
Adding functional style pattern matching features to
object-oriented languages

Joseph Thelen
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
thele116@morris.umn.edu

ABSTRACT
Pattern matching as a major feature in programming lan-
guages is particularly interesting because is it has long been
a mainstay feature of prominent languages such as Scala,
Haskell, and Erlang. However, its use has been limited pri-
marily to regular expressions for use on strings in other
popular languages such as Java, C++, and Perl. Pattern
matching has cited as one of the major reasons for choosing
a functional language, such as Haskell or Erlang. As such,
efforts have been made to bring pattern matching to lan-
guages that did not previously incorporate it. Here, we will
discuss two such attempts, one in C++ and one in Java,
briefly comparing them.

Keywords
Pattern matching, C++, Java, Dispatch, Haskell, Types,
Objects, Multimethods, Multiple Dispatch, Regex, Regular
Expression

1. INTRODUCTION

1.1 What is pattern matching?
Pattern Matching, at least as intuitively understood, is

a relativity simple concept. A dictionary provides us with
a definition of a “pattern” as a “repeated form or design”
or “an original of model considered for or deserving of imi-
tation”, and of “matching” as “corresponding or causing to
correspond in some essential aspect” or as “equal in number
or equivalent.” Armed with these definitions, we can eas-
ily recall examples of common place pattern matching. For
instance, the game that children play in which various geo-
metrically shaped blocks must be placed into corresponding
holes in a box could be considered pattern matching.

1.2 In Programming
Looking at pattern matching in the context of computer

science and programming we can start by simply consider-
ing the opening line of the Wikipedia article on the sub-

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
.

ject, which defines pattern matching as “the act of check-
ing a given sequence of tokens for the presence of the con-
stituents of some pattern.”[10] Putting this in terms of our
block-game example, blocks, perhaps strung together in a
sequence, could be considered tokens, and a pattern would
be a sequence of blocks that we are looking for, represented
by the sequence of holes in the box. In programming, we
will need some syntax for representing the patterns we are
looking for.

Regular expressions, which are quite commonplace in pro-
gramming and computer science, are one example of pattern
matching in programming in that they are often used to de-
fine patterns against which strings can be matched. More
interesting than string parsing though, at least to us, are
usages of pattern matching as a major feature of program-
ming languages as opposed to as stand alone or domain-
specific tools. In some programming languages / implemen-
tations pattern matching can be used to handily decompose
data structures, patterns can be used in defining functions,
and sometimes patterns are even made first-class-citizens,
such as in the first-class-patterns package for Haskell1.
First-class-citizen here means that patterns are treated in
the same way that we might treat Strings or integers in
Java; they can be passed around as arguments, assigned to
variables, and returned by functions.

Overall, pattern matching is a desirable language feature
because it adds a great deal of flexibility in how programmers
can think about and compose functions and deal with data.
Pattern matching is often an integral part of technology such
as natural language processing, and plays a crucial role in
languages that rely on message passing or channels, such
as Go or Erlang/Elixir. Pattern matching is cited as one
of the top reasons that programmers would choose to use a
functional language [8].

1.3 Simple Examples in Haskell
Having covered some basic definitions, let us consider some

simple examples to get a better idea of how pattern match-
ing can appear in programming. Our examples here are
in Haskell. Haskell is a functional programming language
which is statically typed, features pattern matching quite
heavily, and has a relatively easy-to-understand syntax. Here,
we provide a definition for a function ourFunction, which
should take in a number and return the result of adding one
to that number:

ourFunction x = x + 1

1available: hackage.haskell.org/package/first-class-patterns

In this situation the “=” sign is used to signify not an
assignment, but a definition. The function name is provided,
followed by each of the function’s parameters separated by
spaces (in this case a single parameter, x). The body of
the function follows the “=” sign. Currently, ourFunction
will return x + 1 whenever it is passed a single number,
x. It is important to note here that, although Haskell is
statically typed, we are not required to specify the types
of our function - they will be inferred during compilation
time. ourFunction here is limited to taking in and returning
numbers.

