Neural Machine Translation Techniques Used By Google

Sophia K. Mitchellette
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
mitc0417@morris.umn.edu

ABSTRACT

Google’s Neural Machine Translation System employs mul-
tiple techniques in conjunction to improve translation accu-
racy and efficiency. In this paper we summarize two of the
techniques used by Google in their Neural Machine Transla-
tion System: the attention network model and the residually
connected network model.

The attention network model extends the encoder-decoder
network model by adding an attention mechanism. The at-
tention mechanism allows for proper encapsulation of in-
formation for longer sentences; the amount of information
given to the decoder network is based on the length of the in-
put sentence. The attention network model outperforms the
encoder-decoder model and provides more accurate transla-
tions for longer sentences.

Plain deep neural networks have connections only between
adjacent network layers; adding more layers to this kind of
network eventually results in a peak accuracy, after which
adding more layers degrades network accuracy. The resid-
ually connected network model extends the plain network
model by adding residual connections between network lay-
ers. With residual connections, networks continue to im-
prove with an increased number of layers, instead of peaking
and then degrading in accuracy.

1. INTRODUCTION

The goal of a translation is finding the most likely conver-
sion of the source language® sentence to the target language?®
sentence. In translating an English sentence to French: En-
glish is the source language and French is the target lan-
guage.

Machine Translation (MT) is the attempt to automate the
process of finding the most likely translation of a source lan-
guage sentence into a target language. Statistical Machine
Translation (SMT) was a type of MT more commonly used
in the past, but Neural Machine Translation (NMT) has be-
come more prominent over time. Google previously used
a phrase-based SMT system, and they have since switched
to Google’s Neural Machine Translation (GNMT) system.
Neural MT networks have been making progress towards

!This is the language you are translating from.
2This is the language you are translating to.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, December 2017 Morris, MN.

achieving and exceeding the success rates of SMT systems.
Google applied multiple improvement techniques that broug-
ht their GNMT system to a higher success rate than Google’s
previous phrase-based SMT system. [14]

We describe two of those techniques in this paper. We
explain how each technique works and how Google made
use of them in their GNMT system. The first technique
we describe is the attention network model. The second
technique is the residually connected network model. For
both of these techniques, we describe the results of the initial
evaluations done by the techniques’ inventors.

2. NEURAL NETWORKS

Neural networks are composed of nodes [1]. Nodes map
inputs to outputs [1]. A mapping is synonymous with a func-
tion. One can also say that nodes are functions which take
in inputs and yield outputs. In MT, words and sentences
are often represented as vectors [3]. In the case of vector
representation, the vector representation of the source lan-
guage text would be the input to the neural network [3].
The vector representation of the target language translation
would be the output of the neural network [3]. Sentences
may be segmented on different bases; each sentence segment
is represented by a vector [14].

Word segmentation is a type of segmentation which breaks
down sentences based on words; each word would be repre-
sented by one word vector [14]. Word vectors may repre-
sent certain features of words, such as their meaning [9].
In this case, words similar in meaning have a closer posi-
tion in vector space [9]. The significance of word vector
positions are dependent on the type of vector representation
chosen. Character segmentation is another type of segmen-
tation which represents each character in the sentence with
one vector [14]. Another type of segmentation is used by
GNMT called wordpiece segmentation; the sentence segmen-
tation is based on maximizing the probability of achieving
the best translation [14]. In Google’s example sentence “Jet
makers feud over seat width with big orders at stake.” The
word “feud” is represented by two vectors, one vector for “fe”
and another for “ud” and the word "width” is represented by
one vector because that is the segmentation that maximizes
the probability of a correct translation.

