlike linearizabil-



Thread A:

Thread B:

x 1 2 3

x← 2

x = 2x← 3

x = 3

Figure 5: Two threads perform a set of serializable
read and write operations on a variable.

ity, serializability is not a composable guarantee. Serializ-
ability is useful, though, as a guarantee of isolation: While a
serializable set of operations is being executed, it appears to
be the only set of operations being executed. For histories
to be serializable, then, they must not overlap and cannot
interfere with each other.
Linearizability and serializability together guarantee strict

serializability, in which a history is equivalent to a serial ex-
ecution order and that serial order corresponds to the ex-
ecution order in real time. Given that, linearizability can
actually be described as strict serializability restricted to
single operations on single objects [3].

3. COMMON CONCURRENCY MODELS
Modern programming languages generally provide several

different concurrency models as tools to reason about con-
current tasks. Swalens et. al, in a survey of concurrency
models in the Clojure programming language, group com-
monly used concurrency models into four broad categories:
atomic variables, software transactional memory, communi-
cating threads, and proxies [11].

3.1 Atomic variables
Atomic variables are used to share independent objects

that do not demand coordinated updates but need to be
shared by multiple threads [11]. Atomic variables can only
be read and mutated by operations that are guaranteed to
be linearizable. For example, the atomic operation compare-

and-swap compares the current value of a variable to a given
value and only performs a write if the values are equal [11].
compare-and-swap ensures that a new value based on out-
dated information cannot be written: Suppose that a thread
A reads a variable x and begins computing a new value. At
the same time, another thread B modifies x. When A tries
to set the value of x via compare-and-swap, the write will
be denied.
Atomic operations are often implemented in hardware and

guarantee linearizability at the lowest level possible. fetch-
and-add, another atomic operation, is a common proces-
sor instruction that executes multiple hardware-level oper-
ations: The old value is copied from a location in memory
into a temporary register, addition is performed on the value
in the temorary register, and the new value is stored at the
original location.
Atomic variables often serve as the basis for higher-level

concurrency control mechanisms such as semaphores and
locks, which in turn support the implementation of concur-
rent data structures. A counting semaphore is an atomic
variable that serves as a record of how many units of a
shared resource, such as a connection or a pooled thread,
are available. By taking advantage of atomic operations,

the semaphore can be safely updated and will reliably de-
termine whether a shared resource can be used. A single
thread can then test if a resource is available and acquire it
before proceeding, thereby preventing race conditions [11].
A lock, also referred to as a mutex, guarantees mutual ex-
clusion, which requires that two threads cannot operate on
a shared object at the same time. Locks are commonly im-
plemented by a binary semaphore (that is, a semaphore that
simply indicates whether a single resource is available).

While lock-based programming is effective, dealing with
multiple locks and complex interactions can be cumbersome.
One common problem in lock-based programming is resource
contention, in which multiple threads vie for control of mul-
tiple resources. Suppose, for example, that two threads A
and B both require resources x and y. A might acquire x
and B might acquire y. Both would then halt, waiting to
acquire a lock on the second needed resource. This type of
scenario is commonly referred to as deadlock.

3.2 Software transactional memory
Software transactional memory (STM) presents an alter-

native to lock-based programming by allowing multiple con-
current operations to write to a shared location in memory
without securing any kind of lock. STM is an example of
optimistic concurrency control: Each thread executes a se-
ries of read and write operations (called a transaction) on
the shared memory without considering the activity of other
threads. On its face, this approach seems disaster-prone—
multiple threads writing to the same memory location could
easily lead to corrupted data. STM solves this problem by
recording all operations in a log. After the entire transaction
is completed, the transaction manager verifies that other
threads have not also made changes to the shared memory.
If there are conflicting changes, the transaction is aborted
and retried until it eventually succeeds [10].