The power of pattern matching comes into play when we
want our function to consume more complicated informa-
tion, or when we want to add more complex behavior. For
example, suppose we want to add a special case for an argu-
ment of 0 to our function. Such a modification might look
like this:

ourFunction 0 = −1
ourFunction x = x + 1

We’ve added a new definition for the function ourFunc-

tion in which an argument of 0 will return -1. In Haskell,
all definitions for a function will be used, so we are not
‘overwriting’ our existing definition by adding this new one.
When ourFunction is called, Haskell will attempt to match
the provided arguments against each definition it has for
ourFunction, in the order they were defined, until it finds
a definition that will accept the arguments (which is then
used). This is an example of pattern matching affecting dis-
patch2, where dispatch refers to deciding which definition to
use when calling a function. Of course, this function and its
behavior could easily be reproduced in another language us-
ing switch statements or if-conditionals, however doing this
becomes increasingly difficult as the complexity of patterns
grows. Of note is the fact that we would need to use some-
thing like an if-conditional if we were adding this behavior
to an equivalent function in Java. While Java does allow
overloading of functions (‘methods’ in Java), this is only al-
lowed when those function definitions differ in number of
arguments or argument type(s)[5]. Similar rules apply to
overloading in C++. Here, both of our definitions for our-

Function take a single argument of the same type.
Suppose that we want to rewrite ourFunction to accept

a list of numbers and return the result of multiplying the
first element of the list by the sum of the rest of the list,
returning -1 in the event of an empty list. The code might
look like this:

newFunction [] = −1
newFunction (x : xs) = x ∗ sum xs

In our first definition for newFunction, we match an empty
list and return -1. The “:” symbol used in the second def-
inition indicates a “cons”, or the adding of an element to
the beginning of a list. For example, 5:[4, 3, 2] would
result in [5, 4, 3, 2]. In the second definition, using the
aforementioned“cons”operator, we match any list which can
be broken into a single element and another list - returning
the result of multiplying that list’s first element by the sum
of the rest of its elements (using a call to the built-in sum

function with the list xs as an argument).
As previously mentioned, pattern matching can be used

to decompose data in useful ways. This implementation of

2In Haskell’s terminology, this is called ”Dispatch Control”.

newFunction provides us with an example of how we might
decompose a list using pattern matching. In the second def-
inition of newFunction the pattern (x:xs) will match any
list which can be broken down into a single element and a
list, the variables x and xs being then bound to the first
element of the list and the rest of the list, respectively, in
the body of that function definition. For example, calling
newFunction on the list [4,3,2,1] matches the second def-
inition’s pattern, assigning x the number 4 and xs the list
[3,2,1], ultimately returning the number 24.

In an effort to further demonstrate the capabilities of pat-
tern matching, let us add one additional special case where
any list with the number 0 as its first element will skip the
multiplication step and instead return only the sum of all
elements in the list, as well as implementing our own sum-
mation rather than using the built-in sum:

newFunction [] = −1
newFunction (0 : xs) = ourSum xs
newFunction (x : xs) = x ∗ ourSum xs

ourSum [] = 0
ourSum (x : xs) = x + ourSum xs

Remember that, as previously mentioned, pattern matching
will bind matched parts of the data being matched against
to the associated variables in the pattern.

We’ve also added a new function, ourSum, which replaces
our use of the built in sum. The function ourSum is recur-
sive, meaning that it makes calls to itself. In explanation,
consider a call to ourSum with the list [1,2,3] as the argu-
ment. In this case, we would skip over the first definition of
ourSum because our argument is not an empty list, instead
matching the pattern of the second definition and break-
ing our argument into the number 1 (x) and the list [2,3]

(xs). This call to the second definition of ourSum will re-
turn 1 + ourSum [2,3], the sum of the number 1 and the
result of another call to ourSum with the list [2, 3] as its
argument. This second call will again match the second def-
inition, breaking the list [2, 3] into the number 2 and the
list [3] and returning 2 + ourSum [3]. The third call here,
as before, match the second definition’s pattern and break
its argument out into the number 3 and an empty list, [] -
returning 3 + ourSum [] which will become 3 + 0. In the
end, our original call will return 1 + 2 + 3 + 0, which eval-
uates to 6.

