Supervised vs Unsupervised Methods in
Word Sense Disambiguation

Sydney Richards
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
rich1143@morris.umn.edu

ABSTRACT

Natural language is full of ambiguity. Many words can have
different meanings in different contexts. Word Sense Dis-
ambiguation (WSD) is the task of determining the correct
meaning of an ambiguous word given its context. Two com-
mon approaches to WSD are supervised and unsupervised
machine learning methods. These two approaches may also
be combined to form a third approach, semi-supervised. Su-
pervised methods typically produce the best results, but
these methods require labeled training data that may be
difficult and expensive to obtain. Consequently, current re-
search is concentrating on semi-supervised and unsupervised
methods. In this paper, we survey a supervised, a semi-
supervised, and an unsupervised approach to WSD in order
to compare these different approaches.

Keywords

Word Sense Disambiguation, Word Embedding, Shotgun-
WSD, It Makes Sense

1. INTRODUCTION

Natural language is full of ambiguity, many words can
have different meanings in different contexts [10]. Word
Sense Disambiguation (WSD) is the task of identifying which
sense of an ambiguous word is being used in a given con-
text [4]. A sense is a definition or meaning of a word. For
example, in the sentence, “I am going to plant an apple tree”,
the word “plant” has multiple possible senses including:

1. Noun: Living organism of the kingdom Plantae
2. Noun: Industrial plant; Facilities for production
3. Verb: Sow; place seed in ground to grow

In this example, the context of the ambiguous word is “I
am going to” and “an apple tree”. Using the context, the
WSD system must decide which sense of the word “plant” is
intended by the author.

WSD is an open problem in the field of Natural Language
Processing (NLP), and a solution to this problem would
benefit many applications in the field of NLP. WSD can
be used as an intermediate step in many NLP applications

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, November 2017 Morris, MN.

such as information retrieval, machine translation, content
analysis, and word processing. Any situation in which a
computer is trying to understand human language, WSD
will improve the results. In machine translation, for exam-
ple, the word “penna” has three distinct senses in Italian.
Depending on the context, “penna” can be translated into
English as “feather”, “pen”, or “author” [9]. Therefore per-
forming WSD before performing machine translation will
improve machine translation results.

In Section 2 we explain background necessary to under-
standing the WSD methods. In Sections 3, 4, and 5 we
survey a supervised, semi-supervised, and unsupervised ap-
proaches to the WSD problem respectively. Lastly, we con-
clude with a summary of these three methods in Section 6.

2. BACKGROUND

2.1 Supervised Machine Learning

Supervised machine learning algorithms are “supervised”
in that they receive labeled training data and go through
a training process. Labeled training data consists of inputs
labeled with their desired outputs. In the context of WSD,
labeled training data consists of ambiguous words in context
each labeled with the correct sense of the ambiguous word.

In the training process, the algorithm analyzes the train-
ing data and attempts to create a function that maps the
inputs to the expected outputs. It will test this function on
the training data and compare its output to the expected
output. It then modifies its function and tries again. It will
continuously run its function on the training data, check its
output against the expected output, modify its function, and
try again until the training process is complete.

This training process results in algorithms that excel at
classifying the words in their training data, therefore their
advantage is highly accurate results. However, their disad-
vantage is that supervised WSD algorithms are only as good
as their training data. For example, if the training data does
not contain the word “plant” to mean a facility, then the al-
gorithm will not know of this possible sense and therefore
cannot successfully classify it in testing. The solution to this
is to train the algorithm on more data, but it is expensive
and time consuming to do so.

2.2 Unsupervised Machine Learning

Unsupervised machine learning algorithms do not receive
labeled training data and may not go through a training
process. Unsupervised algorithms may be given resources.
For example, an unsupervised WSD algorithm may be given

access to a dictionary. It uses the dictionary to look up
the possible senses for a word, then classifies an instance
of that word into one of the possible senses. This particu-
lar approach is considered a knowledge-based unsupervised
approach.

Unsupervised algorithms are typically less accurate than
supervised algorithms because they do not receive feedback
on their output through a training phase. Their advantage
is that they do not require large amounts of training data
that are expensive and time-consuming to obtain.

