
Storing and Accessing Lifelog

Data with MySQL & NoSQL

(MongoDB) Databases
LUZ LOPEZ

DIVISION OF SCIENCE AND MATHEMATICS

UNIVERSITY OF MINNESOTA, MORRIS

NOVEMBER 18TH, 2017

Outline

1. INTRODUCTION

2. LIFELOG MASHUP MySQL
WITH RDB

IMPLEMENTATION

3. LIFELOG MASHUP NoSQL

WITH MongoDB

IMPLEMENTATION

4. CONCLUSION

Outline

1. INTRODUCTION

i. What is lifelogging?

ii. Lifelog Mashup

iii. Lifelog Common Data
Model (LLCDM)

iv. Lifelog API (LLAPI)

v. Previous Work
Limitations

2. LIFELOG MASHUP MySQL
WITH RDB
IMPLEMENTATION

3. LIFELOG MASHUP NoSQL
IMPLEMENTATION WITH
MongoDB

4. CONCLUSION

What is Lifelogging? /Importance

/Lifelog Mashup

Lifelogging:

Also known as “life catching”

A social act to record and share human life

events in an open and public form [1,2]

Lifelog Mashup:

Integrating scattered lifelogs would implement

more sophisticated and value-added services,

than using them separately [1]

 Personal

 Personal health achievements

 Productivity

 Self-enhancement

 Public

 Memories

 Photos

 Connections

Lifelog Common Data Model

LLCDM:

Lifelog common data model prescribes a generic data schema for
lifelog records, which does not rely on any specific lifelog service.

Designed with standard attributes of

what, who(m), why, where, how. [2]

Importance of LLCDM

Data record of Twitter

{

“created_on”: “Friday Jul 05 2013” ”time”:

"03:45:35+000”,

“id”: 3353155350876845002,

“text”: “Working outside today”,

“source”:“<ahref=http://twitter.com/,

…

“geo”:{

“type”: “Point”

“coordinates”: [32.8753586, 135.874874]

}

”coordinates”: {…}

}

Data record of

SensorLoggingService
{

Time:”12:46:57”,

…

User: “koupe”,

Weather: “Sunny”,

TempF: 76.73,

Brightness: 310,

Temperature: 26.6,

…

Id: 23654,

Date: “2013-07-05”

}

http://twitter.com/48623

Importance of LLCDM

Data record of Twitter

{

“created_on”: “Friday Jul 05 2013” ”time”:

"03:45:35+000”,

“id”: 3353155350876845002,

“text”: “Working outside today”,

“source”:“<ahref=http://twitter.com/,

…

“geo”:{

“type”: “Point”

“coordinates”: [32.8753586, 135.874874]

}

”coordinates”: {…}

}

Data record of

SensorLoggingService
{

Time:”12:46:57”,

…

User: “koupe”,

Weather: “Sunny”,

TempF: 76.73,

Brightness: 310,

Temperature: 26.6,

…

Id: 23654,

Date: “2013-07-05”

}

http://twitter.com/48623

Lifelog Mashup API

LLAPI:

 Lifelog mashup API is for

searching and retrieving

lifelog data conforming to

the LLCDM [1] by matching

specific given queries.

Lifelog Mashup API

LLAPI:

 Lifelog mashup API is for

searching and retrieving

lifelog data conforming to

the LLCDM [1] by matching

specific given queries.

 Using getLifeLog()

heterogeneous lifelogs can

be accessed uniformly

without proprietary

knowledge of lifelog

services.

Lifelog Mashup API

LLAPI:

 Lifelog mashup API is for

searching and retrieving

lifelog data conforming to

the LLCDM [1] by matching

specific given queries.

 Using getLifeLog()

heterogeneous lifelogs can

be accessed uniformly

without proprietary

knowledge of lifelog

services.

Using getLifeLog example wrapping an SQL statement [2]:

getLifeLog(s_date, e_date, s_time, e_time, user, party, object,

location, application, device, select)

Lifelog Mashup API

LLAPI:

 Lifelog mashup API is for

searching and retrieving

lifelog data conforming to

the LLCDM [1] by matching

specific given queries.

 Using getLifeLog()

heterogeneous lifelogs can

be accessed uniformly

without proprietary

knowledge of lifelog

services.