Finally, note that calling newFunction on any list of any
single number will return that number multiplied by the sum
of an empty list (which is zero). To avoid performing any
unnecessary function calls in these cases, we can add one
final definition for newFunction which matches lists with
only one number in them and returns 0:

newFunction [] = −1
newFunction [] = 0
newFunction (0 : xs) = ourSum xs
newFunction (x : xs) = x ∗ ourSum xs

Our new definition, now the second one, makes use of a
wildcard - denoted with ‘_’. A wildcard will match any single
thing, but will not perform any binding. This is perfect for
our new definition because we only care that our argument
is a list with a single element, not about what that element
is.

2. DEFINITIONS AND EXAMPLES
Before we can discuss pattern matching implementations,

it is important to have at least a casual familiarity with some
of concepts associated with pattern matching.

2.1 Multi-methods and Multiple-dispatch
Multiple-dispatch and multi-methods are pieces of termi-

nology relating to language features commonly associated
with pattern matching, or at least languages which feature
pattern matching. Dispatch, in this context, refers to the
process of deciding which implementation of a given method-
/function to actually use when called. Take our previous
Haskell examples, for instance: we define the same function
multiple times, and the definition which gets used depends
on what arguments we call it with. The term multiple dis-
patch refers to the ability to actually use multiple definitions
for a single function, and the term multi-methods refers to
methods (or functions) which take advantage of this capabil-
ity by having multiple definitions. An important distinction
to make is that while the Java method overloading discussed
in section 1.3 takes place during compile time, dispatch takes
place duing runtime.[1][9][4]

2.2 Algebraic Types
One major obstacle faced by those wishing to add func-

tional pattern matching features to languages like C++ and
Java is that those languages do not naively support alge-
braic types, which are useful in pattern matching. Algebraic
types are, essentially, just new types created by combining
existing types using “algebraic” operations such as plus, mi-
nus, logical and, or, multiplication, etc. [2]. This is useful
in functional languages like Haskell, where a large propor-
tion of data will be represented as lists and tuples. This
functionality is desirable because it allows the programmer
to more freely represent how data can be organized, de-
composed, and matched against. For example, in Haskell
a singly-linked-list, where the list can be either empty, or
composed of a single element added to another list, might
be defined as follows:

data LList a = Empty | Cons a (LList a)

Here, “data” indicates that we are defining a type, LList
is the name of our type, and a is a type parameter which
is used to determine the type of a given instance of the
LList type. The “|” symbol is an “or”, meaning that the
type LList has two variants: Empty and Cons. Each vari-
ant has a constructor, for our purposes the code following
its name, which specifies what the constructor will accept.
For example, the Cons constructor in our example wants a
single thing of type a, and something of the type LList a.
This kind of type lends itself to pattern matching and can
be easily decomposed. For example, looking at our earlier
Haskell examples, specifically the second definition of the
sum_helper function, we find a list being matched against
the pattern (x:xs). This pattern matches a list that can be
decomposed into a single element plus another list, which is
essentially what the second variant of our LList is.

3. ADDING PATTERNS TO C++
While some previous efforts have been made to add pat-

tern matching to C++ in various forms, such as Prop: “a
C++ based pattern matching language” [3], one of the more

comprehensive efforts of late is the Mach7 library by Yuriy
Solodkyy, Gabriel Dos Reis, and Bjarne Stroustrup in 2013,
summarized in their paper Open Pattern Matching For C++
[8]. Their effort is particularly interesting because they
strove to add “functional-style” pattern matching which is
type safe, makes patterns first-class citizens, allows user-
created patterns, and is implemented as a library. This
approach, and the scope of features planned, is somewhat
unique compared to other such projects some of which, like
“Prop”, tend to be focused on compiler development and shy
away from a library implementation [3].

3.1 Example
Many of the code examples presented by Solodkyy et al.

are rather intimidating at first glance, especially to those not
familiar with C++, due to some expectation of familiarity
with both C++ and the pattern matching as a concept.
That said, there is a small selection of simple examples which
let us start to compare code written using this library to
our previous Haskell examples. One such block of code, a
recursive definition of factorial, is quite easily compared to
our Haskell examples and is reproduced here:

int factorial (int n) {
unsigned short m;
Match (n) {
Case(0) return 1;
Case(m) return m∗factorial (m−1);
Case() throw std : : invalid argument(”factorial ”) ;
} EndMatch
}

In this example, the“ ”symbol serves the same purpose as
in our earlier Haskell example: as a wildcard. Although the
code here only defines factorial once, as opposed to the
multiple function definitions we see in our Haskell example,
the similarities between the code contained with the Match
block here and our multiple function definitions is quite ap-
parent. Note that the local variable m, which is used in the
pattern of the second Case, is an unsigned short while the
data we will be matching against is an integer. The second
Case will only match if the integer we are matching against
can be converted into an unsigned short, otherwise the func-
tions throws an error.

