
Thread Scheduler Efficiency Improvements
for Multicore Systems

Daniel C. Frazier
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
frazi177@morris.umn.edu

ABSTRACT
Thread scheduling is a problem that has been around since
the 1960s. By the early 2000s, thread scheduling was com-
monly believed to be solved in the Linux community. How-
ever, with the rising popularity of multiprocessor and multi-
core systems, and the rapidly developing requirements driven
by new hardware, the thread scheduling problem space has
become considerably more complex. This paper will describe
some newly found issues in the Linux scheduler, their fixes,
and two new schedulers designed for improved performance.
Each of the developments meaningfully improve the average
efficiency of popular relevant benchmarks.

Keywords
Scheduling; thread migration; multicore; multiprocessing;
lock contention; last-level cache misses; efficiency

1. INTRODUCTION
Using any modern computer, there is an expectation that

the operating system is running at all times (largely in the
background) and that multiple programs should be able to
run concurrently. Modern programs also often need to run
more than one independent task at one time. A program can
achieve this by employing threads because they allow several
paths of execution to occur in parallel. Programs that in-
volve long independent computations or programs with a
graphical interface often benefit from employing threads.

For example, imagine a photo editing program that can
apply an expensive filter operation. If the program was not
multithreaded, the user interface and the filter operation
would be executed in the same thread. When instructing
the program to execute the filter on a large image, the user
interface would not be able to respond to any events (like
clicking the mouse) until filtering was finished. To make
programs with user interfaces more responsive, we separate
the interface onto its own thread and spawn new threads
when the user initiates expensive operations.

Processors on most modern computing systems employ
multiple cores. Some systems have multiple processors, each
of which also have multiple cores. To take advantage of
this hardware, threads should be distributed across the cores
wisely. In The Linux Scheduler: a Decade of Wasted Cores,

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, December 2017 Morris, MN.

Lozi et al. describe bugs they found within the Linux sched-
uler that result in significant performance degradation.

The purpose of this paper is to cover some important deci-
sions and trade-offs that are made in order to allocate tasks
to cores to maximize performance. The next section will
provide necessary background on threads, scheduling, and
caching. The purpose of section 3 is to discuss the bugs
(and their fixes) and approaches by Kumar et al. and Jo
et al. to create new schedulers that overcome scalability
problems with the Linux scheduler.

2. BACKGROUND
This section will broadly establish how threading, caching,

locks, and scheduling works. These concepts will prepare us
to establish causes of something called “cache misses” in the
execution of programs using the current Linux thread sched-
uler. We will establish information necessary to understand
some recent efforts to improve thread scheduling on multi-
processor and multicore systems on Linux.

2.1 Threads and Scheduling
Threads are tied to the processes that spawn them. A

process always has at least one thread. Processes are typi-
cally independent of each other, while threads exist within
a process. Context switching within a CPU is the process
of saving and restoring the state of a process or thread so
that execution can be paused or resumed. A process’ state
consists of resources that each of its threads need access to,
such as compiled code and data.

The scheduler is the part of the operating system that is
responsible for managing and distributing the CPU runtime
that each of these processes and their respective threads re-
ceive. New threads and processes are added to the scheduler
when they are made. [4] The current implementation of the
scheduler on Linux is hierarchical and consists of modules.
The primary module is the scheduler core, and it interfaces
with modules called scheduler classes. The Completely Fair
Scheduler (CFS) is the default scheduler class and is used for
tasks that are not real-time critical. The core scheduler runs
a tick function every ∼1000 times per second and delegates
to the tick function of the appropriate scheduler class. Real
time tasks must complete in a strict time frame (e.g. flying a
helicopter). For real-time tasks, other scheduler classes are
used, but out of brevity, we will not be covering these. [1]

Before we discuss how CFS schedules tasks, we should first
understand how cache is used on multicore systems, how a
system can maintain cache coherence, and how threads can
work on the same data without conflicting with each other.



2.2 Cache on NUMA Systems
When a program is running, its working memory is stored

in RAM. RAM exists far away from the CPU relative to
the cache. Imagine a program that sums up an array of ten
thousand integers and they all fit into RAM. It would be very
slow for the CPU to request from RAM the integers it needs
one at a time. Cache exists to speed this up by improving
locality. If the system predicts a chunk of data will be used
frequently, it migrates that data from RAM into cache. This
improves locality because it makes the data more “local” to
where it needs to be and improves performance because the
system works less hard to load the data it needs.