2.3 Semi-Supervised Machine Learning

Supervised machine learning algorithms are highly accu-
rate but require large amounts of labeled training data. In
contrast, unsupervised machine learning algorithms are less
accurate, but require no labeled training data. A compro-
mise between these two approaches is the use of a semi-
supervised approach. Semi-supervised machine learning al-
gorithms are similar to supervised algorithms. However they
incorporate both labeled and unlabeled data, or data that
is labeled in some aspects and unlabeled in others.

2.4 Calculating Word Embeddings

The task of WSD is difficult in part because computers do
not understand the meanings of words the way we do. To
overcome this, many WSD systems use word representations
known as word embeddings rather than the typical character
representation. A word embedding is a unique mapping of
a word to a vector in a multidimensional vector space. This
vector space representation of words is highly advantageous
for the WSD task because words that are similar, or that
might be used in similar contexts, will be close to each other
in this space [11]. For example, the word embedding for the
word “dog” would be close to the word embedding for the
word “pet” because these words are likely to appear in the
same context. However the word embedding for the word
“dog” would not be close to the word embedding for the
word “boat” because these words are less likely to appear in
the same context.

2.4.1 Neural Networks

A neural network is a computing system consisting of lay-
ers of simple processing nodes. Each node contains an acti-
vation function through which it does its processing. Nodes
within a network are connected connected to other nodes;
an individual node may be connected to many nodes in the
previous layer from which it receives data and to many nodes
in the subsequent layer to which it sends data. A node as-
signs weights to each of its incoming connections and, when
receiving numbers, it multiplies each by the corresponding
weight. It then sums the products to produce a single num-
ber. This number is input into the node’s activation func-
tion. The output of the activation function is sent along
all of the node’s outgoing connections. The main purpose
of the activation function is to allow the neural network to
learn complex patterns. Weights are initially set to random
values, but as a neural network trains, it continually updates
these weights as it tries to find the optimal configuration of
weights to complete its task.

A feed-forward neural network (FFNN) is one in which
data passes through in the forward direction. These neu-
ral networks typically consist of three types of layers: in-
put, hidden, and output layers [8]. FFNNs are common

approaches to generating word embeddings. word2vec [8] is
an algorithm that takes an unlabeled source text as input
to generate a word embedding for each word found in that
source. Because the input data are not labeled, this is an
unsupervised algorithm. word2vec uses one of two FFNN
models to generate embeddings: Continuous Bag-of-Words
Model or Continuous Skip-gram Model. [6]

2.4.2 Continuous Bag of Words (CBOW) Model

The CBOW neural network network model is trained to
predict a target word after taking in its context words as in-
put. Context words are the words occurring within a certain
range before and after the target word in text. This model
is a variation on the FFNN described in Section 2.4.1. This
model removes the hidden layer and instead consists of in-
put, projection, and output layers. The input layer takes
in the context words and encodes each as a vector using
one-hot encoding. One-hot encoding encodes a word as an
n-dimensional vector where n is the number of words in the
text, with a 1 in the position corresponding to that word’s
position in the text, and 0Os in every other position. Next,
all vectors from the input layer are multiplied by the same
weight matrix and sent to the projection layer. The projec-
tion layer sums each of these incoming vectors to produce a
new vector. The projection layer sends this new vector to the
output layer, this represents the neural network’s prediction
of the target word. This process trains the neural network
to recognize words that will be used in similar contexts.

Before training, the weights in the weight matrix are ini-
tialized to random values. As the neural network trains, it
continually updates these weights. When the training phase
is finished, rather than using the neural network for the task
it was trained for, the weight matrix is taken as output. Each
row of this matrix is a word embedding for the correspond-
ing word in the input text. This neural network is illustrated
in Figure 1. In this figure, W(t) denotes the target word,
W(t-1) denotes the context word directly to the left of the
target word, W(t+1) denotes the context word directly to
the right, and so on. [7]