3.2 Features and Implementation

3.2.1 Algebraic Data Types
C++ does not have built in support for algebraic types.

The authors of Mach7 were able to encode algebraic types
in C++ by using abstract classes to represent the algebraic
data type (in our Haskell example this would be the type
LList) and derived classes to represent the variants. How-
ever, constructors in C++ do not allow themselves to be
easily re-purposed for pattern matching. To get around this,
the authors have added some more explicit syntax for using
them in pattern matching. This extra syntax is visible in the
the Case lines of following example, adapted from an exam-
ple provided for Mach7 to resemble our Haskell example, of
a function to check the equality of two linked lists 3.

struct LList { virtual ˜LList(){} };

3This example is based on the lambda term equality example
in Solodkyy et al. and has not been tested or confirmed to
work.

struct Item : LList { std : : string item name};
struct Empty: LList { NULL };
struct Cons : LList { Item& item; LList& rest };

bool operator==(const LList& left , const LList& right) {
var〈const std : : string &〉 s ; var〈const LList&〉 x;
var〈const Item&〉 y;
Match (left , right) {

Case(C〈Item〉(s) , C〈Item〉(+s)) return true ;
Case(C〈Empty〉(NULL) , C〈Empty〉(NULL)) return true ;
Case(C〈Cons〉(y, x) , C〈Cons〉(+y,+x)) return true ;
Otherwise() return false ;

} EndMatch
}

The additional syntax needed to use constructors in pat-
tern matching is described by the authors as being of “the
form C〈Ti〉(P1...Pmi), where Ti is the name of the user-
defined type we are decomposing and P1...Pmi are patterns
that will be matched against members of Ti.” Also of note
is the use of the “+” symbol in the third case of our Match
block. Here, ‘+’ is what the authors refer to as an equivalence
combinator : Note that the variables y and x have already
appeared once in our pattern before the occurrence of +y

and +x. The pattern will only match if the values matched
by the second (with +) occurrences of y and x are equal
to the existing values of those variables, which in this case
have already been bound to y and x earlier in the pattern.
Note there is a chance that these checks for equality will
result in recursive calls to the overloaded == function when
checking equivalence of the two occurrences of x in case 3.
There are several other pieces of code that would need to be
written before this example could be run, namely the bind-
ings. Avoiding too much technical detail, Mach7 requires
the programmer to define bindings for each class hierarchy
they create so that those classes can be properly decomposed
during matching. This is necessary because classes in C++
can have multiple constructors and thus we cannot presume
to use a classes’ constructor as its deconstructor. In Mach7
this is accomplished by “specializing the library template
class bindings”[8] where bindings is a template class provided
by the Mach7 library. Defining a template class allows the
programmer to specify the behavior of a class without con-
cerning themselves with what types the class with handle;
similar to the way Java Generics are used.

3.2.2 Patterns
The approach the authors of Mach7 take is not to sim-

ply implement patterns as objects. Rather, they implement
patterns as expression templates which are “composed at
compile time” rather than during run time as would be the
case for objects, allowing the types of patterns to be checked
at compile time and offering some performance benefits. In
short, expression templates are a feature of C++ which allow
us to introduce some laziness into the evaluation of expres-
sions during run-time by doing some evaluation at compile
time. Laziness means that we avoid fully evaluating an ex-
pression - instead only evaluating it as much as is needed at
the time. For instance, if we are matching against a pattern
which breaks an arithmetic expression with a binary opera-
tor (such as (1 + (2 + 5))) down into two sub-expressions,
we need not fully evaluate the sub-expression (2 + 5) dur-
ing pattern matching.

Important to note is the fact that patterns in Mach7 must
conform to two constraints: PATTERN and LAZYEXPRESSION.
The PATTERN constraint requires an expression to be copy-

able and a predicate on its subject type - meaning that a
pattern must include a means by which to check if it is appli-
cable to a given subject. A LAZYEXPRESSION must be copy-
able, and must provide a function to evaluate the result of
the expression.