Using getLifeLog example wrapping an SQL statement [2]:

getLifeLog(s_date, e_date, s_time, e_time, user, party, object,

location, application, device, select)

Parameters:

s_date, e_date : Query of <date> (start, end)

s_time, e_time : Query of <time> (start, end)

user, party, object: Query of <user, party, object >

location : Query of <location>

application : Query of <application>

service : Query of <device>

select : Query of <select>

Lifelog Mashup Platform

Devices and Web services

Lifelog Mashup Platform

Introduce the LLCDM

Lifelog Common Data

Model Repository

(LLCDM)

Lifelog Mashup Platform

Retrieve data from services API

Lifelog Common Data

Model Repository

(LLCDM)

Lifelog Mashup Platform

LLAPI requests lifelog data from LLCDM using method

Lifelog Common Data

Model Repository

(LLCDM)

Lifelog API (LLAPI)

(put/getLifelog())

Requests

Lifelog Mashup Platform

LLAPI retrieves lifelog data from LLCDM using method

Lifelog Common Data

Model Repository

(LLCDM)

Lifelog API (LLAPI)

(put/getLifelog())

Requests Retrieves

Lifelog Mashup Platform

Lifelog Common Data

Model Repository

(LLCDM)

Mashup applications return user-friendly visuals

Mashup Applications

Lifelog API (LLAPI)

(put/getLifelog())

Requests Retrieves

Lifelog Mashup Experiments

Experiment 1: First they proposed a lifelog mashup LLCDM and LLAPI

to access standardized data

 Poor portability

 Low performance

Lifelog Mashup Experiments

Experiment 1: First they proposed a lifelog mashup LLCDM and LLAPI

to access standardized data

 Poor portability

 Low performance

Experiment 2: Then re-engineered it with relational MySQL and Web
services.

 Evaluated

Lifelog Mashup Experiments

Experiment 1: First they proposed a lifelog mashup LLCDM and LLAPI

to access standardized data

 Poor portability

 Low performance

Experiment 2: Then re-engineered it with relational MySQL and Web
services.

 Evaluated

Experiment 3: Once again re-engineered, this time with NoSQL

 Evaluated

 Low performance

 Had to convert data into raw
XML files then store it

 Poor Portability

 Prototype was written in Perl
language, no choice for

developers to use other

languages to build mashup

applications

Limitations with XML Prototype

How to improve limitations

 Low performance

 Had to convert data into raw
XML files then store it

Put data in relational database (RDB)
instead of having data as raw XML
files.

Faster data search and access.

 Poor Portability

 Prototype was written in Perl
language, no choice for
developers to use other
languages to build mashup
applications

Programmers create and implement two
versions of the mashup application to
evaluate the feasibility of new
implementation

Outline

1. INTRODUCTION

2. LIFELOG MASHUP MySQL

WITH RDB

IMPLEMENTATION

i. Process

ii. Evaluation

iii. Limitations

3. LIFELOG MASHUP NoSQL

WITH MongoDB

IMPLEMENTATION

4. CONCLUSION

Process

1. Importing lifelog data to LLCDM repository

2. Re-engineering LLAPI

3. Evaluate Performance

 SOAP and REST Web-service Protocols

 Mashup Example TabetaLog

Goal: To show the practical feasibility of the proposed LLAPI.

1. Importing lifelog data to LLCDM

Repository

Steps to import data from heterogonous lifelog services to the LLCDM

repository:

1. Importing lifelog data to LLCDM

Repository

Steps to import data from heterogonous lifelog services to the LLCDM

repository:

1. Obtain original data

1. Obtain the original data from service and store data in XML

1. Importing lifelog data to LLCDM

Repository

Steps to import data from heterogonous lifelog services to the LLCDM

repository:

1. Obtain original data

1. Obtain the original data from service and store data in XML

2. Transform data to LLCDM

1. Raw data to the LLCDM format

1. Importing lifelog data to LLCDM

Repository

Steps to import data from heterogonous lifelog services to the LLCDM

repository:

1. Obtain original data

1. Obtain the original data from service and store data in XML

2. Transform data to LLCDM

1. Raw data to the LLCDM format

3. Insert data into database

1. Insert the XML into the database

2. Parses the converted XML data

3. Extracts the attributes and inserts the values to appropriate tables.

Comparison of execution times

Query 1 Query 2 Query 3 Query 4

SOAP (sec)

REST (sec)

OLD (sec)

OF ITEMS

DATA SIZE (kB)