Neural networks learn through training to produce a de-
sired output based on an input. For instance, in MT, neural
networks are given text in a source language, and the neural
network ideally returns the most likely translation of that
text in the target language. [3]

Neural networks are organized into layers. There are three



Activation
Function

Output Output
layer
Input Hidden Nots
layer layers

Figure 1: a) A diagram of a neural network. The ar-
rows between nodes represent network connections.
[1] b) An example of a single node in the overall
network. Here, y; could be a number representing
data.[2]

sections of layers: the input layer, the hidden layers, and the
output layer. The input layer is the first layer of a network,
and is comprised of the network’s input values. The output
layer is the last layer of the neural network, and the hid-
den layers are the layers in between the input layer and the
output layer. The output layer and the hidden layers are
comprised of nodes. There can be many hidden layers or no
hidden layers. [1]

Neural networks have connections between nodes [1]. If
some or all of node u’s outputs are inputs to node k, and
node u is from a layer before node k, then we refer to the
nodes as having a forward connection. If some or all of node
u’s outputs are inputs to node k, and node u is from a layer
after node k, then we refer to the nodes as having a backward
connection.

If a network has one or more hidden layers, then the input
to the first hidden layer is the input layer. The nodes of
the i'" hidden layer are connected to the nodes of the (i +
1)** hidden layer. The nodes of the last hidden layer are
connected to the nodes of the output layer. The output of
the network is the output of the nodes of the output layer.
If the network has no hidden layers, then the input layer is
the input to the nodes of the output layer. Figure la is a
diagram of a neural network with two hidden layers. The
first hidden layer has four nodes, and the second hidden layer
has three.

A network is considered to be a feed-forward neural net-
work if the network has only forward connections between
layers, and not backward connections or connections be-
tween nodes in the same layer [11]. Another kind of multi-
ple layer neural network where nodes on the same layer are
connected —called a Recurrent Neural Network—is covered in
Section 3.

2.1 Node Structure

A simple network node has three components. In the first
component of a node, the node’s inputs are multiplied by
their respective weights. An input with a higher weight has
more impact on the node’s output. An input with a weight
of zero would have no impact on the node’s output. In the
second component of a node, the weighted inputs are added
together. In the third component of a node, the sum of the
weighted inputs is passed through an activation function.
The result of the activation function is the output of the
node. [1]

Figure 1b is a diagram of one of the nodes in Figure 1la.

W @ @ & o

(N N

RNN | _ [ RNN RNN RNN RNN
Node | = | Node 1| " Node2 ™| Node3 [~ "®| Noden

B

Figure 2: Example of single layer RNN [4]. On the
left is the RNIN with looping, on the right is the
RNN looping unrolled. [4]

This node takes in the inputs z1, x2, and x3. The summation
step is represented by the circle containing a “+”. The node’s
activation function is f. The result of the activation function
is y1. The second hidden layer’s nodes will receive y; as
input through the node’s forward connections.

Activation functions are usually non-linear, as this intro-
duces non-linearity into the neural network. Non-linearity
in a neural network allows the network to learn more com-
plicated data patterns. If all of the activation functions in
the network are linear, then the network is unable to learn
more complex data. Common activation functions include
the hyperbolic tangent function (tanh) and sigmoid (o). Ac-
tivation functions such as tanh and o scale the output values
of nodes to an interval®, which prevents their absolute values
from growing too large. [13]

The respective weights of each input are calculated through
training the network. Neural networks are trained by giv-
ing them data sets [1]. For MT, a data set could contain
vector representations of paired source and target language
sentences [3]. During training, the neural network tries dif-
ferent weight values in an attempt to minimize its error; the
error is the difference between the actual output and the de-
sired output [1]. That is to say, the neural network is trying
to bring its actual outputs closer to the desired outputs. A
networks training error is the networks error when run over
the data it was tested on. The networks testing error is the
networks error when run on new and unfamiliar data.

3. LSTM RNNs

In an Recurrent Neural Network (RNN), layers are re-
peated in a loop, and each time step becomes its own layer
[4]. A time step in a neural network is an instance of eval-
uation. For MT there is one time step for each sentence
segment [3]. When using word segmentation: For the sen-
tence “They run fast.”, the words “They”, “run”, and “fast”
would each be a time step [3]. An example of an RNN node
is given in Figure 2.