3.2.3 Matching
As discussed in our Haskell examples, in many cases the

things we do with pattern matching appear very similar to
things we might typically do with switch statements. In
Mach7 , their Match functionality is actually implemented
as an extension of the “efficient type switch for C++”, which
happens to fall under the Mach7 project’s umbrella and is
described in another paper by Solodkyy et al.[7]. Briefly,
the efficient type switch is an implementation of the switch
statement which allows us to switch based on the run-time
types of objects. The efficient type switch makes use of
hashing and caching to increase its performance, and its
speed is supposedly one of the major advantages of pattern
matching in Mach7 .

3.3 Results

3.3.1 Performance
The authors conclude with an evaluation of the perfor-

mance of their solution, comparing both their chosen solu-
tion (patterns as expression templates), and an alternative
“patterns as objects” approach, to functionally equivalent
hand-optimized code which lacks any pattern matching. Sig-
nificant measures are taken to ensure that their patterns-as-
objects implementation does not suffer typical performance
pitfalls such as allocating objects on the heap. Compar-
isons of the median run times of several algorithms showed
that an implementation with patterns as expression tem-
plates (Mach7) has substantially less overhead (compared
to the functionally-equivilant baseline) than a patterns-as-
objects implementation. There were no cases in which the
patterns-as-objects implementation had less overhead than
the patterns as expression templates implementation, with
the latter frequently having overhead more than an order
of magnitude less than the former. For example, there was
a 395% overhead for patterns-as-objects verses a 15% over-
head for patterns as expression templates on a function cal-
culating fibonacci numbers.

Compile times were also evaluated in the same manner,
and it was found that compilation times are only lightly im-
pacted by either implementation, with both pattern match-
ing implementations actually performing up to 10% better in
a small handful of cases. To quote Solodkyy et al.: ”the dif-
ference in compilation times was small: on average, 3.99%
slower for open patterns and 4.84% slower for patterns as
objects.”

3.3.2 Usability
The usability of the features added by the Mach7 project

was tested by means of helping a programmer re-write some
Haskell code in C++ using Mach7 . Overall, the exercise
was successful. The authors note that Mach7 has an ad-
vantage over Haskell when defining certain kinds of patterns
because “Haskell does not support equivalence patterns or
an equivalence combinator and had to use guards to relate
different arguments” [8]. It’s not all good news though, as
Mach7 becomes more complicated than Haskell in the body

of the function after pattern matching. This is due primar-
illy to the fact that C++ requires programmers to explicitly
manage memory. The authors also note that the patterns
in Mach7 are not actually first-class-citizens because “one
cannot create a run-time data structure of patterns (e.g. a
composition of patterns based on user input)” [8].

4. ADDING PATTERNS TO JAVA
The motivation to add functional style pattern matching

features to Java is primarily the same as in C++: bringing a
desirable feature found in functional languages to a popular
language which lacks it. Interestingly enough, though, in
at least one prominent project the reasoning seems to be
that we should add useful features of functional languages to
Java because, while they have their benefits, those functional
languages lack crucial object oriented features found in Java.
Said project is “OOMatch”, an effort by researchers at the
University of Waterloo to add pattern matching as dispatch
in Java [6].

4.1 Example
In the previously mentioned paper describing the OOMatch

project, an example is given which implements a simple op-
timizer for arithmetic expressions. The code from that ex-
ample is shown in Figure 1. It consists of a handful of classes
representing some possible components of arithmetic expres-
sions, followed by some examples of methods which make use
of those classes and features of OOMatch.

//Arithmetic expressions
abstract class Expr { . . . }

//Binary operators
class Binop extends Expr { . . . }

//’+’ operator
class Plus extends Binop { . . . }

//Numeric constants
class NumConst extends Expr { . . . }

//do nothing by default
Expr optimize(Expr e) { return e ; }

//Anything + 0 is i t s e l f
Expr optimize(Plus(Expr e , NumConst(0)))
{ return e ; }

//Const folding
Expr optimize(Binop(NumConst c1 ,

NumConst c2) op)
{ return op. eval(c1 , c2) ; }

Figure 1: OOMatch Example

Here, we can see many similarities to our earlier Haskell
examples. The method optimize is defined multiple times,
and in a way which would not be feasible using only Java’s
existing mechanisms for method overloading: all of these
definitions take a single argument, which is assumed to al-
ways be of type Expr.