Conceptually, STM simplifies concurrency because it al-
lows a transaction to be thought of as a single strictly seri-
alizable operation. A thread cannot observe changes made
to other threads while a transaction is in progress, nor can
other threads observe modifications by that thread until the
transaction has completed successfully. Wrapping a set of
operations within a transaction eliminates the need to se-
cure locks, leading to more simple programs. A transaction
that modifies several shared variables, for example, would
not have to secure locks for all of them. Practically, STM
is useful in any situation in which multiple shared objects
need to be accessed and modified by multiple threads [11].

STM also offers significant advantages over lock-based pro-
gramming in terms of composability. Because a transaction
can be viewed as a single linearizable operation, STM can
allow any combination of linearizable operations to be com-
posed into a larger linearizable operation. Transactions also
enforce modularity by hiding implementation details of the
operations within [2].

However, the requirement that transactions must be able
to be aborted and retried places constraints on the set of
allowed operations. Specifically, a transaction cannot exe-
cute any operation that cannot be undone, such as writing
to disk or performing a network request. Operations that
block indefinitely, like waiting to acquire a lock, may also
cause a transaction to fail continuously. STM can also re-
sult in a decrease in performance caused by the overhead of
maintaining the log and aborting and retrying transactions.



3.3 Communicating threads
Other concurrently models avoid the use of shared mem-

ory by restricting threads to private memory. Threads com-
municate strictly by message passing, which avoids issues
such as race conditions. Because of the higher level of iso-
lation, communicating threads have long been a solution to
describing concurrent operations. Limiting thread commu-
nication to message passing also enforces modularity and
limits possible negative side effects. A wide variety of com-
municating thread models exist and are often used to im-
plement event loops or handle communication with external
systems [11].
Communicating sequential processes (CSP), one of the

oldest communicating thread models, began as a method
of formally describing actions in concurrent systems. CSP
describes systems in terms of independent processes that
communicate through predefined channels [4]. CSP is no-
table in that messages are passed synchronously; that is,
a sending process will block until a complementary opera-
tion is executed on the receiving process [11]. CSP is still
widely used in the specification, implementation, and testing
of safety-critical systems.
Other models, most notably the actor model, rely on asyn-

chronous message passing to specific entities (actors) rather
than named channels [1]. Upon receiving a message, an ac-
tor can choose to perform an operation on a resource that it
controls, send messages to other actors, create new actors,
determine the behavior used for the next received message,
or ignore the message entirely.
Shared state can also be represented by communicating

threads. The agent model, for instance, works similarly to
atomic references. A state wrapped by an agent can be
modified by a message that sends an updated state. The
value can be accessed by a dereferencing operation that reads
the current value from the agent [11].

3.4 Proxies
Proxies are a general term used to describe placeholders

for values that are the result of some concurrently executed
operation. Unlike communicating thread models, which rely
on message passing between dedicated threads, a proxy exe-
cutes some task in a new thread and delivers the result upon
completion [11].
Futures and promises are two of the most common proxy

models. The terms are frequently used interchangeably,
along with “delayed,”“deferred,” and “eventual.” Generally,
futures are resolved to the result of the completed operation.
The result is then accessed implicitly; any use of the future
will return its value. Promises differ in that they are created
as independent objects and require the result to be accessed
explicitly.
In practice, proxies are used to execute long-running op-

erations such as rendering or network requests [11] without
blocking other operations. For example, to eliminate the
need for a program to block on a long network request, a
promise could be used to complete the network request in
another thread and specify an action that should take place
once the result becomes available. Promise objects, which
can be easily passed, composed, and chained, offer more
flexibility than constructs such as asynchronous callbacks.
In fact, many mainstream languages now directly support
proxies.

4. COMPOSABILITY CHALLENGES
Even if a concurrency model guarantees correctness when

used alone, issues may arise when it is used with other mod-
els. For example, an implementation of an STM that guar-
antees linearizability assumes that all shared resources are
managed by the STM [10]. If such a resource is modified out-
side of the STM, an unexpected interleaving of operations
could result.

Swalens et al. [11] attempted to identify issues that arise
when different concurrency models are combined, hoping
that future work could identify common “building blocks”
that could be used to compose a variety of concurrency mod-
els. The study surveyed all of the concurrency models avail-
able in the Clojure programming language and used them
within one another to see what types of correctness issues
were encountered.