2.4.3 Continuous Skip-gram Model

The Skip-gram neural network model works similarly to
the CBOW model. This model is trained to take in a target
word and predict words that will appear in the context of
that target word. Therefore the input layer takes in only one
input word to be encoded as a one-hot vector. This vector
is multiplied by the projection matrix and then sent to the
output layer. The output layer has a node for each word in
the text, the output of each node is the probability that this
word will appear in the context of the target word. As in
the CBOW model, the weights of the projection matrix are
continually updated during training. The weight matrix is
the output of the training process, and each row of the ma-
trix is a word embedding for the corresponding word in the
input text. This neural network is illustrated in Figure 1. [7]

3. A SUPERVISED APPROACH

A supervised approach to biomedical WSD is presented
in [11]. This method uses the Support Vector Machines su-
pervised learning algorithm and incorporates word embed-
dings from the biomedical domain. Therefore this method
may be considered supervised even though the word embed-
dings were generated in an unsupervised manner.

Input Projection Output Input Projection Output

W(t-2) W(t-2)
W(t-1) D\ SUM W(t-1)
W(t+1) D/ W(t+1)
W(t+2) W(t+2)

CBOW Skip-gram

Figure 1: Word embedding generating models [8]

3.1 Aggregation of Word Embeddings

Yepes et al. use word embeddings to train the Support
Vector Machines algorithm for the WSD task [11]. The word
embeddings were generated using the CBOW approach de-
scribed in Section 2.4.2. The word embeddings were gener-
ated from the 2014 MEDLINE corpus, a collection of writ-
ten texts containing biomedical information. Next, the word
embeddings must be aggregated before being input into the
SVM algorithm. This is done in [11] by taking the average of
the word embeddings in the context of the target word. The
averaged word embedding can be input into the SVM algo-
rithm. This facilitates training and testing the algorithm on
different context window sizes. [11]

3.2 Support Vector Machines (SVMs)

Support Vector Machines (SVM) is a supervised learning
algorithm. In the training phase, the algorithm takes in
labeled training data of two distinct groups. The data con-
sists of vectors in an n-dimensional space, each labeled with
which group it belongs to. The SVM algorithm then draws
a hyperplane through the space that separates the members
of the two groups. It does this by observing the locations
of the two groups in the space and draws the hyperplane so
that every member of the first group is on one side and every
member of the second group is on the other side!. The sepa-
rating hyperplane is the output of the algorithm. In testing,
the hyperplane can be used to classify any new vector into
one of the groups by observing on which side of the line it
lies. [1]

Yepes et al. [11] train an SVM algorithm for the WSD
task. The SVM algorithm takes in the word embeddings
generated in the previous step as input. When training
SVM classifiers for the WSD task, one classifier must be
trained to classify each possible sense of each ambiguous
word in the training data. Recall from Section 1 that the
word “plant” has three possible senses. Assuming these are
the only possible senses, three classifiers must be trained
in order to correctly classify the word plant. One classi-
fier is trained to distinguish the first sense from the second
and third. A second classifier is trained to distinguish the
second sense from the first and third. Finally, a third clas-

'In the simplest case, the SVM algorithm can separate
groups by a straight hyperplane. We will be assuming this
case for the purposes of this paper.

Table 1: Supervised SVM Results

Method | MSH WSD | NLM WSD
SVM Unigrams 93.94% 88.00%
SVM: § 100 W 150 | 94.31% -
SVM: S 500 W 50 94.49% 89.63%
SVM: S 300 W 150 | 94.49% -
SVM: S 150 W 50 - 90.42%

sifier is trained to distinguish the third sense from the first
and second. This is repeated for each ambiguous word in
the training data. In testing, any new instance of the word
“plant” can be classified into its most likely sense of the word
“plant” by comparing it to these three classifiers. [11]

3.3 Testing and Results

This method was tested on the National Library of Medi-
cine NLM WSD, and the MSH WSD datasets. MSH is a
dataset developed using the Unified Medical Language Sys-
tem Metathesaurus and the MEDLINE biomedical database.
Both datasets contain ambiguous words and abbreviations
from the biomedical domain, the same domain the algo-
rithm was trained on. Yepes et al. [11] report results of
experiments using SVMs and word embeddings with differ-
ent parameter configurations given in Table 1. Parameter S
represents the size of the vectors or word embeddings. W
represents the window size, or how many context words sur-
rounding the target word are being considered. For example,
SVM: S 100 W 150 describes a test of the SVM algorithm
using 100-dimensional vectors and considering context win-
dows of 150 words surrounding each ambiguous word. This
method’s results are compared to SVM Unigrams, a method
using SVM with wunigrams rather than word embeddings.
Unigrams are single words extracted from the text.

