
Lifelog Mashup with Implementations of Various
Databases

Luz Lopez
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
lopez477morris.umn.edu

ABSTRACT
This paper will introduce readers to the commonly used ac-
tivity of lifelogging. Many of our lifelogging activities have
become a norm and we do not even realize where a lot of in-
formation about our behavior is going and where it is being
stored. In this paper I will mainly focus on the comparison
of two implementations of databases that manage the data
provided by lifelog services. Limitations and implementa-
tions will be discussed and evaluated for each implementa-
tion. Lastly, there will also be mashup application exper-
iments conducted for each that demonstrate the feasibility
of the two different databases being compared. In order to
achieve these implementations the reader will be introduced
to a lifelog common data model and a lifelog API. Other
terms and tools will be explained in the process of learning
about these two implementations.

Keywords
Lifelog mashup, query, LLAPI, LLCDM, MySQL, NoSQL

1. INTRODUCTION
Lifelog is a social act to record and share human life events

in an open public form [1]. There are various services pro-
vided on the Internet as well as devices that allow for peo-
ple to record their daily activities. Lifelogging technology
include wearable devices and mobile applications that track
our steps, heart rates, diets, check-in at specific places, or
even devices or systems that track health related informa-
tion about ourselves. Some examples of these technologies
are Twitter, Digifit, the Fitbit, HonestBaby, and many oth-
ers. We may not even realize how much of a norm these
things have become in our lives.

As various services collect information we may not know
where all this newly collected information is being stored,
nor how it’s being managed and returned to us, the users.
Sometimes two or more of these services merge together and
create a new service that implements a combined platform
and returns valuable data visualizations or a service to inter-
act with. This is known as a lifelog mashup platform which
was created to bring all of it together, and allow for users to
enjoy more sophisticated features that would be more useful
if it was together rather than all separate. As a more for-

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2017 Morris, MN.

mal definition, a lifelog mashup platform is an integration
of lifelogs to create a value-added service[1].

Having a tool that allows you to count calories or check
heart rate when working out can help you achieve more
goals than if you were unaware of this information. As men-
tioned briefly earlier, lifelog has a lot of information about
users all over the place, whether that be in their companies’
databases or servers, or if it’s across the globe being stored
in a random database, lifelog can only be helpful if users
can read and analyze their own data. The amount of data
generated is growing due to more users being involved in
lifelogging activities, and more devices or services collect-
ing lifelog data, therefore there’s more data that has to be
organized, processed, analyzed, and finally displayed. Taka-
hashi et al [1,2], from Kobe University, initially developed
a system with an XML platform, was later improved with
a MySQL RDB implementation, and lastly improved with
a NoSQL MongoDB integration. Their goal was to support
developers by providing a set of tools to make the creation
of LLCDM more efficient. In this paper I will explain three
of their studies, but put a heavy focus on the two last ones.

There are various parts to how lifelogging works, such as
the actual functionality and features of certain services and
devices, the data gathering, the platform of which the data is
being managed, and finally, how the data is being presented
to the user through mashup applications. Mashup applica-
tions are applications created by developers that actually
demonstrate how multiple services work together and create
visuals for the user. In this paper I will focus on the data
gathering process and on the platforms on which the data is
being managed. Like I mentioned before, there were three
different platforms that Takashi et al [1,2] developed, imple-
mented and tested. I will explain the limitations of each one,
and go over more detail about the implementation of the two
last databases used for each experiment. I will first present
you with the limitations on the XML platform to under-
stand the importance of the upgrade to MySQL. Then I will
explain the process of how MySQL was implemented, show
the evaluation process along with the TabetaLog mashup
application developers created and conclude with some of
the limitations MySQL could not resolve. A similar pro-
cess will be presented for NoSQL implementation, the only
difference is their mashup application was a different which
was creating a SensorLoggingService. With all these imple-
mentations of different databases to the LLAPI, they found
that in most cases the use of LLAPI took fewer lines of code
than the previous version, and in all cases took less time for
development



Figure 1: Lifelog mashup architecture

2. LIFELOG MASHUP
As mentioned before, lifelog mashup was created to orga-

nize and make all scattered information be in one location
to improve the accessibility. First I would like to introduce
a few things that pertain to lifelog mashup. Figure 1 shows
several important parts of Lifelog Mashup and it is to help
you understand how parts are connected. I have selected
this set up because it is the closest to the kind that Takashi
et al. [1] have used for their implementations. We can see
some examples of the services and devices given in section
1 on the far left and far right of the architecture. Lifelog
mashups store all information from the services in databases
that then retrieve the data and organize it and display in a
way that its users can understand and analyze it however
they please. Since all of the data is public, some lifelog ser-
vices are already providing APIs and/or blog components to
access the lifelog data according to Takahashi et al.[1].