Comparison of execution times

November 15-

November 16

Query 2 Query 3 Query 4

SOAP (sec) 0.131

REST (sec) 0.015

OLD (sec) 4.238

OF ITEMS 36

DATA SIZE (kB) 118

Comparison of execution times

November 15-

November 16

September 1-

September 30

Query 3 Query 4

SOAP (sec) 0.131 1.006

REST (sec) 0.015 0.100

OLD (sec) 4.238 4.028

OF ITEMS 36 119

DATA SIZE (kB) 118 381

Comparison of execution times

November 15-

November 16

September 1-

September 30

9:00:00-

10:15:00

On any date

Query 4

SOAP (sec) 0.131 1.006 0.281

REST (sec) 0.015 0.100 0.019

OLD (sec) 4.238 4.028 4.254

OF ITEMS 36 119 195

DATA SIZE (kB) 118 381 1,450

Comparison of execution times

November 15-

November 16

September 1-

September 30

9:00:00-

10:15:00

On any date

User –

“Shimojo”

SOAP (sec) 0.131 1.006 0.281 0.422

REST (sec) 0.015 0.100 0.019 0.025

OLD (sec) 4.238 4.028 4.254 0.581

OF ITEMS 36 119 195 449

DATA SIZE (kB) 118 381 1,450 630

TabetaLog – FoodLogService + Flickr
W

e
ig

h
t(

lb
s)

Day out of the year

TabetaLog – FoodLogService + Flickr
W

e
ig

h
t(

lb
s)

Day out of the year

Process for TabetaLog

TabetaLog was an experimental evaluation lifelog mashup application.

Steps for creating the TabetaLog:

1. Obtain original lifelog records

 Web-service API

2. Extract data items

 Parsing records

3. Join data items

 Joined records are stored in JSON format file

4. Create TabetaLog

 Using ActionScript, visualize the JSON data

Evaluation/Results

Programmer 1 2 3 4 5 Correct

Order	of	Development P llapi										Pconv	 Pconv										P llapi	 Pconv										P llapi	 Pconv										P llapi	 P llapi										P conv	 													-

P llapi										Pconv	 P llapi										P conv	 P llapi										Pconv	 P llapi										Pconv	 P llapi										P conv	 P llapi										Pconv	

Programming	Language Perl										Perl Perl										Perl Java										Java Java										Java Java										Java 		-																	-
Source	lines	of	code 115										365 227										379	 480										612 423										397 150										181 		-																	-

SLOC	(w.out	blank	and	comments) 71												223 103										188 351										426	 286										263 106										125 		-																	-

#	of	source-code	classes 		-																	- 		-																	- 7															7 5															5 2															2 		-																	-
#	of	source-code	files 1															4 1																3 		-																	- 		-																	- 		-																	- 		-																	-
Man-hour	(man	minute) 114										196 54													205 96														252	 147														514 132														397			-																	-
#	of	weight	records	<Shimojo> 53													54 53													54 32														53	 53														54 52														52 53														54
#	of	weight	records	<Togunaga> 102										101 102											101 52														103	 103														104	103														115 102														101
#	of	picture	records	<Shimojo> 8																9 8																9 8																9 8																	9 8																	9 8																	9
#	of	picture	records	<Tokunaga> 85														86 85														86 60														87 85															44 65															85 85															86

Evaluation/Results

Programmer 1 2 3 4 5 Correct

Order	of	Development P llapi										Pconv	 Pconv										P llapi	 Pconv										P llapi	 Pconv										P llapi	 P llapi										P conv	 													-

P llapi										Pconv	 P llapi										P conv	 P llapi										Pconv	 P llapi										Pconv	 P llapi										P conv	 P llapi										Pconv	

Source	lines	of	code 115										365 227										379	 480										612 423										397 150										181 		-																	-

Programming	Language Perl										Perl Perl										Perl Java										Java Java										Java Java										Java 		-																	-

Man-hour	(man	minute) 114										196 54													205 96														252	 147														514 132														397			-																	-

3. Evaluating Performance

 Compared to previous prototype.

 1,591 records of data were stored in MySQL database

Five subjects implement a program generating the TabetaLog JSON

file. Subjects implement two versions of the program: one with the
proposed LLAPI and one with the conventional LLAPI. [1]

The subjects were instructed to mashup the weight records and the

picture records of user “Shimojo” and “Tokunaga” for one year (May

18th, 2010-May 17th, 2011) and to output the resulting JSON file.

Outline

1. INTRODUCTION

2. LIFELOG MASHUP MySQL

WITH RDB

IMPLEMENTATION

3. LIFELOG MASHUP NoSQL

WITH MongoDB
IMPLEMENTATION

i. Limitations

ii. Process

iii. Evaluation

4. CONCLUSION

Limitations with MySQL Prototype

1. Could not specify application-specific attributes (stored in the

<content> column) for data query [2]

2. Scalability

Limitations with MySQL Prototype

1. Could not specify application-specific attributes (stored in the

<content> column) for data query [2]

Limitations with MySQL Prototype

1. Could not specify application-specific attributes (stored in the

<content> column) for data query [2]

 Data was stored in an unstructured plain text file, which SQL

cannot interpreted.