The cache that a system has is hardware dependent. In
a non-uniform memory access (NUMA) system, there are
many levels of cache and they exist in a hierarchy. The
defining property of NUMA systems is that levels of cache
that are physically closer to cores or processors are faster
than levels that are farther. Lower levels of cache also hold
less data because of space restrictions. Most modern sys-
tems are multiprocessor multicore NUMA systems. L1 is
the lowest level of cache. L1 cache is also called last level
cache (LLC). If data is not found in L1 cache, it is called
an LLC miss and the data is searched for in further levels
of cache. If the data can not be found in any level of cache,
it is called a cache miss and external memory is consulted.

An important property of a multicore system that employs
cache is that it should be cache coherent. A system that is
cache coherent satisfies the invariant that any cached data
that is read must be consistent with the most recent write to
that portion of cached data. When data is written into an
L1 cache, it must propagate up the cache hierarchy. If any
other L1 cache holds the same data as that L1 cache, it must
also refresh. The most common approach to maintain strict
consistency in cache is to somehow invalidate cache entries.
Cache invalidation is beyond the scope of this paper. 1 [6]

Context switching between two cores involves ensuring
that the replacing thread has the resources it needs avail-
able on its new core’s cache. Recall that a processor’s state
is much larger than thread’s state. Because of this, context
switching is typically fastest between threads who share a
process because the processor’s state would not need to mi-
grate to another cache.

2.3 Synchronicity and Locks
When two threads have read and write access to the same

portion of the memory, any read or write to that memory
must be made synchronous to avoid race conditions. A race
condition is a timing dependent error where two threads up-
dating the same memory at the same time overwrite each
other in a way that might cause the threads to function
incorrectly. A system can be made synchronous by employ-
ing locks. Saltzer and Kaashoek defined a lock as “A flag
associated with a data object, set by a thread to warn con-
current threads that the object is in use and that it may be
a mistake for other threads to read or write it.” [6] When
a thread needs to use an object that is associated with a
lock, the thread should check the lock first before operating
on the object. If an object’s lock is already acquired, the
thread should wait until the lock is released, then acquire
the lock for itself and release the lock when finished.

1See Section 10.2.4 in Part II of Principles of Computer
System Design by Saltzer, Jerome and Kaashoek, M. Frans
for more information on cache invalidation.

An important problem faced by massively parallel pro-
grams is lock contention. Lock contention can be found
in multithreaded programs where many threads frequently
compete for access to the same lock. Threads of a program
that are contending and which reside on different processors
experience a higher than average LLC miss rate. This is a
result of cache coherency. Because both of these threads are
continually modifying the same data in separate cache, each
change to one cache must propagate to the other before the
other core reads the data.

2.4 Completely Fair Scheduler (CFS)
The Completely Fair Scheduler (CFS) was introduced in

version 2.6.23 (2007) of the Linux kernel. [2] We will discuss
the CFS as presented in Lozi et al. The CFS is an imple-
mentation of the weighted fair queuing (WFQ) scheduling
algorithm. The goal of the WFQ is to divide an arbitrary
number of CPU cycles among threads, prioritizing more cy-
cles for threads with larger weights. [4]

Threads that are running accumulate vruntime, which is
the runtime of a thread divided by its weight. [1] Threads
are organized in priority queues called runqueues that sort
ascending on vruntime. Under normal conditions, the thread
that replaces the current thread is the thread which needs
most to run, which is the thread with the least vruntime,
the first thread in the runqueue. If a thread with a smaller
vruntime awakens, it may preempt the executing thread. [4]

On a multicore system, each core should have its own run-
queue. If all cores shared a runqueue, cores would be need
to make frequent synchronous requests for threads. For the
scheduler to function properly and efficiently, it must keep
each of the runqueues balanced. If runqueues are not bal-
anced, then a core is left idle and needs to request work from
another core to keep busy. External calls between cores are
expensive and should be minimized. The CFS, runs a load-
balancing algorithm that tries to keep runqueues balanced.
Load balancing was simple for single-core systems, but on
multi-core systems, bugs have found their way into the sys-
tem and persist until at least Linux kernel version 4.3. [4]

3. METHODS
So far we have established what threads are, how cache

works and where it resides on NUMA systems, how the CFS
scheduler works, how locks work, and why they are impor-
tant. Now, we will discuss four bugs Lozi et al. found in
the CFS load-balancer and their fixes, which substantially
improved scheduler efficiency. Later, we will show two new
schedulers that improve efficiency for certain kinds of pro-
grams running on certain kinds of multicore NUMA systems.