In order to store large amounts of data and improve the
efficiency of the platform, lifelog common data model (LL-
CDM) has been proposed (see figure 1 where LLCDM is
shown as the pink block). The LLCDM is designed based
on an interrogative analysis, deriving standard attributes
from viewpoints of what, why, when, who(m), where, and
how application-neutral attributes, which are commonly in-
terpreted among different lifelog services [1]. The LLCDM
is responsible for collecting the data using those attributes.
It is in the analysis service where the LLAPI will do its work
and process the data through the database and then display
it.

I will explain how the LLCDM retrieves the data then
puts it into the database in the next section. This was a
simple explanation to have a basic understanding of how
things are connected before I go into detail on the individual
experiments and the LLAPI.

3. COMMON LIFELOG DATA MODEL (LL-
CDM)

It is important to understand why an LLCDM platform is
helpful. Figure 2 is an example of two sets of data records,
one for Twitter and the second for a Sensor Logging Service.
We can see how the format for these two data sets are dif-
ferent. Specifically time and date. The common data model
eliminates such problem, taking data with various formats,
and transforming it to the LLCDM format and then storing
it as an raw XML file. When the data is all stored in the
same format, it is much easier to create attributes with the
viewpoints mentioned in section two.

The following is the process on how to import data into

Figure 2: Data of two different lifelog services

the LLCDM. First obtain original data from heterogeneous
lifelog services and store all data in an XML file. Then trans-
form the data to LLCDM platform. In this step according
to Shimojo et al. [1] they map the original data to each
item of the LLCDM, based on a conversion rule defined for
each individual service in [3]. For the last step, the XML file
is then parsed, extracts the attributes and inserts the data
into the appropriate tables.

4. TOWARD SUPPORTING EFFICIENT DE-
VELOPMENT OF LIFELOG MASHUP AP-
PLICATIONS

It is important to understand the differences of the three
different designs for the mashup platform, figure 3 shows the
order in which they were designed. The first design was with
an XML platform. This platform was a first step and had
two major limitations. Although I will not go into detail on
this implementation due to greater progress of the two last
ones, it is important to understand how these limitations
lead to the implementation of the next experiment. The
limitations for this experiment were that it could not specify
application-specific attributes for a data query and it had
a scalability problem. When they found these problems for
this experiment they re-designed the platform using MySQL,
a relational database (RDB). They then re-designed creating
the last and third platform implementing it with a NoSQL
Mongo database.

I will introduce each experiment in its own section followed
by their corresponding evaluation application and lastly with
the limitations briefly presented in this subsection.



Figure 3: Order of experiments

5. MYSQL WITH RBD IMPLEMENTATION,
EVALUATION, AND LIMITATIONS [1]

5.1 Introduction to the RBD Design
This design seeks to fix the limitations of the previous

XML platform. As a reminder the two major limitations
were, poor portability and low performance. The poor porta-
bility issue came from the developers using Perl as the devel-
opment language, due to this developers had no other choice
than to use Perl for building mashup applications. The low
performance limitation was due to the LLCDM repository
being just a file system containing converted data as raw
XML file causing an overhead [1]. To overcome these limi-
tations Shimojo et al [1] set two goals:

G1 Improve performance and portability of the prototype

G2 Evaluate the practical feasibility of the LLAPI

To achieve goal 1, they would put all the lifelog data in a re-
lational database, instead of having the data as a raw XML
file. This would improve a faster search and accessibility for
the data. To achieve goal two, they would conduct an appli-
cation development experiment. In the experiment, they ask
subjects to implement two versions of a mashup application,
with and without the proposed LLAPI and the LLCDM [1].

5.2 Evaluating Performance
Shimojo et al. [1] conducted an experiment. They com-

pared the old prototype to the new implementation. They
evaluated a total if 1,591 lifelog data records. They then
store the data in the MySQL database or in a XML files.
They developed Perl clients to invoke the LLAPI [1] with
four different queries. The first one was for lifelog data for
a full day, second query was for 30 days, third query was for
an hour and 15 minutes, and the fourth query was all lifelog
data for one user. Figure 4 is the table with the execution
times. The experiments used SOAP and REST web proto-
cols for the new LLAPI implantation. ”Old” refers to the
old implementation. The time of each execution is seconds,
and we can clearly see the reduction in time for SOAP and
REST compared to the old implementation.