Long Short-Term Memory networks (LSTMs) are a type
of RNN. LSTMs are composed of LSTM units. LSTMs
solve the vanishing gradient problem which occurs with plain
RNNs. [11]

The vanishing gradient problem is caused by the activa-
tion function condensing the numerical range to an interval
[12]. For instance, consider tanh. Regardless of how large
the absolute value of z is, tanh(xz) will lie in the interval
of (-1, 1). In this manner, values are condensed over the

3tanh and o restrict outputs to (-1, 1) and (0, 1), respec-
tively.



course of multiple layers (and therefore many runs through
an activation function). As a result, in a plain RNN, with
each additional step, the impact of earlier steps lessens and
the information from earlier steps has less impact [11].

LSTMs avoid the vanishing gradient problem plain RNNs
have through the internal structure of their LSTM units.
The internal structure of LSTM units are composed of mul-
tiple nodes [11]. Three of these nodes are referred to as
gates [11]. The three gates control how much information
from previous layers is maintained, and how much is lost as
it leaves the unit [12]. The input gate determines amount of
input to be kept and maintained [12]. The output gate de-
termines amount of information in the unit that the unit will
output [12]. The forget gate determines what information
the unit will forget [12].

If an LSTM layer is bidirectional it has both forward and
backward connections. Being bidirectional allows the net-
work the advantage of looking at the context of segments
before and after the current time step; each time step cor-
responds to the translation of one source sentence segment.
As a result, bidirectional LSTMs have the advantage of look-
ing at the context of the sentence surrounding the current
segment being translated. [14]

4. ATTENTION NETWORK MODEL

Attention networks extend a simpler approach known as
the encoder-decoder model. The typical encoder-decoder
model has only two networks: an encoder network and a
decoder network. The encoder network takes in the input
segments: the vector representations of the source sentence
segments. Then the encoder network outputs a fixed length
vector which contains all of the information for translating
the sentence. The role of the decoder network is to provide
a translation based on the vector. The decoder network
outputs the output segments: the vector representations of
the target sentence segments. [3]

Encoder-decoder networks suffered from issues in translat-
ing long sentences. Because the vector given to the decoder
network is fixed-length, a three-word sentence has as much
information given to the decoder network as a fifty-word
sentence. As a result, the translation of long sentences has
a higher rate of error; not enough information about longer
sentences is encapsulated in the vector given to the decoder
network. [3]

The attention network model extends the encoder-decoder
model by adding an attention mechanism. Attention net-
works are composed of three neural networks: an encoder
network, a decoder network, and an attention network. In
Bahdanau et al. and the GNMT systems, the attention
network is feed-forward neural network. The networks are
connected by the attention mechanism, which is the interac-
tion between the three networks. The encoder and decoder
networks implemented by Google and Bahdanau et al. were
both composed of types of RNNs. In the attention net-
work model, the encoder network produces a series of vec-
tors containing information about the source sentence. The
decoder network uses those vectors to produce a translation,
and the attention mechanism determines the impact those
vectors have on the translation. In the attention network
model, the amount of information for a sentence is depen-
dent of the length of that sentence. The decoder network
gets more information for longer sentences and less informa-
tion for shorter sentences. A visual of the attention network

X

Figure 3: The overall structure Bahdanau et al.’s
attention network. This shows the translation of
the " word of a sentence with n words.

as implemented by Bahdanau et al. is given in Figure 3; the
figure’s annotations will be explained in Sections 4.1 and
4.2. [3]

4.1 Encoder Network

The encoder network takes in the source sentence and pro-
duces a sequence of hidden state vectors. There is one hid-
den state vector for each input segment. So if word segmen-
tation is used, then there is one hidden state vector for each
word of the input sentence. If wordpiece segmentation is
used then each wordpiece would have its own hidden state
vector. [3]

The hidden state vectors contain information about the
entire sentence, but with focus on their respective segment,
and the parts of the input sentence surrounding their seg-
ment. That is to say that the hidden state vector h; contains
information about the entire input sentence, but focuses on
the 7' input segment and the parts of the input sentence
surrounding the 5" input segment. [3]