3.1 Load-Balancing the CFS
Modifications were made to the CFS load balancer that

introduced bugs that caused processors to remain idle even
while there were threads available. Work by Lozi et al. has
identified four bugs that were responsible for this behavior.
These bugs have remained hidden because, while they cor-
rode performance, they are not obvious. They do not make
programs freeze or crash and their effects only last a few
hundred milliseconds at a time, which is too short for com-
mon performance tools to detect. Lozi et al. designed new
tools that observe the Linux scheduler more closely in order
to track the source of the problems. [4]



Figure 1: 32-core machine with four NUMA nodes.
It takes at most two hops to get from any core to
another node. The shades represent scheduling do-
mains relative to the first core. From Lozi et al. [4]

In order to understand these bug fixes, as described in
Lozi et al., we must explain a simplified version of the CFS
load balancing algorithm. [4]

3.1.1 Load Metric
The load-balancing algorithm tracks a metric called load

to best distribute threads to cores. Defining what load
should be is tricky. A threads’ load should be representa-
tive of the amount of CPU time it should receive relative to
all other active threads. Balancing load such that each core
has the same number of threads is not ideal because threads
have priorities. If all of the high-priority threads happened
to be placed on one core while all low-priority threads were
placed on another, the low-priority threads would be receiv-
ing much more runtime than they should be in relation to
the high-priority threads. Balancing load such that each
core has roughly the same amount of weight is not ideal ei-
ther, because, if there was one thread that was nine times
more important than nine low-priority threads, that impor-
tant thread would be left on a core all alone. That seems ac-
ceptable, but consider the case that this high-priority thread
sleeps frequently. Its core would be left idle for an unaccept-
able amount of time. The idle core would need to ask other
cores for more work to keep busy in the downtime, which is
an expensive operation for both cores involved. [4]

The current implementation of CFS defines the load met-
ric as a combination of a thread’s weight and average CPU
use divided by the number of all threads in the parent pro-
cess. The division is in order to remain fairness so that two
processes that have different numbers of threads of the same
priority still get equal runtime. [4]

3.1.2 Load-Balancing Algorithm
A NUMA system contains NUMA nodes, but the defini-

tion of what a NUMA node is changes depending on how
NUMA is implemented on a machine. Let us consider how
NUMA nodes were defined for the system used in Lozi et al.
On their system, groups of eight cores share last level cache
and form a NUMA node.

For load balancing, cores exist in a hierarchy where each
level is called a scheduling domain. The groups within each
level are based on how cores share resources within the ma-
chine. The lowest level of scheduling domain is a single
core. A scheduling group is one of the units that comprise a
scheduling domain. In the machine described in Section 2.2
there were 32 cores. These cores individually represented
the first level of scheduling domains. The second scheduling
domains were determined by groups of eight adjacent pro-

Function running on each cpu cur cpu:
1 forall sd in sched domains of cur cpu do
2 if sd has idle cores then
3 first cpu = 1st idle CPU of sd
4 else
5 first cpu = 1st CPU of sd
6 end
7 if cur cpu 6= first cpu then
8 continue
9 end

10 forall sched group sg in sd do
11 sg.load = average loads of CPUs in sg
12 end
13 busiest = overloaded sg with the highest load

(or, if inexistent) imbalanced sg with highest
load
(or, if inexistent) sg with the highest load

14 local = sg containing cur cpu
15 if busiest.load ≤ local.load then
16 continue
17 end
18 busiest cpu = pick busiest cpu of sg
19 try to balance load between busiest cpu and

cur cpu
20 if load cannot be balanced due to tasksets then
21 exclude busiest cpu, goto line 18
22 end

23 end
Algorithm 1: Simplified CFS Load Balance algorithm
from Lozi et al. [4] CPUs are cores.