Table 1 shows scores produced by these methods in test-
ing. Missing entries indicate an experiment was run on only
one dataset. The evaluation measure used is accuracy, the
number of correct answers given over the total number of
answers given [9]. This method using SVM with word em-
beddings achieves highly accurate results. It achieved nearly
95% accuracy on the MSH WSD testing dataset, outper-
forming the SVM Unigrams method. [11]

4. A SEMI-SUPERVISED APPROACH

One method to overcome the need for a large amount of la-
beled training data for supervised machine learning methods
in WSD is the use of semi-supervised methods which require
less training data. Taghipour and Ng [10] describe an ap-
proach to WSD using the It Makes Sense (IMS) supervised
WSD software. IMS takes in three features: context words,
part of speech tags of context words, and local collocations.
IMS uses the SVM supervised classifying algorithm.

4.1 Word Embeddings

The semi-supervised approach described in [10] adds word
embeddings to the IMS tool as an additional feature in or-
der to preserve more information about the original words.
Pre-published word embeddings from [5] were used. The
data used to generate these embeddings was Wikipedia and
Reuters RCV1, an archive of labeled newswire stories [5].
These datasets are not specific to any domain and are cre-
ated using an unsupervised algorithm. For these reasons,

this method is considered semi-supervised. These embed-
dings were trained using an FFNN described in Section 2.4,
using the Stochastic Gradient Descent (SGD) training algo-
rithm.

The SGD algorithm randomly selects a window of text
from the data and replaces the center word with one cho-
sen randomly from the dictionary. It feeds both the original
window and the corrupted window to the neural network.
The neural network is trained to assign high scores to orig-
inal windows and low scores to corrupted ones. The neural
networks weights are initialized to random values, and these
values are updated as the SGD algorithm trains the net-
work. As in Section 2.4.2, these weights are then taken as
the output of the training process and each row in the weight
matrix is a word embedding for the corresponding word in
the input text. [10]

4.2 Method

IMS is a supervised software tool used for WSD. This
tool takes an input text, and extracts three features from it.
The first feature extracted is the context words of the target
word, all words within a window size of 7 surrounding the
target word. The next feature is the part of speech tag of
each context word, these are limited to context words within
the same sentence as the target word. The last feature is
local collocations. A local collocation is a word appearing
near the target word more often than by chance. IMS finds
up to 11 collocations within a window size of 7 surrounding
the target word. They are limited to the same sentence as
the target word. A fourth feature, word embeddings, are
added in [10]. However, word embeddings are much more
complex than the software’s default features, therefore word
embeddings do not fit well into the model. The solution
is to scale the word embeddings before adding them to the
model. This is done using the below conversion.

. ok
"~ stddev(E)

Where o denotes the desired standard deviation, F the word
embeddings matrix, and stddev is the standard deviation
function that returns a scalar multiple of E. Once these
four features are extracted from the input text, they are
converted to feature vectors. These feature vectors are used
to train SVM classifiers in the same way as described in
section 3.2. [10]

4.3 Testing and Results

The algorithm was trained on a subset of the Brown Cor-
pus, a machine readable corpora of American English texts.
A training set was created by selecting the top 60% most fre-
quently occurring ambiguous words from this corpus. This
method was tested on the Senseval-3 all-words data set.
Senseval-3 consists of 3 text documents totaling 2081 am-
biguous words. This dataset tests the algorithm on English
all-words, that is, they test the algorithm on all ambiguous
words in a text, not just words that the algorithm received
in training data. If IMS is tested on a word that it has not
been trained on, it will assign to that word its first sense
from the machine-readable dictionary WordNet [12].