4.1 Correctness criteria
In the study, safety and liveness were used as the two

criteria for evaluating the correctness of a combination of
models. Together, the two have historically been used to
prove the correctness of distributed systems [6].

Informally, safety guarantees that “nothing bad will hap-
pen.” In other words, given a correct input, a program will
not produce an incorrect result [11]. This property is also re-
ferred to as partial correctness. In the context of concurrent
programming, safety is generally achieved by the manage-
ment of shared resources. STM, for instance, only allows
shared memory to be accessed through transactions; com-
municating threads only allow data to be shared through
message passing.

Liveness guarantees that “something good will eventaully
happen,” or that a program will eventually terminate if its
input is correct. Taken together, safety and liveness are re-
ferred to as total correctness—given a correct input, a pro-
gram will terminate with the correct output [11]. Deadlocks
(in which execution is blocked) and livelocks (in which exe-
cution continues indefinitely but never makes progress) are
the primary obstacle to liveness and can arise when models
are combined.

4.2 Possible conflicts
To discover the types of conflicts that might arise when

combining different models, the study examined all pairwise
combinations of Clojure’s models. Using every model within
every other model (for example, manipulating an atomic
variable within an STM transaction) uncovered the following
types of conflicts:

• A model might reexecute code containing another con-
currency model that performs an irrevocable action. If
a block of code such as a transaction were to contain
an operation that sent a message on a channel, reex-
ecutions of that block would cause the message to be
sent repeatedly.

• A model might reexecute code that causes the reexecu-
tion to continually happen. The authors of the study
observed that, especially when many transactions are
being executed at once, a large STM transaction might
consistently conflict with another and never succeed.

• A model that supports blocking operations might be
used within a model that does not expect blocking op-
erations. The authors of the study provided mutually



recursive futures as an example—if two futures each
attempted to read the value of the other, a deadlock
would occur.

• A model might not guarantee safety or liveness by de-
sign, making safe or live composability impossible.

The study noted that some types of bad interactions are
prevented by Clojure; as an example, sending a message
to an agent from within a transaction is delayed until the
transaction succeeds. The study also noted that similar safe-
guards could prevent other negative interactions. However,
preventing every type of negative interaction between mod-
els might undermine the purpose of the models to begin
with; channels, as mentioned previously, block by design
and are inherently incompatible with other models. With
that in mind, further research would likely seek to decom-
pose concurrency models into common elements and provide
a method to compose those elements safely and efficiently.

5. UNIFYING ABSTRACTIONS
Other research into composable concurrency models has

focused on the development of underlying abstractions ca-
pable of supporting a wide variety of models. Instead of pro-
grammers using composable “building blocks” to construct
models, these abstractions would make use of those com-
mon elements at a lower level to improve performance and
interoperability.

5.1 Ownership-based meta-object protocol
Marr and D’Hondt [9] surveyed a variety of concurrent

and parallel programming concepts such as immutability,
critical sections, ownership, and common concurrency mod-
els to identify a unifying concurrency abstraction that could
be implemented in a high-level language virtual machine. A
unifying abstraction would enable each concurrency model
in a high-level language to be represented in machine code
without sacrificing performance or semantics. For instance,
a concurrency model in Clojure could be accurately rep-
resented by an underlying abstraction in the Java Virtual
Machine, and code written in the Java programming lan-
guage could interact with that model correctly. To identify
the concepts that would need to be supported at the virtual
machine level, Marr and D’Hondt selected four questions:

1. Can the concept be reasonably implemented as a li-
brary? A library implementation may suffer from loss
of performance or semantics to an extent that the con-
cept would warrant virtual machine inclusion.

2. Does the concept require runtime support to guarantee
its semantics? Semantic guarantees may be enforced
by a compiler but not the virtual machine. For ex-
ample, immutable objects in one language may not be
immutable in machine code, and therefore may be mu-
tated by another language.