cessors which made four NUMA nodes. The third level was
formed by groupings of nodes that are within one hop of
each other. The final level was all of the nodes as one unit.
The scheduling groups of the final scheduling domain were
the four NUMA nodes. See Figure 1. [4]

A naive approach to load balancing would be to compare
load on each core and transfer tasks from cores with the
highest load to cores with the lowest load. This approach
would not put into consideration improving thread or cache
locality. Instead, the CFS load-balancing algorithm is ex-
ecuted on each CPU for each scheduling domain that the
CPU is a part of, starting from the first level to last levels
of scheduling domain. A simplification of the CFS load bal-
ancing algorithm can be found in Algorithm 1. The goal of
each iteration of the outer loop is to find another CPU that
is busier than cur cpu and “try to balance the load” between
them. This simplification does not explain the intricacies of
load balancing, however is sufficient for our purposes of un-
derstanding the bugs that emerged.

In the CFS load balancer, one core per scheduling do-
main performs the load-balancing for that domain. That
core is either the first core that is idle or the first core of
the scheduling domain (Lines 2-9). Then, for each schedul-
ing group within the scheduling domain, the average load is
computed (Lines 10-12) and the group with the highest load
is determined to be the busiest group (Line 13). If the bus-
iest group is less busy than the group containing this CPU
(local), then the load is considered balanced for this level
and continues on to consider the next scheduling domain
(Lines 14-17). At lines 18 to 23, the current core balances
load between the busiest core and itself. [4]



Several optimizations made the scheduler such that it runs
the load balancing operation less often. Lines 2 to 8 is an
example. If any of the cores are idle, the first idle core in the
scheduling domain is chosen to consider load balancing. If
all cores are busy, the first core of the scheduling domain is
chosen. There is also a power optimization where idle cores
do not run the load balancing algorithm until awoken by an
overloaded core. To improve cache locality, when an idle
thread is awoken by an active thread, the scheduler prefers
to assign the awoken thread to the same core so that they
share a last-level cache. [4]

3.2 Bugs and Fixes for the CFS
Now that we know how the load balancer makes some

decisions, we will now dive into the bugs that occur as a
result of the complex, strict requirements that have built up
over time on the CFS. Performance results from Lozi et al.
were gathered using the NAS Parallel Benchmark (NPB).
The NPB is a set of parallel programs that are executed
and monitored to evaluate the efficiency of massively parallel
computing systems (supercomputers).

3.2.1 The Group Imbalance bug
Lozi et al. found that the scheduler was periodically not

balancing load due to two reasons, the hierarchical design of
scheduling groups and complexity of the load metric. The
researchers were running a 64 threaded Process A on node
A simultaneously with a single-threaded Process B on node
B. Because of the group schedule feature in the definition
of the load metric where the load of a thread is divided by
the number of threads in the parent process, the amount of
load for each of A’s threads are 1/64 of the load of the one
B thread. On their system, they observed that two nodes
were underloaded and should have been stealing work from
more loaded cores on other nodes, but this did not happen.
This is due to the hierarchical design of the load balancer.
When the load balancer considers stealing threads, it does
not consider the load of a single core but rather the load
of the whole scheduling group. In this case, the node with
the B process had the same load as the node with the A
process, so node B did not try to steal work from node A
even though there were cores idle and available for work. [4]

They fixed this problem by, instead of defining the load of
a scheduling group as the average load of cores in the group,
defining it by the load of the core with the minimum load in
the scheduling group. By fixing this issue, the efficiency of
the single-threaded process B remained the same, however
the completion time of process A decreased by 13 percent.
On a certain parallel program within the NPB called lu, this
bug fix improved performance by 13 times because the bug
compounded lock contention by colocated threads. [4]

3.2.2 The Scheduling Group Construction bug
There is a function in Linux called taskset which allows

an application to pin its threads to certain available cores.
On certain machines, sequentially numbered NUMA nodes
may be located more than one hop from each other. When
a new thread is spawned on Linux, it is placed on the same
node as the parent thread. The first scheduling group is
constructed by all adjacent nodes to one node (say, Node
0), and following scheduling groups are constructed from
nodes that were not in any of the previous groups and their
adjacent nodes. On a system it is possible for two nodes to

