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Introduction

• Thread scheduler: system component that manages the
processing programs receive

• Always running, so it must be efficient

• Pre-2000 single-core era, scheduling was easy
• Led majority of Linux community to believe problem solved
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“...not very many things ... have aged as well as the
scheduler. Which is just another proof that scheduling
is easy.”

Linus, Torvals, 2001 [1]
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Introduction

• Popular hardware changed rapidly throughout the 2000s

• Increasing affordability and adoption of multicore systems

• Hardware changes complicated thread scheduler
implementation

• Complexity led to bugs that have been present for a
decade
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A Decade of Wasted Cores

• In A Decade of Waster Cores
• Lozi et al. Found four bugs in Linux

thread scheduler, fixed them

• Previously undetected, required the
development of new tools

https://goo.gl/3wsfVU
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A Decade of Wasted Cores

• Lozi et al. compared performance benchmarks ran on
buggy and fixed Linux scheduler implementations

• Below are average performance improvements

Bug title Improvement
The Scheduling Group Construction bug 5.96x
The Group Imbalance bug 1.05x
The Overload-on-Wakeup bug 1.13x
The Missing Scheduling Domains bug 29.68x

from Lozi et al. [1]
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Processors

• Responsible for executing code

• Contain a number of cores:
• Single-core processor (one processing unit)
• Multicore processor (two or more processing units)
• Manycore processor (~20 or more processing units)

• Multiple cores allows processor to perform multiple tasks
concurrently on each core
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Multithreading Example

• Imagine you’re using
photoshop, but assume
one thread

• Say you load a large image
and perform an expensive
filter operation

main()
thread

Filter
Operation
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Threading

• Threads allow programs to
run multiple independent
tasks concurrently

• Useful for programs:
• with long,

mostly-independent
computations

• with a graphical interface

main()
thread

spawns

Window
thread

spawns

Event
thread
(e.g. custom
Button-Press logic)

Example GUI Program.
Three threads are created within
one process
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What if I ask you all a question right now?
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What if I ask you all a question right now?

If all answered at once, chaos!

Raise hands to control who gets to talk, this is like locks!
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Synchronicity and Locks

• Control achieved by employing locks

• Locks secure objects or data shared between threads so
that only one thread can read and write to it at one time

• When a thread locks a lock it acquires the lock
• When a thread unlocks a lock it releases the lock
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Process and Thread State

• Process State

Resources shared amongst its multiple threads

• Thread State
Scheduler uses this information to pause and resume a
thread’s execution

• Note: Process states are much heavier than thread states



16/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Context Switching

• The scheduler switches active threads on cores by saving
and restoring thread and processor state information.

• These switches are called context switches

• Process context switches are more expensive
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Cache

• Local copy of data
designed for fast retrieval

• Hierarchical structure

• Placement relative to core:

• on
• inside of
• outside

CPU
L3L2 Bus

RAM
L1 L1

Disk
CtrlHDD

Color represents distance from CPU

Figure: Distance of various forms
of memory from CPU
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Cache

• Locality: Speed of memory
read and writes decrease
as distance from CPU
increases

• Cache is the fastest form
of memory

• Cache coherence: Any
changes to memory
shared by two caches must
propogate to the other to
maintain correctness

CPU
L3L2 Bus

RAM
L1 L1

Disk
CtrlHDD

Color represents distance from CPU

Figure: Distance of various forms
of memory from CPU
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Completely Fair Scheduler (CFS)

• Default Linux thread scheduler (there are others)
• Handles which threads are executed at what times on this

core
• Spend a fair amount of runtime on all threads

• Designed with responsiveness and fairness in mind.
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Single-core Completely Fair Scheduler (CFS)

• Runs on one core
• Ensure all threads run at least once within arbitrary interval

of CPU cycles
• Distribute timeslices (max CPU cycles) among threads
• Threads with higher priority (weights) get larger timeslices

CPU Core
(1000 cycle interval)

Thread 1
weight=0.2

Thread 2
weight=0.6

Thread 3
weight=0.2

200 200600Timeslices:
(max runtime
in interval)