Google’s encoder network is comprised of eight LSTM lay-
ers, with a bidirectional first layer. Bahdanau et al. has a
single bidirectional layer comprised of gated hidden units.
Like LSTM Units, gated hidden units are composed of mul-
tiple nodes and solve the problem of lost information. Gated
hidden units differ from LSTM units in that they have two
gates, a reset gate and an update gate, in comparison to the
three gates that LSTM units have. [3]

The bidirectional layer produces two outputs at each time
step, the forward hidden state vectors from the forward con-

nections, h ;, and the backward hidden state vectors from
&
the backward connections, h ; [3]. These are concatenated

into a single vector, [ﬁj, %]} [3]. In the GNMT system, the
concatenations are the inputs to the second decoder network
layer, while for Bahdanau et al. they are the outputs of the
decoder network.

4.2 Decoder Network

Google has eight LSTM layers for its decoder network,
while Bahdanau et al. used one gated hidden unit layer.
The last layer of Google’s decoder network and the only
layer of Bahdanau et al.’s decoder network pass through the
softmazx function. The softmax function returns the word



vector for the word in the target language which has the
highest probability of being the correct translation [14].

To produce each segment of the output at time step i, the
decoder network takes three inputs. The first input is ¢;, the
context vector of the segment being translated. The second
input is y;—1, the vector representation of the previously
translated segment; it is also the output of the softmax
function at the previous time step. The third input is s;—1,
a hidden state vector of the previously translated segment
produced by the decoder network. [3]

For Google, s;—1 is the output of the first layer of the
decoder network from the previous time step. For Bahdanau
et al. s;_1 is the output from their only decoder layer from
the previous time step.

There is one context vector per output segment. At time
step 7, the decoder network would use the context vector ¢;
to translate the output segment, y;. [3] The context vector
¢, is calculated by multiplying each of the input’s hidden
state vectors by their respective weight for that time step.
The vector representation of the j** input segment is ;.
The hidden state vector h; is the hidden state vector for x;.
The weight of h; at time step ¢ is a;;. The context vector
for the i*" segment of the output would be:

n
C; = E Qujj * hj
j=1

The value of ay; reflects the impact of z; on the translation
of y;. A higher weight value would mean a greater impact.
For example, if using word segmentation: At time step ¢
the greatest weight may be assigned to the hidden state
vector of the input word that directly translates into the
output word being produced. The second highest weight
might correspond to the word that impacts the conjugation
of the i*" output word. [3]

4.3 Attention Mechanism

The attention mechanism produces the weight for each
hidden state vector. At time step i, the weight for the 5
input segment is a;;. The attention network is part of the
attention mechanism, and it evaluates how well the inputs
neighboring the j'* segment and the output at time step
¢ match. The variable e;; is the output of the attention
network and is directly correlated with «;;. The value of
oi; is produced by the following equation:

exp(eiy)

iy = —
> expleir)
k=1

The function exp(z) means e® and the variable n is the total
number of input segments. The attention network takes two
inputs to calculate e;;. One input is hj;, the hidden state
vector of the j** input segment produced by the encoder
network. The other input is s;—1, a hidden state vector of
the previously translated segment produced by the decoder
network. The variable s;_1 is defined in Section 4.2. The
variable e;; is defined as:

eij = a(si—1,hy)
The attention network is represented by a. [3]

4.4 Evaluations of Attention Networks

| Model | BLEU Score |
RNNencdec-30 13.93
RNNencdec-50 17.82
RNNsearch-30 21.50
RNNsearch-50 26.75

Table 1: The BLEU scores for the evaluated net-
works on ACL WMT ’14. RNNencdec is the
encoder-decoder network, RINNsearch is the atten-
tion network. The 30 or 50 indicates the maximum
sentence length the network was trained on. [3]