Figure 2: 8-node AMD Bulldozer machine from Lozi
et al. [4]

be within one hop of the starting nodes of each group, but
be two hops from each other. See Figure 2. [4]

Within that system, the two scheduling groups constructed
are 0,1,2,4,6 and 1,2,3,4,5,7. Nodes 1 and 2 are two hops
from each other but occur in both scheduling groups. When
load balancing runs on Node 2 and it should steal work
from an overloaded Node 1, it will look between the schedul-
ing groups to compare which is lower. But both scheduling
groups contain Node 1 and 2, so both scheduling groups’ av-
erage load will be the same! Node 2 will never steal work. [4]

They fixed this bug by constructing scheduling groups rel-
ative to each core’s own perspective. This allows nodes that
are two hops away that should otherwise be able to share
work to be a part of different scheduling groups and success-
fully contend for load balancing. Fixing this bug improved
efficiency of 9 parallel programs in the NPB problems mostly
by around 2 times, but for one problem, lu, up to 27 times.
lu is an extreme example where all threads were being allo-
cated only on one core. [4]

3.2.3 The Overload-on-Wakeup bug
There exists an optimization in thread wake-up code where

threads that are awakened by other threads are placed on
the same core for improved cache locality. This becomes
a problem when the core with the requesting thread is al-
ready overloaded. The thread will join the runqueue on this
busy core rather than consider being migrated to an idle
core elsewhere. For some workloads this is acceptable, but
simply making the most of cache is not always the best de-
cision. This bug occurs primarily on database systems. The
following sequence of events will illustrate how the Overload-
on-Wakeup bug occurs. [4]

Consider two nodes running on a database system. Node
A and Node B both have a database thread. Assume a
temporary thread is created by the kernel on Node A for
some background function such as system logging. Dur-
ing this time, the load balancer detects that the node is
overloaded due to the new thread, and decides to migrate
some thread to Node B. If it decides to move the temporary
thread, that will pose no issue for performance. If it migrates
the database thread, two database threads, which sleep and
awaken frequently, will be running on the same node. The
scheduler does not differentiate between cores that are idle
for a short time versus a long time, so when the scheduler
considers thread migration destinations, it might see a node,
which happens to have a database thread that is currently
idle, and decide that the node needs more work. This over-
loads the core with two intermittently busy threads. [4]

Lozi et al. fixed this bug by modifying the thread wake
up code. The scheduler first checks to see if the core that
the thread was already assigned to is idle. If it is, then wake
up the thread on that core. If the power manager policy



of the system is set up so that cores never enter low-power
mode and there are idle cores, the scheduler chooses the core
that has been idle for the most time and assigns the thread
to that core. This fix is only relevant to workloads where
threads frequently sleep. Their fix improves performance by
13.2% on a full TPC-H database workload but up to 22.2%
for certain queries. [4]

3.2.4 The Missing Scheduling Domains bug
This bug was already fixed but regressed on Linux ker-

nel version 3.19 (up to at least 4.3) when an important
line of code was removed in a refactor. Removing this line
caused the system to misrepresent the number of schedul-
ing domains that are available for threads to be distributed.
This ended up causing load-balancing to never happen on all
nodes, meaning processes, subprocesses, and their threads to
stop looking for other NUMA nodes to join. Nodes that do
not have any threads will never receive threads and nodes
that do have threads will accumulate all of the spawned
threads. This bug required that one of the cores become
disabled and re-enabled. So while rare, reintroducing the
removed line of code increased efficiency in a certain tested
program by a maximum of 138 times. [4]

3.3 Shuffler
Researchers Kumar et al. suspected lock contention to

be a significant actor in the non-scalability of parallel pro-
grams on Linux and Solaris. The operating system used was
Oracle Solaris 11TM. They assembled 33 parallel programs
from various benchmarks and monitored time spent acquir-
ing locks and the number of LLC misses experienced while
running these programs. Twenty of the 33 programs had
high lock times (>5%).

As mentioned in the concepts section, lock contention can
be found in multithreaded programs where many threads re-
peatedly compete for access to the same lock. The costs in
this involve the transfer of the lock and the propagation of
cache associated with the lock. The problem is further com-
pounded if the threads are not located within the same pro-
cessor. If the threads of that multithreaded program were
prioritized to be placed on one processor, then the program
would experience a lower lock times and LLC miss rate.

