
1/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Thread Scheduler Efficiency Improvements
for Multicore Systems

Daniel Collin Frazier

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

18 November 2017
UMM, Minnesota



2/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Introduction

• Thread scheduler: system component that manages the
processing programs receive

• Always running, so it must be efficient

• Pre-2000 single-core era, scheduling was easy
• Led majority of Linux community to believe problem solved



3/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

“...not very many things ... have aged as well as the
scheduler. Which is just another proof that scheduling
is easy.”

Linus, Torvals, 2001 [1]



4/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Introduction

• Popular hardware changed rapidly throughout the 2000s

• Increasing affordability and adoption of multicore systems

• Hardware changes complicated thread scheduler
implementation

• Complexity led to bugs that have been present for a
decade



5/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

A Decade of Wasted Cores

• In A Decade of Waster Cores
• Lozi et al. Found four bugs in Linux

thread scheduler, fixed them

• Previously undetected, required the
development of new tools

https://goo.gl/3wsfVU



6/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

A Decade of Wasted Cores

• Lozi et al. compared performance benchmarks ran on
buggy and fixed Linux scheduler implementations

• Below are average performance improvements

Bug title Improvement
The Scheduling Group Construction bug 5.96x
The Group Imbalance bug 1.05x
The Overload-on-Wakeup bug 1.13x
The Missing Scheduling Domains bug 29.68x

from Lozi et al. [1]



7/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Outline

Concepts

Thread Scheduling on Linux

Two New Schedulers

Conclusion



8/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Outline

Concepts
Threads
Synchronicity and Locks
Thread State and Cache

Thread Scheduling on Linux

Two New Schedulers

Conclusion



9/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Processors

• Responsible for executing code

• Contain a number of cores:
• Single-core processor (one processing unit)
• Multicore processor (two or more processing units)
• Manycore processor (~20 or more processing units)

• Multiple cores allows processor to perform multiple tasks
concurrently on each core



10/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Multithreading Example

• Imagine you’re using
photoshop, but assume
one thread

• Say you load a large image
and perform an expensive
filter operation

main()
thread

Filter
Operation



11/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Threading

• Threads allow programs to
run multiple independent
tasks concurrently

• Useful for programs:
• with long,

mostly-independent
computations

• with a graphical interface

main()
thread

spawns

Window
thread

spawns

Event
thread
(e.g. custom
Button-Press logic)

Example GUI Program.
Three threads are created within
one process



12/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

What if I ask you all a question right now?



13/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

What if I ask you all a question right now?

If all answered at once, chaos!

Raise hands to control who gets to talk, this is like locks!



14/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Synchronicity and Locks

• Control achieved by employing locks

• Locks secure objects or data shared between threads so
that only one thread can read and write to it at one time

• When a thread locks a lock it acquires the lock
• When a thread unlocks a lock it releases the lock



15/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Process and Thread State

• Process State

Resources shared amongst its multiple threads

• Thread State
Scheduler uses this information to pause and resume a
thread’s execution

• Note: Process states are much heavier than thread states



16/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Context Switching

• The scheduler switches active threads on cores by saving
and restoring thread and processor state information.

• These switches are called context switches

• Process context switches are more expensive



17/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Cache

• Local copy of data
designed for fast retrieval

• Hierarchical structure

• Placement relative to core:

• on
• inside of
• outside

CPU
L3L2 Bus

RAM
L1 L1

Disk
CtrlHDD

Color represents distance from CPU

Figure: Distance of various forms
of memory from CPU



18/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Cache

• Locality: Speed of memory
read and writes decrease
as distance from CPU
increases

• Cache is the fastest form
of memory

• Cache coherence: Any
changes to memory
shared by two caches must
propogate to the other to
maintain correctness

CPU
L3L2 Bus

RAM
L1 L1

Disk
CtrlHDD

Color represents distance from CPU

Figure: Distance of various forms
of memory from CPU



19/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Outline

Concepts

Thread Scheduling on Linux
Completely Fair Scheduler

Two New Schedulers

Conclusion



20/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Completely Fair Scheduler (CFS)

• Default Linux thread scheduler (there are others)
• Handles which threads are executed at what times on this

core
• Spend a fair amount of runtime on all threads

• Designed with responsiveness and fairness in mind.



21/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Single-core Completely Fair Scheduler (CFS)

• Runs on one core
• Ensure all threads run at least once within arbitrary interval

of CPU cycles
• Distribute timeslices (max CPU cycles) among threads
• Threads with higher priority (weights) get larger timeslices

CPU Core
(1000 cycle interval)

Thread 1
weight=0.2

Thread 2
weight=0.6

Thread 3
weight=0.2

200 200600Timeslices:
(max runtime
in interval)

CFS



22/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

CFS Runqueue

• Data structure containing threads
• Priority queue: sorts threads by number of cycles

consumed in current interval
• When thread reaches its maximum cycles, preempted



23/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Runqueues on Multiple Cores

• Process states heavier than thread states, so context
switches between threads of different processes are more
expensive

• If cores shared a runqueue, access and changes need to
be synchronous and cache-coherent

• Would slow the system to crawl
• So each core has its own runqueue and threads

• Load on each of the core’s runqueues must stay balanced
• CFS periodically runs a load-balancing algorithm



24/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Outline

Concepts

Thread Scheduling on Linux

Two New Schedulers
Shuffler
FLSCHED

Conclusion



25/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Shuffler and FLSCHED

• Both schedulers aim to solve the same problem, but for
different architectures

• Problem: Adding more threads to certain parallel
computing applications on CFS makes the application
operate slower rather than faster!