3. Would runtime support benefit performance? Deeper
knowledge of the concept may enable the virtual ma-
chine to better optimize. Some concepts, though, may
require knowledge of the underlying hardware to re-
alize any performance improvements; such concepts
would not necessarily benefit from runtime support.

4. Is the concept already supported by a common virtual
machine like the Java Virtual Machine or the Common
Language Runtime?

From those questions, 26 concepts were identified that
would benefit from runtime support. Of those, 18 suffered
from loss of semantic guarantees when compiled to machine
code; the survey mentioned transactions as an example.
With those concepts in mind, Marr and D’Hondt derived
the following requirements for a unifying abstraction:

• Managed mutation and execution: A model may im-
pose rules on how objects can be modified; therefore,
mutation must be handled in a way that allows those
rules to be enforced. By way of example, a thread
should not be permitted to mutate a variable that a
model declares immutable. Similarly, a model may re-
strict the invocation of operations on objects.

• Ownership: All mutation and execution on an object
is regulated relative to some “owning” entity, so own-
ership should be supported in a way that allows for
adaptable mutation and execution rules.

• Leveled reflection: Reflection allows a program to ex-
amine its own structure and behavior at runtime. To
guarantee safety, there needs to be a distinction be-
tween language-level reflection (reflection operations
supported by the high-level language) and meta-level
reflection (reflection operations on the low-level ab-
straction).

• Enforceability: All defined restrictions should be en-
forceable on different concurrency models. Addition-
ally, the semantics of the language (immutability, for
example) in which a model is defined must be enforced
regardless of where the model is used.

Domain
read_field(object, index)

write_field(object, index, value)

execute(object, method, arguments)

new_thread(method)

execute_in_context(method)

read_global(global)

write_global(global, value)

primitive_copy(object)

primitive*(...)

Object
...

Thread
execution_level: base | meta

owned by

executes in

Figure 6: Marr and D’Hondt’s owenership-based
meta-object protocol [9].

Given those requirements, Marr and D’Hondt defined an
ownership-based meta-object protocol (MOP) that could de-
scribe a low-level abstraction, illustrated in Figure 6. The
owner of an object, referred to as the domain, manages op-
erations on all of the objects that it owns. Specifically, the



domain handles all reading and writing of object fields and
invocation of methods on objects. This satisfies the owner-
ship requirement. Read and write operations are directed to
the read_field and write_field operations on the domain,
satisfying the managed mutation requirement. Similarly, all
method invocations are directed to the exec, satisfying the
managed execution requirement. Threads are executed in
a domain and specify whether execution occurs at the lan-
guage level with restricted reflection or the meta level with
unrestricted reflection, satisfying the leveled reflection re-
quirement. Globally shared resources are handled by the
domain (through the read_global and write_global meth-
ods) if they might break semantics. Additionally, the prim-
itive* operations allow callers to override the semantics of
virtual machine primitives, completing the enforcability re-
quirement.
To demonstrate the suitability of the MOP as a low-level

abstraction, Marr and D’Hondt implemented several con-
currency models. The MOP was able to support LRSTM (a
STM for the Smalltalk language), Clojure’s agents (which
rely on communicating threads), active objects (a variation
on proxies), and several other models. While the MOP was
able to successfully enforce the semantics of each model, the
resulting performance cost suggested that the MOP must
be implemented at the virtual machine level to sufficiently
reduce the overhead of abstraction. Marr and D’Hondt also
note that regarding the owner of an object as the only en-
tity able to restrict interaction is somewhat limiting. For
instance, the behavior of the system when different seman-
tics interact needs to be explicitly specified.

6. CONCLUSION
There are a rich variety of concurrency models that can be

used to represent concurrent tasks, abstract over low-level
details, and ensure that concurrent applications perform cor-
rectly. Recent research has attempted to identify ways in
which these models can be safely used together, common
features of these models, and underlying abstractions capa-
ble of representing many different models.
Future work will likely explore ways in which concurrency

models can be decomposed and recomposed from common
elements. This, in turn, would lead to the development
of more generalized ways of describing concurrency mod-
els and perhaps additional unifying abstractions. As Marr
and D’Hondt note, a “silver bullet” does not exist. However,
there is certainly promise in searching for better ways to
represent concurrent operations.