Table 2 shows the scores produced by the IMS tool using
word embeddings in testing. Again, the evaluation measure
being used is accuracy. Their results are compared both
to the IMS method using only the default features, and to

Table 2: Semi-Supervised IMS Results

Method | Senseval-3
WNs1 baseline 62.40%
IMS 67.60%
IMS + word embeddings 68.00%

WNsl. WNsl1 chooses each word’s first sense from WordNet,
a machine-readable dictionary. The methods using IMS soft-
ware with word embeddings outperform both the baseline
algorithm and the default IMS software, achieving 68.00%
accuracy on the all-words dataset. [10]

S. AN UNSUPERVISED APPROACH

Another method used to overcome the large amounts of la-
beled training data required by supervised machine learning
methods in WSD is the use of unsupervised methods, which
require no training data. An unsupervised algorithm, titled
ShotgunWSD, based on the Shotgun DNA Sequencing tech-
nique is presented in [4]. ShotgunWSD is a knowledge-based
unsupervised algorithm. It uses pre-trained word embed-
dings and accesses WordNet, a machine-readable dictionary.
WordNet is organized by synsets, sets of synonyms. However
strict synsets are not used in the method described in [4],
many other relationships between words are included as well
such as antonyms and hyponyms. For example, “plant” and
“tree” would belong to one synset (living organism) while
“plant” and “factory” would belong to another synset (facil-
ities for production). ShotgunWSD is a deterministic algo-
rithm; given the same input document and parameter set-
tings, it will produce the same result each time. [4]

5.1 Sense Embeddings

ShotgunWSD requires a quantitative measure of how re-
lated two senses are, this is known as their relatedness. One
approach to calculating relatedness between senses is to gen-
erate word embeddings, convert them to sense embeddings,
then measure how related the sense vectors are. Pre-publish-
ed word embeddings are used by [4]. These embeddings were
generated using the word2vec Skip-gram model described in
Section 2.4.3 using 3 million words and phrases taken from
Google News data as input. This input data is not specific
to any domain.

Generating word embeddings results in a cluster of word
embeddings for each synset. In the next step, sense embed-
dings are derived from these clusters of word embeddings.
This derivation takes advantage of the reliability of word
embeddings to group words by relatedness. In order to com-
pare the relatedness of senses rather than words, a cluster
of word embeddings can be combined and generalized into
one sense embedding representing the meaning of the synset.
This is done by finding the word embedding at the center
of the cluster and assigning its meaning to the sense em-
bedding. A simplified example of this is given in Figure 2.
Once the sense embeddings are computed, the semantic re-
latedness between two synsets can be found by computing
the similarity between their sense embedding vectors. [4]

5.2 Shotgun DNA Sequencing

The ShotgunWSD algorithm is inspired by the Shotgun
DNA sequencing technique [3]. This technique takes a strand
of DNA as input, and outputs the most linkely DNA se-

Plant
] i i
.Organlsm .Organlsm
oPlant ®Tree
o
Sow OSeed = | sow®
.Plant
P @
Workshop ~ Factory .Factory

Word Embeddings Sense Embeddings

Figure 2: Conversion of word to sense embeddings

Large DNA
molecule

IR Z G Z N N7

—
— — —
Sequenced |:I|:I — —/
—

— —
Assembly
gp‘;‘?ﬁ;‘ GCTATCAGGCTAGGTTA CATACACGTAGCTATACG
substrings GTTACAGTGCATGCATA
Assembled ¢
Se quence GCTATCAGGCTAGGTTACAGTGCATGCATACACGTAGCTATACG

Figure 3: Shotgun DNA Sequencing [2]

quence for that DNA strand. First, copies of the input
DNA strand are made, and many sample substrings of a
fixed length are taken from these copies. Next, each sample
substring is sequenced. If any of these sequences are of low
quality or difficult to read, they are typically removed before
moving on. Ideally, this should not cause any gaps in the
resulting DNA sequence because there are a large number of
copies being sequenced. Once each small substring has been
sequenced, the substrings are pieced together by merging
their overlaps - the longer the better - in order to produce
the final DNA sequence. These matches are not perfect, the
goal is to find the most likely sequence. This technique is
illustrated in Figure 3. [4]

5.3 Algorithm

The ShotgunWSD algorithm follows the same concept as
Shotgun DNA sequencing, but with a different goal. The
goal of ShotgunWSD is to take a text document as input,
and to output a sense configuration for that document that
matches the sense configuration a human would produce.
Here, the text document to be disambiguated corresponds
to the long DNA strand being sequenced, and short con-
text windows within this document correspond to the many
short substrings taken from the DNA sequence. Consider
the following example sentence.