Neither the CFS nor the Solaris scheduler differentiate
between threads of a single-threaded program versus the
threads of a multithreaded program. This prevents the sched-
uler from using that metadata in its thread distribution
mechanism. The following thread scheduler named Shuf-
fler by Kumar et al. takes this into account. The Shuf-
fling framework was designed for multiprocessor multicore
NUMA systems, and was implemented on a 64-core 4-processor
machine running Oracle Solaris 11TM. [3]

3.3.1 The Shuffling Framework
The Shuffling approach is to take into account which threads

are contending for locks on what processors and migrate
whole threads (rather than just lock and cache) such that
they share processors. Threads that are reported to have
higher lock acquisition times are threads that are assumed
to be requesting locks from outside of their processor. These
are the threads that should be migrated to share processors.
Details on the shuffling framework are as follows.

Monitor Threads — First, Shuffler monitors and records
the amount of time user threads spend acquiring locks.

Figure 3: Lock arrival times ranges with Solaris vs.
Shuffling. From Kumar et al. [3]

Form Thread Groups — If the sum of sampled lock
times exceed a certain threshold, then all threads are sorted
by their lock acquisition times and grouped by their order
in the sorted data structure. There are as many groups as
processors. This procedure is run every 200 ms to continue
to form groups of threads that should share processors.

Perform Shuffling — On an iteration of the Shuffling
procedure, it ensures that if any threads are not on proces-
sors that they were grouped to, they are migrated. Threads
that are already on the processor that they were assigned
to do not migrate. If threads continue to contend for locks
with the same threads, lock times should remain below the
threshold, and so Shuffling is not always run. [3]

3.3.2 Shuffler Performance
Now that we know how the Shuffling Framework works,

let us review the results that implementing it gives us. Ku-
mar et al. chose certain programs from several benchmarks
that contained high lock contention to assess Shuffler perfor-
mance. Each of the programs are multithreaded. The one
they highlight the most was the Body Tracking (BT) algo-
rithm whose performance improved by 54 percent. Program
SC improved by 29 percent. The rest of the 18 programs
improved between 4 and 19 percent. Figure 3 compares the
efficiency of Shuffler versus Solaris for the same 20 programs.
With these results we can say that multithreaded programs
that had high lock contention perform faster under Shuffler
than Solaris. They also tested the remaining problems that
did not have high lock times. These programs received neg-
ligible improvements (less than 0.5%) in execution time. For
more detailed results, see Kumar et al. [3]

We just saw that lock contention is a problem for mul-
tithreaded parallel programs. Next we will cover a sched-
uler that takes a different approach to alleviating the lock
contention problem. FLSCHED is a scheduler whose imple-
mentation has no locks, reduces context switches, and makes
more efficient scheduling decisions than CFS. [2]

3.4 FLSCHED for Xeon Phi
FLSCHED was built for maximal efficiency on manycore

processors. Manycore processors contain upwards of about
20 cores. They continue to become more powerful and, as
such, more popular. The Xeon Phi is a family of manycore
coprocessors that allow a primary processor to offload expen-
sive work. The latest version of Xeon Phi as of September
2, 2017 had up to 76 cores. The number of cores a processor
has is expected to increase given the popularity and impor-
tance of highly-parallel algorithms such as machine learning.



Scheduler bt cg ep ft
CFS(%) 7.29 10.73 0.97 5.34
FLSCHED(%) 3.05 4.11 1.10 4.04

Scheduler is mg sp ua
CFS(%) 0.21 6.84 8.23 14.63
FLSCHED(%) 0.12 2.85 3.58 5.96

Table 1: Percent of time spent executing a certain
type of lock called a spin lock. Lock times were
measured throughout the runtime of the NPB with
1,600 threads. From Jo et al. [2]

The CFS was not built for this degree of parallelism. The
cost of context switching continues to increase as hardware
becomes capable of solving larger problems. Unfortunately,
the density of cores on manycore processors causes them to
have very small L1 cache. As the number of cores increase,
the negative impact of lock contention on scheduler perfor-
mance increases exponentially.