Figure 4: Execution times

6. MASHUP EXAMPLE: TABETALOG
An example of how data from multiple lifelog sources was

brought together to create something manageable to under-
stand for the user is the TabetaLog application [1]. It was
created to evaluate the feasibility of the LLAPI. Which if
you recall is the second goal in section 5.1. The table shows
an example of two lifelog service used. One was Flickr and
the second was BodyLogService, one containing picture data
and the other containing weight data.

6.1 Steps to create TabetaLog[1]

1. Obtain original lifelog data from LLAPI

2. Extract necessary data by parsing, breaking data blocks
into smaller chunks so that it can be more easily inter-
preted.

3. Combine data items that are then dumbed into a JSON
file.

4. Visualize the JSON data using ActionScript

Figure 5: Example of a TabetaLog

In figure 5, I have replicated the idea of what the Tabeta-
Log should look like. The purpose of this mashup appli-
cation is to combine two web services that are different in
functionality, Flickr and FoodLogService. Flickr is a web
service that provides a public platform for sharing memo-
rable photos and videos. In contrast, the FoodLogServices
application are used to track daily caloric intake by storing
large amounts of data regarding nutritional information of
numerous foods in one easy-to-access, easy-to-use applica-
tion. The Tabetalog works to combine data from these two
different applications to create a new, more sophisticated
platform for the user to evaluate the changes in weight gain
based on the type of food consumed. The idea is for a user
to take daily photos of all meals for one year, upload the
images to Flickr and for each photo, record their weight on
a FoodLogServices application. The Tabetalog gives users a
new opportunity to visualize their meals and how their food



choices affect their weight. Combing Flickr and Foodlogser-
vices allows users to more accurately track the effectiveness
of a new diet on weight loss.

In this experiment they asked five developers to create the
TabetaLog that had the similar features to what I replicated.
They had to use the new LLAPI and the conventional (conv)
LLAPI, which is simply what they named the old LLAPI.
Each developer was assigned to create the Tabetalog us-
ing the conventional or new implementation first. Figure 6
shows a table with the results of the experiment.

One again proving that the time and lines of code to create
the mashup application takes a lot less time and effort to
develop with the new implementation.

7. NOSQL IMPLEMENTATION WITH MON-
GODB, PROCESS, EVALUATION, AND RE-
SULTS

7.1 Reasons to Choosing MongoDB
MongoDB is a schema-less document orientated database

developed by 10gen and is open source [1]. The following
list shows the advantages and disadvantages of MongoDB
for lifelog mashup. It is important to understand how and
why some of the functionalities might be helpful for the im-
plementation of lifelong data.

Adv 1: Document-oriented storage meaning MongoDB stores
data in BSON (binary JSON) objects that are binary
encoded JSON like objects.

Adv 2: High Availability and Easy Scalability Mongo
supports the distribution of documents over servers.
It also supports replication with automatic failure and
recovery as well [1].

Adv 3: Full Index Support MongoDB indices are explicitly
defined using an ensureIndex call and any existing in-
dices are automatically used for query processing [1].
This means that it looks for data with certain proper-
ties rather than looking through entire documents that
can have many records with the same attributes. This
makes queries more efficient.

Adv 4: Supports MapReduce MapReduce is supported by
MongoDB. This is significantly important since MapRe-
duce is a programming model for processing and gen-
erating large datasets, that is amenable to a brand
variety of real world tasks [3].

As good as these advantages might seem, we also have
to take in account the characteristics that might not be as
helpful for lifelog platform:

Con 1: No Transition MongoDB has no version concurrency
control, which is an advanced technique for improving
databases performance in a multi-user enviorment.

Con 2: No JOIN support If some of the data has joins,
columns with similar data, it will combine and store
the data into one document to remove the joins.

Con 3: New technology MongoDB has only been around
since about 2009. It does not have much history and
it is constantly releasing new versions.

It may not be clear yet why these pros and cons de-
mosnstrate the effectiveness of MongoDB to be implemented
with lifelog-mashup. In the next section I will explain its va-
lidity and why it was chosen by Takahashi et al[1] implement
MongoDB with lifelog mashup in the next few sections.

7.2 Modeling LLAPI with MongoDB
”Application information”, in other words an attributes,

will contain things that pertain to the service or device that
is collecting lifelog information. In the RDB (MySQL) ”Ap-
plication information” was the label for part of the database
that stored application-specific information. It was a catch
all for information that did not have a particular place to go.
Due to the way that information was stored, it was difficult
to extract the application-specific information from a query.
Instead, the program developer would need to get a lot more
information from the database and parse within the appli-
cation. Since MongoDB is able to create more attributes
that can be more specific to data such as temperature, time,
date, etc., then they don’t have to dump many extra un-
recognized records. For example, knowing the application
is Twitter rather than Bodylog, we will know what kind of
information to retrieve or what to look for more specifically.
With MongoDB we can create more attributes that can be-
come more specific to more services. Figure 7 shows the new
attributes as the blue, and the removed as the red attribute.