“I am going to plant an apple tree”

This sentence will serve as our entire document for the
purposes of this example. The algorithm begins by select-

ing one window of up to n words at every possible location
in the document, resulting in overlapping context windows
covering the entire document. Selecting windows of up to 5
words at every ambiguous word from our example produces
the following two context windows.

“going to plant an apple”

“plant an apple tree”

A brute-force algorithm is used to compute all possible
sense configurations for each of these windows. Possible
senses are chosen from the machine-readable dictionary Word-
Net. It is important to note that the run-time of the brute
force algorithm is exponential with respect to the number of
words per window. As a result, the window size parameter
n is kept to less than 10. Each of these possible sense con-
figurations is assigned a score based on the semantic relat-
edness between the word senses within that configuration.
This is computed using sense embeddings as described in
section 5.1. Below are a few possible sense configurations
for our example. For simplicity we assign relatedness scores
of 1 for related synsets and 0 for unrelated ones.

1 “going to [living organism]| an [fruit]”

0 “going to [factory] an [fruit]”

1 “going to [sow] an [fruit]”

1 “[living organism] an [fruit] tree”

0 “[sow] an [Apple Inc.] tree”

1 “[sow] an [fruit] tree”

In ShotgunDNA sequencing, low quality sequences are
typically removed before the assembly phase. Similarly, the
lowest scoring sense configurations are removed in Shotgun-
WSD, and the rest move on to the assembly phase. The
number of sense configurations to be kept per window is
set by an external parameter c. Below is the set of possi-
ble sense configurations after removing the lowest scoring
configurations.

1 “going to [living organism]| an [fruit)”

1 “going to [sow] an [fruit]”

1 “[living organism]| an [fruit] tree”

1 “[sow] an [fruit] tree”

Next is the assembly phase, where possible sense config-
urations of overlapping context windows are merged if they
agree on senses. To do this, the algorithm checks if the
suffix of one sense configuration matches the prefix of the
next. It begins by considering prefix and suffix lengths of
min(4,n — 1), and considers shorter context lengths until it
reaches 1, then no further merges can be made. Below are
possible sense configurations from two consecutive windows,
these configurations agree on the sense [living organism| for
“plant” and [fuit] for “apple”. These configurations will be
merged based on these overlaps.

“going to [living organism] an [fruit]”

“[living organism]| an [fruit] tree”

When merging two sense configurations, the relatedness
score of the resulting configuration is computed using the
scores of the configurations being merged. Below are the re-
sults of merging our possible sense configurations into larger
possible sense configurations. For simplicity, the new sense
relatedness scores are computed by adding the existing scores.

2 “going to [living organism| an [fruit] tree”

2 “going to [sow] an [fruit] tree”

When the assembly phase is complete, the algorithm be-
gins assigning senses to each word in the document. The
possible sense configurations for each word in the docu-
ment are ranked by length. Because sense configurations

Table 3: ShotgunWSD Results

Data set | ShotgunWSD | MCS baseline
SemEval2007 79.68% 78.89%
Senseval-2 57.55% 60.10%
Senseval-3 59.82% 62.30%

are merged based on their agreement between senses, longer
configurations imply more agreement on a particular sense.
Longer configurations are therefore more likely to choose
the correct sense. Finally, the sense of each word is chosen
by observing the predominant sense from the top k ranked
sense configurations containing that word. In the example
above, there are two possible sense configurations to decide
between. This illustrates the fact that larger window sizes
and longer sense configurations typically produce better re-
sults. For example, the sense [sow] may be correctly chosen
if the surrounding context mentions “shovel”. [4]

5.4 Testing and Results

ShotgunWSD was tested on the SemEval2007, Senseval-2,
and Senseval-3 datasets. These datasets consist of a total
of 11 text documents containing 6,823 ambiguous words.
Each tests the algorithm on English all-words data, that is,
they are not specific to any domain. ShotgunWSD does not
go through a training phase before testing. Its results are
compared to the Most Common Sense (MCS) baseline. This
is an algorithm that assigns to each word its most frequently
used sense. This is determined based on human annotation
of the datasets.