• Architectures:

Shuffler → multiprocessor multicore
FLSCHED → single-chip manycore processor



26/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Shuffler

• Researchers Kumar et al. measured lock times of
massively parallel applications

• Lock times: amount of time process spends waiting for
locks

• Found that massively parallel shared-memory programs
experienced high lock times



27/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Lock Contention

• When two threads repeatedly contend for one lock, both
threads are frequently waiting for each other to release

• If the two threads are located on separate processors, this
problem is compounded by reduced locality

• Further, when both of the threads repeatedly modify the
data corresponding to their lock, the cache of both
processors must continue to update each other

• High lock contention



28/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Shuffler

• CFS not mindful of lock contention or parent processes
when choosing cores for threads

• Kumar et al. wanted to create a scheduler that did!
• Used Solaris scheduler as base

• Strategy: Migrate threads whose locks are contending so
they are near each other

• How do you determine which threads’ locks are
contending?

• Contending threads have similar lock acquisition times



29/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

input : N: Number of threads;
C: Number of Processors.

repeat
i. Monitor Threads – sample lock times of N threads.
if lock times exceed threshold then

ii. Form Thread Groups – sort threads according to
lock times and divide them into C groups.

iii. Perform Shuffling – shuffle threads to establish
newly computed thread groups.

end
until application terminates;



30/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Shuffler Performance
• Kumar et al. compared the efficiency of Shuffler vs Solaris

scheduler
• Used programs from four benchmarks to gather data

Program % Improvement
BT 54.1%
SC 29.0%
RX 19.0%
JB 14.0%
OC 13.4%
AL 13.2%
AS 13.0%
PB 13.0%
VL 12.8%
FS 12.0%

Program % Improvement
FM 10.7%
AM 9.3%
GL 9.1%
EQ 9.0%
MG 8.8%
FA 6.0%

WW 5.2%
SM 4.7%
GA 4.0%
RT 4.0%

from Kumar et al. [2]



31/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

FLSCHED: The Lockless Monster

• Designed by Jo et al. with manycore processors in mind,
particularly the Xeon Phi

• The Xeon and Xeon Phi have 24 to 76 cores.

• One processor, so cache looks different than system that
would use Shuffler

• With such parallelism, small pauses significantly reduce
efficiency

• In the CFS, pauses come from locks necessitated by its
features and requirements



32/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

One requirement to rule them all: EFFICIENCY!

• FLSCHED Improves efficiency by removing all locks from
the scheduler implementation

• Gutted requirements and features of CFS and simplified

• Requirements they removed were Fairness and
Responsiveness

• Context switches requests delayed to reduce chance
another thread steals the core in hope thread reactivates

• Threads never forcefully preempt, instead join runqueue
with high priority

• Removed scheduler statistics reporting capabilities



33/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

FLSCHED Performance
• Used 8 of 9 programs the NAS Parallel Benchmark (NPB)

Operations per second (OPS) relative to CFS, from Jo et al. [1]



34/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Outline

Concepts

Thread Scheduling on Linux

Two New Schedulers

Conclusion



35/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Conclusion

• Thread scheduling is an important problem and becomes
more relevant as number of cores increase

• System architecture can have surprising complexity in its
effect on efficiency

• CFS tries to be the go-to scheduler for all problems, but
can’t

• Does well, but when you need some extra push there are
powerful alternatives available



36/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Thanks!

Thank you for your time and attention!

Questions?



37/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

References

Jo, Heeseung and Kang, Woonhak and Min, Changwoo
and Kim, Taesoo.
FLsched: A lockless and lightweight approach to OS
scheduler for Xeon Phi.
In Proceedings of the 8th Asia-Pacific Workshop on
Systems 3 APSys ’17, pages 8:1–8:8, Mumbai, India, 2017.
ACM.

K. Kumar and P. Rajiv and G. Laxmi and N. Bhuyan
Shuffling: A framework for lock contention aware thread
scheduling for multicore multiprocessor systems
In 2014 23rd International Conference on Parallel
Architecture and Compilation Techniques 3 PACT , pages
289–300, 2014.



38/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Lozi, Jean-Pierre and Lepers, Baptiste and Funston, Justin
and Gaud, Fabien and Quéma, Vivien and Fedorova,
Alexandra
The Linux Scheduler: A Decade of Wasted Cores
In Proceedings of the Eleventh European Conference on
Computer Systems EuroSys ’16, pages 1:1–1:16, London,
United Kingdom, 2016. ACM.


	Concepts
	Threads
	Synchronicity and Locks
	Thread State and Cache

	Thread Scheduling on Linux
	Completely Fair Scheduler

	Two New Schedulers
	Shuffler
	FLSCHED

	Conclusion