Google does not provide evaluations of their network with
and without an attention mechanism. Instead, we give a
summary of the results of Bahdanau et al. To evaluate their
network, Bahdanau et al compared their attention network
to an encoder-decoder network. For their testing, they used
the ACL WMT ’14 dataset, which contained 3003 sentences
that hadn’t been in their training set?. Both the encoder-
decoder network and the attention network had the 30,000
most commonly used words for training. Both models were
trained twice: first on sentences up to 30 words long, and
then on sentences up to 50 words long. [3]

The networks were evaluated with BLEU scoring [3]. In
BLEU scoring, a higher score means a closer correspondence
to human translations [10]. BLEU scores are computed
based on how many words, and groups of words are the
same between human translations and the translation of the
MT system [10]. BLEU scores range from 0 to 1, although
in Table 1 they are converted into percentages. As is seen
in Table 1, both versions of the attention network outper-
formed either version of the encoder-decoder networks.

S. RESIDUALLY CONNECTED NETWORKS

5.1 Difficulties in Training DNN

Deep Neural Networks (DNN) are composed of more than
one hidden layer. The depth of a network refers to its number
of layers. A network with more layers is a deeper neural
network than a network with fewer layers. [2]

Plain neural networks have connections only between ad-
jacent network layers. Increasing the depth of a plain neural
network eventually results in a peak accuracy, after which
increasing the network depth degrades network accuracy. In-
creasing the plain neural network depth prior to the peak in
accuracy has another benefit; it allows the neural network
to account for more complex patterns in data. [6]

Google found that in their experience simple stacked LSTM
layers work well up to 4 layers, barely with 6 layers, and very
poorly beyond 8 layers with large-scale translation tasks [14].
He et al. compared two plain neural networks, a 20-layer
network and a 56-layer network. When running the trained
network back over the training data, the 56-layer network
had a higher error both over the training data and unfamiliar
testing data than the 20-layer network [6].

The deeper network having a higher error may seem un-
expected given that there is a way to ensure that a deeper
network can always perform at least as well as a shallower

4The ACL WMT ’14 dataset was data provided by the As-
sociation for Computational Linguistics for their 2014 trans-
lation task.



counterpart: Consider a neural network with w layers. If v
more layers were added onto the network (making it a net-
work of ¢ = w + v layers), then the new g¢-layered network
always has a way to be as accurate as the w-layer network;
make the v added layers identity mappings, and the first w
layers the same as the w-layered network. Identity mappings
are mappings in which the output has the same value as the
input.® [6]

In regards to why the deeper network in their testing had
a higher error, He et al. stated that overfitting was not likely
to be the problem, because the degradation of the network’s
accuracy was shown in the training data. Overfitting is a
problem in which the model learns the training data too
precisely, and doesn’t learn the overall trend of the data [5].
If overfitting was the cause of the problem, then the data
would have done well on the training data and performed
poorly on the testing data.

The peak in plain neural network accuracy is the result of
difficulty in the training stage, where the system attempts
to find the appropriate weights for the network [6]. While
initial layers in a neural network may have significant im-
provements that can be made to their outputs, later layers
in a neural network may be close to the desired outputs for
all or part of their outputs. The closer the output of the
i+ 1" network layer is to the desired output for the entire
network, the closer the mapping of the i** network layer
needs to be to an identity mapping. Plain DNN have diffi-
culty in reaching identity mappings and mappings close to
identity mappings [6].

Consider the following example to illustrate the difference
in finding an identity mapping for a plain network compared
to a residually connected network: Given a paragraph of
text, perfectly duplicating that paragraph of text would be
akin to performing an identity mapping on the paragraph.

If a person represents a node in a plain network, then
they are taking the original paragraph as their input. The
person in the plain network has to retype the paragraph
to duplicate it. The retyping would represent the node’s
mapping. In retyping the paragraph, there are opportunities
for error at every character, (a character could be missed,
a different character typed, etc.) Any mistyping would lead
to the disruption of an identity mapping. Their resulting
paragraph would be the node’s output.