Username information is very important because this is
how lifelog information will be attached to the user. These
are things common services will request to create a user
profile. This information is much needed to connect users
with proper lifelog information they are looking for.

The important information to have is the one describing
the lifelog. Although this information will be different de-
pending on the service, like application information, it would
be the most common information asked by many services.
For a location based service (Twitter, Flickr, applications
with weather settings, etc.) it will request a specific loca-
tion. This information is typically not requested from the
user but from the service. All other information is used for
the efficiency the user is seeking for.

7.3 Implementation of LLAPI with new Plat-
form

[1] developed a new LLAPI consisting of two methods:
putLifeLog() and getLifelog(). The putLifeLog() stores a
lifelog data into the LLCDM, and getLifelog() method re-
trieves lifelog data from the LLCDM depending on the given
query.

[1] Implemented the LLAPI with Java. Morphia OR-
mapper was used for marshaling tuples into objects, which
simply means to take data and transform the components
stored in memory of a object into a data format suitable for
storage or transmission. The advantage of using the OR-
mapper is to decouple the SQL statements from the Java
code, which improves the robustness and the maintainabil-
ity of the system [2]. The LLAPI was then deployed as a
web service, which has many advantages being that it sets
the LLAPI free from the artificial dependencies of the lan-
guage and platform [2]. They deployed the LLAPI using the
Apache Axis2 web service framework, which allows both web
service protocols, SOAP and REST, to access the LLAPI.
Web service protocols are just a standard communication
set of rules specification for XML-based message exchange



Figure 6: Results of the TabetaLog Experiment

Figure 7: New and removed attributes

[5]

8. EVALUATING PERFORMANCE
Takashi et al. [2] developed an experiment using envi-

ronmental sensor log from SensorLoggingService, deployed
in their smart home. This service measures the environ-
ment inside/outside of their laboratory using various sen-
sors including temperature, humidity, brightness, pressure,
motion, and the number of people. The sensor has recorded
every minute for three years, a total of 1,664,937 entries.
Records are then imported to new(MongoDB, NoSQL) and
old(RDB, MySQL) platform. A client application was devel-
oped where it picks out summery days, which means a day
that between 9 AM and 6 PM, the maximum temperature
exceeds 25 degrees Celsius. Figures 8 and 9 show the results.
We can see that the newer system, LLAPI, takes roughly the
same amount of time to retrieve data for most any size win-
dow of time, as opposed to the old implementation taking a
lot more time with more data.

Taking a closer look at the graphs, we can see how the
number of records being retrieved are so large for the old
LLAPI, in part because the data in in ”application informa-
tion” and almost all the records need to be retrieved and
then passed by the system rather than being able to do an
efficient query with access to more attributes.

9. CONCLUSION
Lifelogging is a way of recording everyday activities. With

more services that allow for lifelogging as well as more users
using these services and devices, data continues to grow.
With large amounts of data, there needs to be a system to
process these large amounts of data efficiently and in an agile
form. As I presented in this paper, Takahashi et al. designed
and successfully implemented various databases to improve

Figure 8: Graph for execution times

Figure 9: Graph for number of items



the feasibility to create mashup applications by developers.
As a summarization of their multi-step experiment to de-

sign a lifelog common data model and an lifelog API plat-
form to create mashup applications, we can see the improve-
ments of each implantation for applications to gain access
to specific data from different databases.

[1] [2] [3] [4]

10. REFERENCES
[1] J. Dean and S. Ghemawat. Mapreduce: A flexible data

processing tool. Commun. ACM, 53(1):72–77, Jan.
2010.

[2] R. Padhy, M. Ranjan, P. Suresh, C. Satapathy, and
O. India. Rdbms to nosql: Reviewing some
next-generation non-relational database’s. 10 2017.

[3] A. Shimojo, S. Matsumoto, and M. Nakamura.
Implementing and evaluating life-log mashup platform
using rdb and web services. In Proceedings of the 13th
International Conference on Information Integration
and Web-based Applications and Services, iiWAS ’11,
pages 503–506, New York, NY, USA, 2011. ACM.

[4] K. Takahashi, S. Matsumoto, S. Saiki, and
M. Nakamura. Design and evaluation of lifelog mashup
platform with nosql database. In Proceedings of
International Conference on Information Integration
and Web-based Applications &#38; Services, IIWAS
’13, pages 133:133–133:139, New York, NY, USA, 2013.
ACM.