 Queries with application-specific attributes had to be managed

by individual mashup applications. Causing large application
overhead and expensive development cost [2].

Limitations with MySQL Prototype

1. Could not specify application-specific attributes (stored in the

<content> column) for data query [2]

 Data was stored in an unstructured plain text file, which SQL

cannot interpreted.

 Queries with application-specific attributes had to be managed

by individual mashup applications. Causing large application
overhead and expensive development cost [2].

2. Scalability

Limitations with MySQL Prototype

1. Could not specify application-specific attributes (stored in the
<content> column) for data query [2]

 Data was stored in an unstructured plain text file, which SQL
cannot interpreted.

 Queries with application-specific attributes had to be managed
by individual mashup applications. Causing large application
overhead and expensive development cost [2].

2. Scalability

 As more lifelog services appear, the platform should be scalable
enough to keep up with larger data.

Benefits of MongoDB

Resolves limitation 1

 Document-orientated storage

 MongoDB BSON object
represents dynamically-typed

data in the <content> column

 Full index support

 Useful for queries over the
<content> column

Resolves limitation 2

 Supports MapReduce

 Programming model and an
associate implementation for

processing and generating

large datasets of a variety of

real-world tasks [2]

Process

 Design LLAPI with MongoDB

 Implementation

 Evaluation with SensorLoggingService

Designing LLAPI with MongoDB

Once the lifelog data is stored in the LLCDM, the data is retrieved using a greater

queries language MongoDB offers.

Expanding the capability of the previous LLAPI implemented with SQL.

Improved getLifelog method is as follows:

getLifeLog([s_date, e_date, s_time, e_time, s_term, e_term, user, party, object, s_alt,

e_alt, s_lat, e_lat, s_long, e_long, loc_name, address, location, application, device,

content, select, limit, order, offset])

Evaluation

Experiment using environmental sensor log from SensorLoggingService,

deployed in their smart home

This service measures environment inside/outside of their laboratory using

various sensors including temperature, humidity, brightness, pressure, motion,

and the number of people. The sensor has recorded every minute for three

years, a total of 1,664,937.

Records are then imported to new(MongoDB, NoSQL) and old(RDB, MySQL)

platform.

A client application was developed where it picks out summery days, which

means a day that between 9 AM and 6 PM, the maximum temperature

exceeds 25 degrees Celsius.

Outline

1. INTRODUCTION

2. LIFELOG MASHUP MySQL

WITH RDB IMPLEMENTATION

3. LIFELOG MASHUP NoSQL
WITH MongoDB

IMPLEMENTATION

4. CONCLUSION

i. Comparisons between

SQL and NoSQL

SQL vs. NoSQL

The experimental results showed that the application with the new

LLAPI with MongoBD achieves a higher performance and scalability

with lower application complexity, compared to the the XML and

MySQL implementation.

Thank you for your

time and attention

QUESTIONS?

Contact:

E-mail:

Lopez477@morris.umn.edu

LinkedIn URL:

www.linkedin.com/in/luz-m-

lopez-her

References

1. Akira Shimojo, Shinsuke Matsumoto, and Masahide Nakamura. 2011. Implementing and
evaluating life-log mashup platform using RDB and web services. In Proceedings of the 13th
International Conference on Information Integration and Web-based Applications and
Services(iiWAS '11). ACM, New York, NY, USA, 503-506.
DOI=http://dx.doi.org/10.1145/2095536.2095640

2. Kohei Takahashi, Shinsuke Matsumoto, Sachio Saiki, and Masahide Nakamura. 2013. Design and
Evaluation of Lifelog Mashup Platform with NoSQL Database. In Proceedings of International
Conference on Information Integration and Web-based Applications & Services (IIWAS '13).
ACM, New York, NY, USA, , Pages 133 , 7 pages. DOI: http://dx.doi.org/10.1145/2539150.2539229

3. Akira Shimojo, Saori Kamada, Shinsuke Matsumoto, and Masahide Nakamura. 2010. On
integrating heterogeneous lifelog services. In Proceedings of the 12th International Conference
on Information Integration and Web-based Applications & Services (iiWAS '10). ACM, New York,
NY, USA, 263-272. DOI: https://doi.org/10.1145/1967486.1967529