If a person represents a node in a residually connected
network, then they are taking the original paragraph as
their input, and they are copy-pasting the original para-
graph. There is far less room for error in copy-pasting. If
the person made any edits to the paragraph, then those edits
would represent the node’s mapping. To achieve a resulting
paragraph identical to the original all the person has to do
is make no edits.

5.2 The Structure of Residually Connected Net-

works

The residually connected network model extends the plain
network model by adding residual connections between net-
work layers [14]. Residual connections pass zi, the input of
the t*" node in layer 4, directly to a summation of z! and
sﬁg , where ¢ is the number of layers between residual con-
nections [14]. He et al has two to three layers of network

nodes between residual connections, while Google has only

SHaving identity mappings for the added v layers being the
optimal solution is unlikely in real cases.

Xy

St
s’ mi—> LSTM,

a) T1/

Figure 4: (a) A residually connected LSTM unit as
found in GNMT. (b) Part of a residually connected
network with two layers between the residual con-
nection as found in He et al. For both, the curved
line is a residual connection.

one LSTM layer between connections; see Figure 4 for ex-
amples of these structures. Residual connections do not add
computational complexity, as they do not add additional
parameters in passing along a value. With residual connec-
tions, networks continue to improve with increased layers,
instead of peaking and then degrading in accuracy [14].

The addition of residual connections in a neural network
changes the mappings that the nodes are trying to fit. Plain
networks are attempting to directly fit the desired under-
lying mapping. A desired underlying mapping is the ac-
tual mapping for a node that renders the optimal output.
For instance, if D is the desired mapping for a node in a
network, and y is the optimal output for that node, then
D(zx1,x2,...,om) = y, where z1,Z2,...,Tm are the inputs
to the node. Residually connected network nodes are at-
tempting to map to their residual mapping, the difference be-
tween their desired mapping and their input. For instance,
if the desired mapping for a node is D, and the input to
the node is x, then the residual mapping for the node is
R(z) = D(z) — z.

Training for residually connected neural networks benefits
from this change in mappings; reaching identity mappings
is simpler in a residually connected neural network. In a
residually connected network, an identity mapping is where
R(z) = 0. Given a scenario in which the optimal mapping
for a node is an identity mapping, it is likely easier for a
node in the residual model to reach an identity mapping of
R(z) = 0, than it is for a node in the plain model to reach
an identity mapping of D(z) = z. In order for a node in the
residual model to reach an identity mapping of R(x) = 0,
the node would set its weights to zero. In order for a node in
the plain model to reach an identity mapping of D(z) = x
it would have to find weight values that would recreate its
input, z. [6]

Figure 4 is a look into a residually connected LSTM unit
as found in GNMT system. The LSTM? is the LSTM unit
at layer i and time step ¢. The unit’s input along the depth
of the network is mifl. The units inputs along time are si_;
and mi_q; si_; is the output of LSTM$_; and mi_; is the
information encoded by LSTM:_,. The output of LSTM:
is s¢; this value is the result of the unit’s residual mapping.
The input to LSTMi+1 is ¢, where xifl = st 4+ xifl and
:rf;*l is provided by the residual connection.



| Layers | Non-residual | Residual |

27.94 27.88
28.54 25.03

18-layer
34-layer

Table 2: The testing error rates for the networks
when looking at the networks actual output against
its target output. The result was considered to be
in error if the image label produced by the network
was not the same as the target image label. [6]

5.3 Evaluations of Residually Connected Net-
works

The comparisons for GNMT system with and without
residual connections are not available. Instead we summa-
rize the evaluations made by He et al. on the effectiveness
of residual connections. He et al. created networks for im-
age recognition as opposed to machine translation. The net-
works evaluated by He et al. were Convolutional Neural Net-
works (CNN), which are commonly used with images. The
nodes of CNN take matrix representations of image subsec-
tions as their inputs [8]. He et al.’s experiment compared
four different CNNs: two residually connected CNN and two
plain CNNs. One residually connected CNN is 18-layer, the
other is 34-layer. One non-residually connected CNN is 18-
layer, the other is 34-layer.