ShotgunWSD’s three external parameters were consistent
for each of the tests. The largest context window that allows
the algorithm to run in a reasonable amount of time is 8
words. Therefore n was set to choose context windows of 8
words. ¢ was set to keep 20 sense configurations per context
window. This gives plenty of sense configuration options
without using excessive time and space. Finally, k was set to
choose top the 15 sense configurations per word from which
the final sense is chosen. The evaluation measure used is an
F1 score, the weighted harmonic mean of P and R. Where
P is precision, the number of true positives over the number
of true positives and true negatives. R is recall, the number
of true positives over the number of true positives and false
negatives.

2PR
F1l=
P+ R
Table 3 shows scores produced by ShotgunWSD in testing.
The table shows that ShotgunWSD only outperforms the

baseline algorithm on the SemEval2007 dataset producing
its highest score of 79.68%. [4]

6. CONCLUSIONS

In this paper we surveyed three approaches to Word Sense
Disambiguation. First, a supervised machine learning ap-
proach. This approach is considered to be supervised be-
cause it generates word embeddings from domain-specific
biomedical data, then trains the SVM supervised learning
algorithm on this data. This method produced results of al-
most 95% accuracy and outperformed the baseline algorithm
when tested on biomedical test data, the same domain it was
trained on.

Second, a semi-supervised machine learning approach. It
uses the supervised IMS WSD software. This approach in-
corporates word embeddings generated in an unsupervised
manner from data that is not domain-specific, then trains
the SVM supervised learning algorithm on this data, there-
fore it is considered semi-supervised. This method produced
results of 68% accuracy and outperformed the baseline algo-
rithm when tested on all-words test data, that is, data that
is not specific to any domain.

Third, an unsupervised machine learning approach using
an algorithm based on Shotgun DNA sequencing and sense
embeddings. This approach is unsupervised because it was
not trained on any labeled training data. This method pro-
duced results with F1 scores of 60 - 78% when tested on
all-words data. These results do not show much improve-
ment over the baseline algorithm.

Acknowledgments

Thank you to Elena Machkasova, Skatje Myers, Kristin Lam-
berty, and Peter Dolan for their guidance and support.

7. REFERENCES

[1] Introduction to support vector machines. OpenCV
2.4.13.3 documentation.

[2] Whole genome sequencing. Genetics Generation.

[3] S. Anderson. Shotgun DNA sequencing using cloned
DNase i-generated fragments. Nucleic Acids Research,
9(13):3015-3027, 1981.

[4] A. M. Butnaru, R. T. Ionescu, and F. Hristea.
Shotgunwsd: An unsupervised algorithm for global
word sense disambiguation inspired by DNA
sequencing. CoRR, abs/1707.08084, 2017.

[5] R. Collobert, J. Weston, L. Bottou, M. Karlen,

K. Kavukcuoglu, and P. P. Kuksa. Natural language
processing (almost) from scratch. CoRR,
abs/1103.0398, 2011.

[6] L. Hardesty | MIT News Office. Explained: Neural
networks, Apr 2017.

[7] C. McCormick. Word2vec tutorial - the skip-gram
model, Apr 2016.

[8] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781, 2013.

[9] R. Navigli. Word sense disambiguation: A survey.
ACM Comput. Surv., 41(2):10:1-10:69, Feb. 2009.

[10] K. Taghipour and H. T. Ng. Semi-supervised word
sense disambiguation using word embeddings in
general and specific domains. In HLT-NAACL, pages
314-323, 2015.

[11] A. J. Yepes. Word embeddings and recurrent neural
networks based on long-short term memory nodes in
supervised biomedical word sense disambiguation.
Journal of Biomedical Informatics, 73(Supplement
C):137 — 147, 2017.

[12] Z. Zhong and H. T. Ng. It makes sense: A
wide-coverage word sense disambiguation system for
free text. In Proceedings of the ACL 2010 System
Demonstrations, ACLDemos ’10, pages 78-83,
Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