For clarity, consider that an example of an expression con-
structed based on this class hierarchy might look something
like (1 + (2 + 5)). This expression (Expr) can be referred

to more specifically as a Binop, and more specifically yet
as an instance of Plus. This instance of Plus contains a
NumConst (the numeric constant 1) and another instance of
Plus. Should we pass our example expression to optimize,
we will match only the first definition’s pattern, as our ex-
pression cannot be decomposed into a Plus containing an
Expr and the numeric constant 0, and cannot be decom-
posed into a Binop containing two numeric constants. How-
ever, if we were to pass in only the sub-expression (2 +

5) we would match not only the first definition’s pattern,
but also the third’s. Here it is prudent to note that in the
OOMatch project, in contrast to Haskell, matching is not
done in the order that definitions for a function appear. In-
stead, in OOMatch, matching is done in order of how specific
each pattern is. So in the case of the expression (2 + 5), we
would end up falling into the third definition of optimize

because its pattern is the most specific.

4.2 Features and Implementation
Java being, as some might say, a heavily object oriented

language, it is only natural that an attempt to implement
pattern matching in Java would focus on objects. Indeed,
this is the case with OOMatch.

4.2.1 Algebraic Data Types and Decomposition
The OOMatch project does not directly make an attempt

to encode algebraic data types, as the Mach7 project did,
because “simple algebraic types and tuples aren’t used much
in object-oriented programming” [6]. The OOMatch project
goes about adding pattern matching to Java by modifying
grammars from the Java language specification in order to
“[add] deconstructors as a new kind of class member.” These
deconstructors are a major part of OOMatch. We’ve dis-
cussed previously how pattern matching can be used to de-
compose (or deconstruct) data, specifically in our Haskell
examples. Deconstructors are also mentioned in our discus-
sion of the Mach7 project (§3.2.1). Here, deconstructors are
added to classes in order to break down an object struc-
turally and expose certain values for pattern matching.

OOMatch provides programmers with two ways of adding
deconstructors: The first method simply requires the pro-
grammer to “add access specifiers to constructor parame-
ters”, which is as simple as it sounds: the programmer needs
to add an access speifier such as ‘Public’ in front of each of
the prarmeters in their constructor, as seen in the following
example of a definition for the Binop class, used in Figure
1, taken from Richard et al.:

class Binop {
public Binop(public Expr e1 ,

public Expr e2)
{ . . .}
. . .

}

Alternativley, deconstructors can be added to a class by
adding a specific deconstructor method to the class, which
“breaks down this into components and returns them to be
matched against” [6]. A deconstructor for the Binop class
introduced in Figure 1 might look like this:4

deconstructor Binop(Expr e1 , Expr e2) {
e1 = this . e1 ;
e2 = this . e2 ;

}
4Taken directly from an example given in [6]

4.2.2 Patterns and Matching
In OOMatch a class specifies, via its deconstructors, how

it can be decomposed. A pattern used in a method definition
is simply an attempt to decompose its arguments in a specific
way, and either succeeds or fails.

4.3 Results

4.3.1 Performance
The authors of the OOMatch project provide many proofs

of the correctness of their implementation, but do not pro-
vide any kind of practical performance analysis. Presum-
ably, since code written using the OOMatch project com-
piles to standard JVM bytecode, the project’s effect on per-
formance is not large. However, the Mach7 project did note
the inferior performance of solutions such as that used in
OOMatch, which does most of its work at run-time. Addi-
tionally, the OOMatch project notes that there are a num-
ber of potential pitfalls, all resulting in thrown exceptions,
which a programmer might face if introducing ambiguity in
one of several ways; one such way being the presence of two
or more deconstructors for a class which are similar and used
in such a way that the compiler cannot determine which one
will match at run-time.