Both residually connected networks outperform either plain
network. For plain networks, increasing the network depth
from 18-layers to 34-layers increased the networks training
error, and as seen in Table 2, increased its testing error as
a result. He et al. stated that they, “argue that this op-
timization difficulty is unlikely to be caused by vanishing
gradients” as they used Batch Normalization in their neural
network. Batch Normalization is a technique that can help
to guard against values in the network becoming too large
or too small by bringing data into a specified range [7].

In contrast to the results of the plain networks, increasing
depth from 18 to 34 layers for the residually connected net-
works had the opposite effect. For the residually connected
networks, increasing the depth led to decreased error, both
on training and on testing data, and subsequently decreased
testing error. [6]

6. CONCLUSIONS

Attention networks and residually connected networks are
two techniques used by Google to improve their GNMT sys-
tem. Neural networks face issues in maintaining information
and encapsulating sufficient information.

Attention networks help to encapsulate sufficient informa-
tion on sentences by extending the encoder-decoder network
model to include an attention mechanism. This enables
them to handle long sentences. Residually connected net-
works help train deep neural networks, which is important
because deep neural networks increase a systems accuracy
and allow for the network to account for more complex data
patterns. Residually connected networks help to maintain
information and prevent degradation with increased network
layers.

Acknowledgments

Many thanks to my advisor, Elena Machkasova, my pro-
fessor for senior seminar, K.K. Lamberty, and my alumnus

reviewer, Mitchell Finzel, for your guidance and feedback.

7.
1]

2

3]

[4

[5

[6]

[7]

8]

[9

(10]

(11]

(12]

(13]

(14]

REFERENCES

Unsupervised Feature Learning and Deep Learning
Tutorial. Computer Science Department, Stanford
University.

http://ufldl.stanford.edu/tutorial /supervised/
MultiLayerNeuralNetworks/.

Introduction to Deep Neural Networks.
Deeplearningsj, 2017.
https://deeplearning4j.org/neuralnet-overview.

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine
Translation by Jointly Learning to Align and
Translate. CoRR, abs/1409.0473, 2014.

D. Britz. Recurrent Neural Networks Tutorial, Part 1 -
Introduction to RNNs. WildML, 2015.
http://www.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/.

A. Guillot. Machine Learning Explained: Overfitting.
Enhance Data Science, 2017.
http://enhancedatascience.com/2017/06 /29 /machine-
learning-explained-overfitting/.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual
Learning for Image Recognition. 2016 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770-778, 2016.

S. Ioffe and C. Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing
Internal Covariate Shift. In ICML, 2015.

M. Nielsen. Neural Networks and Deep Learning.
Deeplearning4j, 2017.
http://neuralnetworksanddeeplearning.com/chap6.html.
C. Olah. Deep learning, nlp, and representations.
http://colah.github.io/posts/2014-07-NLP-RNNs-
Representations/.

K. Papineni, S. E. Roucos, T. Ward, and W.-J. Zhu.
BLEU: a Method for Automatic Evaluation of
Machine Translation. In ACL, 2002.

M. Sundermeyer, H. Ney, and y. v. p. Ralf Schliiter,
journal=IEEE/ACM Transactions on Audio, Speech,
and Language Processing. From Feedforward to
Recurrent LSTM Neural Networks for Language
Modeling.

H. Suresh. Vanishing Gradients LSTMs. 2016.
http://harinisuresh.com/2016/10/09/lstms/.

A. S. Walia. Activation functions and it’s types-Which
is better? Towards Data Science, May 2017.
https://medium.com/towards-data-science/
activation-functions-and-its-types-which-is-better-
a9a5310cc8f.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao,

K. Macherey, J. Klingner, A. Shah, M. Johnson,

X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo,

H. Kazawa, K. Stevens, G. Kurian, N. Patil,

W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean.
Google’s neural machine translation system: Bridging
the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.