Acknowledgments
Thanks to Elena Machkasova, K. K. Lamberty, and Matthew
Justin for their suggestions and feedback.

References
[1] Gul Agha. Actors: A Model of Concurrent Compu-

tation in Distributed Systems. Cambridge, MA: MIT
Press, 1986. isbn: 0-262-01092-5.

[2] Tim Harris et al. “Composable Memory Transactions.”
In: Proceedings of the Tenth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Program-
ming. PPoPP ’05. Chicago, IL: ACM, 2005, pp. 48–60.

isbn: 1-59593-080-9. url: http://doi.acm.org/10.
1145/1065944.1065952.

[3] Maurice P. Herlihy and Jeannette M. Wing. “Lineariz-
ability: A Correctness Condition for Concurrent Ob-
jects.” In: ACM Transactions on Programming Lan-
guages and Systems 12.3 (July 1990), pp. 463–492.
issn: 0164-0925. url: http://doi.acm.org/10.1145/
78969.78972.

[4] C. A. R. Hoare. “Communicating Sequential Process-
es.”In: Communications of the ACM 21.8 (Aug. 1978),
pp. 666–677. issn: 0001-0782. url: http://doi.acm.
org/10.1145/359576.359585.

[5] Kyle Kingsbury. Strong Consistency Models — Aphyr.
May 2014. url: https://aphyr.com/posts/313-
strong-consistency-models.

[6] Leslie Lamport. “Proving the Correctness of Multipro-
cess Programs.” In: IEEE Transactions on Software
Engineering 3.2 (Mar. 1977), pp. 125–143. issn: 0098-
5589. url: http://dx.doi.org/10.1109/TSE.1977.
229904.

[7] Leslie Lamport. “Time, Clocks, and the Ordering of
Events in a Distributed System.” In: Communications
of the ACM 21.7 (July 1978), pp. 558–565. issn: 0001-
0782. url: http://doi.acm.org/10.1145/359545.
359563.

[8] C. L. Liu and James W. Layland. “Scheduling Al-
gorithms for Multiprogramming in a Hard-Real-Time
Environment.” In: J. ACM 20.1 (Jan. 1973), pp. 46–
61. issn: 0004-5411. url: http://doi.acm.org/10.
1145/321738.321743.

[9] Stefan Marr and Theo D’Hondt. “Identifying a Unify-
ing Mechanism for the Implementation of Concurrency
Abstractions on Multi-language Virtual Machines.” In:
Objects, Models, Components, Patterns: 50th Interna-
tional Conference, TOOLS 2012, Prague, Czech Re-
public, May 29-31, 2012. Proceedings. Ed. by Carlo
A. Furia and Sebastian Nanz. Berlin, Heidelberg, Ger-
many: Springer-Verlag, 2012, pp. 171–186. isbn: 978-3-
642-30561-0. url: http://dx.doi.org/10.1007/978-
3-642-30561-0_13.

[10] Nir Shavit and Dan Touitou. “Software Transactional
Memory.” In: Proceedings of the Fourteenth Annual
ACM Symposium on Principles of Distributed Com-
puting. PODC ’95. Ottowa, Ontario, Canada: ACM,
1995, pp. 204–213. isbn: 0-89791-710-3. url: http:
//doi.acm.org/10.1145/224964.224987.

[11] Janwillem Swalens et al. “Towards Composable Con-
currency Abstractions.” In: Proceedings of the Seventh
Workshop on Programming Language Approaches to
Concurrency and Communication-cEntric Software.
PLACES ’14. Grenoble, France: EPTCS 155, 2014,
pp. 54–60. url: http://dx.doi.org/10.4204/EPTCS.
155.8.

[12] Ofri Ziv et al. “Composing Concurrency Control.” In:
Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion. PLDI ’15. Portland, OR: ACM, 2015, pp. 240–
249. isbn: 978-1-4503-3468-6. url: http://doi.acm.
org/10.1145/2737924.2737970.