4.3.2 Usability
The OOMatch project was not evaluated in any man-

ner directly comparable to the testing done on the Mach7
project. However, the way a programmer may go about us-
ing the features added by the OOMatch project is relatively
intuitive for someone familiar with Java, with the only neces-
sary changes to a class being the addition of deconstructors
and the use of pattern matching being so similar to method
overloading. That said, the OOMatch project is an exten-
sion to Java, and as such may require the programmer to
download additional tools 5 in order to compile their code -
something some would consider a hassle.

5. CONCLUSION
In conclusion, pattern matching, a convenient and highly

desirable feature commonly found in functional languages, is
gaining popularity to such a degree that projects have been
undertaken to add these features to popular object-oriented
languages such as C++ and Java. These projects, namely
Mach7 and OOMatch, do a fair job of implementing those
desirable features, but do so in very different ways. In Java,
with OOMatch, we see objects gaining the ability to specify
how they can be decomposed and what data they will ex-
pose to whoever is decomposing them, with pattern match-
ing used to control method dispatch. In C++, with the
Mach7 project, we see patterns composed and type-checked
at compile time using expression templates, focusing on de-
composition of algebraic types and with pattern matching
used much in the way one would typically find a switch state-
ment used.

Both projects seem to be in a usable state, and succeed
in adding desirable features to popular languages. They
are not, however, without their drawbacks. In OOMatch
the programmer will need to be wary of potential pitfalls
of ambiguity stemming from a decision by the authors to
provide powerful, but not always safe, features. In Mach7

5namely, Polyglot

a programmer will need to go through the process of learn-
ing a small bit of new syntax, as well as the extra tedium
of additional setup when building their class hierarchies.
The Mach7 project was evaluated and performs well, suc-
ceeding in adding convenient features while sacrificing little
to no performance. The OOMatch project does not pro-
vide any performance details. However, the code written in
the OOMatch project will compile to standard JVM Byte-
code, opening it up to extensive optimization by the JVM.
This optimization may counteract the relatively poor per-
formance of the patterns-as-objects approach demonstrated
by the testing done in the Mach7 project.

Neither project is inherently superior to the other, just as
neither language is universally considered better than the
other. Ultimately, the directions in which these projects
proceeded with their implementations seems to follow, un-
surprisingly, the style of programming popular in their re-
spective languages.

References
[1] Curtis Clifton et al.“MultiJava: Design Rationale, Com-

piler Implementation, and Applications”. In: ACM Trans.
Program. Lang. Syst. 28.3 (May 2006). issn: 0164-0925.

[2] Haskell. Defining Methods. (Accessed 12-2-2016). url:
https://wiki.haskell.org/Algebraic_data_type.

[3] Allen Leung. Prop: a C++ based pattern matching lan-
guage. (Accessed 12-2-2016). url: http://www.cs.

nyu.edu/leunga/www/prop.html.

[4] Radu Muschevici et al. “Multiple Dispatch in Prac-
tice”. In: Proceedings of the 23rd ACM SIGPLAN Con-
ference on Object-oriented Programming Systems Lan-
guages and Applications. OOPSLA ’08. Nashville, TN,
USA: ACM, 2008.

[5] Oracle. Defining Methods. (Accessed 12-2-2016). url:
https://docs.oracle.com/javase/tutorial/java/

javaOO/methods.html.

[6] Adam Richard and Ondrej Lhotak. “OOMatch: Pat-
tern Matching As Dispatch in Java”. In: Companion
to the 22Nd ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications Com-
panion. OOPSLA ’07. Montreal, Quebec, Canada: ACM,
2007.

[7] Yuriy Solodkyy, Gabriel Dos Reis, and Bjarne Strous-
trup. “Open and Efficient Type Switch for C++”. In:
Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications. OOPSLA ’12. Tucson, Arizona, USA:
ACM, 2012.

[8] Yuriy Solodkyy, Gabriel Dos Reis, and Bjarne Strous-
trup. “Open Pattern Matching for C++”. In: Proceed-
ings of the 12th International Conference on Genera-
tive Programming: Concepts & Experiences. GPCE
’13. Indianapolis, Indiana, USA: ACM, 2013.

[9] Wikipedia. Multiple Dispatch. (Accessed 12-2-2016).
url: https://en.wikipedia.org/wiki/Multiple_
dispatch.

[10] Wikipedia. Pattern Matching. (Accessed 12-2-2016).
url: https://en.wikipedia.org/wiki/Pattern_

matching.

