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Threads and processes

Process A Process B

• Threads are independent sequences of operations.
• Processes are instances of programs made up of one or more threads.
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Concurrency

The “happens before” (→) relation1

A→ B if one of the following is true:

1. A and B are operations in the same thread and A occurs before B.
2. A is the sending of a message by one thread and B is the receipt of the same
message by another thread.

A and B are said to be concurrent if A↛ B and B↛ A.

1Lamport, “Proving the Correctness of Multiprocess Programs.”
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Complications

• Sequential program: Does the order of operations yield a correct result?

• Concurrent program: Does every possible order of operations yield a correct
result?
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Complications

Single thread:

x 1 2 3 4

x← 1 x = 1 x← 2 x = 2 x = 2 x← 3 x← 4 x = 4
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Complications

Multiple threads:

x 1 2 3 4

x← 1

x = 1

x = 1

x← 2

x = 2

x = 2

x← 3

x = 3 x← 4

x = 4

x = 4
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Complications

x 1 2 3

x← 2 x← 3

x = 3
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Linearizability

x 1 2

x← 2

• Linearizability guarantees that the completion of an operation on a single
object will appear to be instantaneous.

• The results of a linearizable operation will be visible as soon as the
operation is complete.
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Serializability

x 1 2 3

x← 2

x = 2x← 3

x = 3

• Serializability guarantees that operations can occur in any order as long as
an equivalent sequential ordering exists.

• While a serializable set of operations is being executed, it appears to be the
only set of operations being executed.
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Strict serializability

• Linearizability and serializability yield strict serializability, which guarantees
both consistency and isolation.

Strict serializability2

An ordering of operations is equivalent to some sequential ordering and that
ordering corresponds to the order of execution in real time.

2Herlihy and Wing, “Linearizability: A Correctness Condition for Concurrent Objects.”
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Atomic variables

x = 23

Thread A Thread B

x = 23

1. A reads x
2. B reads x
3. A increments value
4. A writes incremented value to x
5. B increments value
6. B writes incremented value to x

x = 24
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Atomic variables

x = 23

Thread A Thread B

fetch-and-increment

x = 23

1. A calls fetch-and-increment on x
2. B calls fetch-and-increment on x

x = 25

13



Atomic variables

x is locked = false

x = 23

Thread A Thread B

compare-and-swap
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Atomic variables

Joe is locked = false Jill is locked = false

Joe = 400 Jill = 800

Thread A Thread B

compare-and-swap
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Software transactional memory

Software transactional memory (STM) is an optimistic approach to working with
shared memory:3

1. A thread writes to a shared memory location, keeping track of the
transaction in a log.

2. If there are conflicting changes at the end of the transaction, the transaction
is aborted and retried.

3. If there are no conflicts, the changes are committed and become visible.

3Shavit and Touitou, “Software Transactional Memory.”
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Software transactional memory

Jill = 800
Joe = 400

Jill← Jill− 200
Joe← Joe+ 200

Jill← Jill+ 50

Jill← Jill− 5
Joe← Joe− 5
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Communicating threads

Thread A Agent x Thread B

Agents: An isolated thread wraps an object.4

4Swalens et al., “Towards Composable Concurrency Abstractions.”
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Communicating threads

accept bill

accept card

dispense candy(payment channels)

Communicating sequential processes (CSP): Independent threads communicate
synchronously through predefined channels.5

5Hoare, “Communicating Sequential Processes.”
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Communicating threads
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The actor model: Independent threads send messages to known addresses.6

6Agha, Actors: A Model of Concurrent Computation in Distributed Systems.
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Correctness criteria

How do we know that models are composable?7

• Safety: “Nothing bad will happen!” (The output of a program or algorithm will
not be incorrect.)

• Liveness: “Something will eventually happen!” (The program or algorithm will
terminate.)

Two models are composable if using them within each other doesn’t compromise
safety or liveness.

7Swalens et al., “Towards Composable Concurrency Abstractions.”
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Possible conflicts

Safety Liveness

within
using atoms refs agents channels atoms refs agents channels

atoms 7 7 7 7 3 3 3 7

refs 7 3 3 7 3 3 3 7

agents 3 3 3 3 3 3 3 7

channels 3 3 3 3 3 3 7 7

• A model reexecutes code that performs an irrevocable action.

• A model reexecutes code that causes the reexecution to continually happen.

• A model that supports blocking operations is used within a model that doesn’t.

• A model does not guarantee safety or liveness by design.
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Ongoing work

• Composable “building blocks” (thread creation, message passing, etc.) that
could be used to build common concurrency models8

• Unifying abstractions for high-level language virtual machines9

• Formal theories for safely composing concurrency control10

8Swalens et al., “Towards Composable Concurrency Abstractions.”
9Marr and D’Hondt, “Identifying a Unifying Mechanism for the Implementation of Concurrency
Abstractions on Multi-language Virtual Machines.”
10Ziv et al., “Composing Concurrency Control.”
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