CFS
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CFS Runqueue

• Data structure containing threads
• Priority queue: sorts threads by number of cycles

consumed in current interval
• When thread reaches its maximum cycles, preempted
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Runqueues on Multiple Cores

• Process states heavier than thread states, so context
switches between threads of different processes are more
expensive

• If cores shared a runqueue, access and changes need to
be synchronous and cache-coherent

• Would slow the system to crawl
• So each core has its own runqueue and threads

• Load on each of the core’s runqueues must stay balanced
• CFS periodically runs a load-balancing algorithm
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Shuffler and FLSCHED

• Both schedulers aim to solve the same problem, but for
different architectures

• Problem: Adding more threads to certain parallel
computing applications on CFS makes the application
operate slower rather than faster!

• Architectures:

Shuffler → multiprocessor multicore
FLSCHED → single-chip manycore processor
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Shuffler

• Researchers Kumar et al. measured lock times of
massively parallel applications

• Lock times: amount of time process spends waiting for
locks

• Found that massively parallel shared-memory programs
experienced high lock times



27/38

Introduction Concepts Thread Scheduling New Schedulers Conclusion References

Lock Contention

• When two threads repeatedly contend for one lock, both
threads are frequently waiting for each other to release

• If the two threads are located on separate processors, this
problem is compounded by reduced locality

• Further, when both of the threads repeatedly modify the
data corresponding to their lock, the cache of both
processors must continue to update each other

• High lock contention
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Shuffler

• CFS not mindful of lock contention or parent processes
when choosing cores for threads

• Kumar et al. wanted to create a scheduler that did!
• Used Solaris scheduler as base

• Strategy: Migrate threads whose locks are contending so
they are near each other

• How do you determine which threads’ locks are
contending?

• Contending threads have similar lock acquisition times
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input : N: Number of threads;
C: Number of Processors.

repeat
i. Monitor Threads – sample lock times of N threads.
if lock times exceed threshold then

ii. Form Thread Groups – sort threads according to
lock times and divide them into C groups.

iii. Perform Shuffling – shuffle threads to establish
newly computed thread groups.

end
until application terminates;
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Shuffler Performance
• Kumar et al. compared the efficiency of Shuffler vs Solaris

scheduler
• Used programs from four benchmarks to gather data

Program % Improvement
BT 54.1%
SC 29.0%
RX 19.0%
JB 14.0%
OC 13.4%
AL 13.2%
AS 13.0%
PB 13.0%
VL 12.8%
FS 12.0%

Program % Improvement
FM 10.7%
AM 9.3%
GL 9.1%
EQ 9.0%
MG 8.8%
FA 6.0%

WW 5.2%
SM 4.7%
GA 4.0%
RT 4.0%

from Kumar et al. [2]
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FLSCHED: The Lockless Monster

• Designed by Jo et al. with manycore processors in mind,
particularly the Xeon Phi

• The Xeon and Xeon Phi have 24 to 76 cores.

• One processor, so cache looks different than system that
would use Shuffler

• With such parallelism, small pauses significantly reduce
efficiency

• In the CFS, pauses come from locks necessitated by its
features and requirements
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One requirement to rule them all: EFFICIENCY!

• FLSCHED Improves efficiency by removing all locks from
the scheduler implementation

• Gutted requirements and features of CFS and simplified

• Requirements they removed were Fairness and
Responsiveness

• Context switches requests delayed to reduce chance
another thread steals the core in hope thread reactivates

• Threads never forcefully preempt, instead join runqueue
with high priority

• Removed scheduler statistics reporting capabilities
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FLSCHED Performance
• Used 8 of 9 programs the NAS Parallel Benchmark (NPB)

Operations per second (OPS) relative to CFS, from Jo et al. [1]
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Conclusion

• Thread scheduling is an important problem and becomes
more relevant as number of cores increase

• System architecture can have surprising complexity in its
effect on efficiency

• CFS tries to be the go-to scheduler for all problems, but
can’t

• Does well, but when you need some extra push there are
powerful alternatives available
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Thanks!

Thank you for your time and attention!

Questions?
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