3.4.1 Lockless Thread Scheduler
The design goals and requirements for CFS differ from

FLSCHED. CFS was designed with responsiveness, fairness,
and load-balancing in mind because it was intended for desk-
top and server use. FLSCHED was designed strictly with ef-
ficiency and computational throughput in mind. In the CFS,
a great deal of state information is considered to decide what
threads run and when. Since FLSCHED was intended for
manycore parallel processors, it is more impactful to simply
make decisions faster rather than more purposefully. [2]

The CFS implementation employs 11 locks which are used
for load balancing mechanisms, runqueue management, run-
time statistics updates, and additional scheduler features.
FLSCHED itself has no locks. It manages this by removing
runtime statistics entirely from the scheduler, as it does not
depend on them to make decisions. FLSCHED does not use
periodic load balancing, so it does not provide the feature to
limit maximum CPU bandwidth nor any of the CFS group
features. While the FLSCHED substitutes for the CFS, it
still runs through the scheduler core which employs locks.
Contexts switches are requested, rather than performed out-
right. Commitments to context switch requests are delayed
on purpose to minimize the number of context switches. [2]

Timeslices in FLSCHED are assigned Round-Robin. The
only managed scheduling information is the timeslices that
threads receive. Thread preemption in FLSCHED occurs
due to various reasons but mostly due to priority. Preemp-
tion is not performed immediately. Instead, FLSCHED re-
orders runqueues such that the important thread will come
next after a normal task switch. [2]

3.4.2 FLSCHED Performance
To evaluate FLSCHED performance, Jo et al. used the

NPB. NPB version 3.3.1 consists of 10 programs, but two
of which can not run on the Xeon Phi due to memory con-
straints. These programs were run on FLSCHED and CFS.
They found that FLSCHED scales better as the number of
threads increases for six of those eight programs. Efficiency
of the ep and is programs degraded under FLSCHED. [2]

The researchers traced the cause of the efficiency improve-
ments to minimizing a certain kind of lock called a spin lock

from their scheduler. A spinlock is a type of lock that loops
indefinitely checking whether it has unlocked yet. These
locks are used if the lock is expected to take a short amount
of time to avoid giving up the core to another context. Ta-
ble 1 shows the percent of time that each of these schedulers
spend processing spin locks. Time spent on spin locks was
more than halved for programs cg, mg, sp, and ua. For more
specifics on FLSCHED, see Jo et al. [2]

4. CONCLUSIONS
Most of the modifications to the CFS in Section 3.2 im-

proves user experience and system efficiency for Linux sys-
tems that use the CFS. The CFS functions well for the user
and server systems it was designed to support but falls short
when it comes to highly parallel programs. The Shuffler
makes highly parallel programs running on multicore multi-
processor systems function more efficiently than on the CFS
by migrating threads to make better use of hardware. The
FLSCHED makes manycore parallel machines intended for
problem-solving more efficient by removing features that a
desktop or server system would normally have and imple-
menting a simple, greedy approach to program execution.

Acknowledgments
Thanks to advisor Nic McPhee, and friends and classmates
Skye Antinozzi, Dan Stelljes, and Miranda M. for providing
invaluable feedback and corrections.

5. REFERENCES
[1] N. Ishkov. A complete guide to linux process

scheduling, 2015. [Online; accessed 21-November-2017].

[2] H. Jo, W. Kang, C. Min, and T. Kim. FLsched: A
lockless and lightweight approach to OS scheduler for
Xeon Phi. In Proceedings of the 8th Asia-Pacific
Workshop on Systems, APSys ’17, pages 8:1–8:8, New
York, NY, USA, 2017. ACM.

[3] K. Kumar, P. Rajiv, G. Laxmi, and N. Bhuyan.
Shuffling: A framework for lock contention aware
thread scheduling for multicore multiprocessor systems.
In 2014 23rd International Conference on Parallel
Architecture and Compilation Techniques (PACT),
pages 289–300, Aug 2014.

[4] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma,
and A. Fedorova. The Linux scheduler: A decade of
wasted cores. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, pages
1:1–1:16, New York, NY, USA, 2016. ACM.

[5] O. Mutlu. Computer architecture: Simd/vector/gpu,
2017. [Online; accessed 28-October-2017].

[6] J. Saltzer and M. F. Kaashoek. Principles of Computer
System Design. Morgan Kaufmann, 2009.


