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ABSTRACT
The Tor network is designed to allow people to use the inter-
net anonymously, but at the cost of slower network access.
In this paper we explore two methods of selecting better per-
forming routes through the network, one based on measuring
how busy relays are, and the other based on the amount of
time it takes for data to travel from one end of the route
to the other. Experimental results indicate that these tech-
niques improve several performance metrics in the network,
without endangering Tor’s anonymity goals.
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1. INTRODUCTION
When people want to visit a website, they launch a web

browser and type in the address of the desired site, for ex-
ample, google.com. This results in a request being sent to
a server on the internet, through devices operated by vari-
ous third parties, and then the server sends data back to the
user’s computer. As this data is passed along by various ma-
chines, they are all able to read it. To prevent abuse, many
modern protocols use encryption so that only the intended
recipient can learn anything meaningful from the data.

While encryption prevents intermediaries from learning
what you are sending and receiving on the internet, it does
not prevent them from learning with whom you are com-
municating, and there are many cases in which individu-
als wish to avoid disclosing what sites they are visiting. In
some nations, visiting web sites discussing political opin-
ions at odds with those in power can attract the unwanted
attention of the authorities. Even in the U.S., journalists
wish to avoid revealing the identity of informants and whis-
tle blowers. The browsing trends of law enforcement officers
could reveal the subject of a secret investigation. The av-
erage user of the Internet may also wish to obscure their
activities, since Internet Service Providers (ISPs) are legally
permitted to sell data revealing what sites users visit [3].

The Tor network can be used to hide the true source
and destination of traffic on the Internet. When using Tor,
clients route their traffic through a chain of Tor relays. Each
hop in the route is encrypted in such a way that each relay
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on the route can only determine what relays are immedi-
ately before and after it, and no relay can determine both
the original source and final destination of the traffic.

Tor traffic is easily identified as such, so in order for Tor
to be useful, it must be used by diverse groups of people. If
Tor were only used by government agents, then using Tor
would make it easier for someone listening in on the connec-
tion to know that the user is a government agent. If Tor
were only used by dissidents, then law enforcement under
authoritarian regimes would have an easy way of identify-
ing such individuals. It is only when used by many people,
with many different uses, coming from many different loca-
tions, and connecting to many different locations, that Tor
provides real anonymity to its users.

Millions of clients connect to the Tor network every day [7].
Since traffic is being bounced across the globe instead of be-
ing routed as directly as possible, using Tor is slower than
using the Internet directly. Increasing the speeds that Tor
can offer to users could increase both the amount that peo-
ple use it and the number of people who use it, potentially
improving diversity in traffic.

In this paper, we present two modifications to the Tor
network intended to improve performance for users. In Sec-
tion 2, we introduce terminology and the relevant parts of
Tor’s implementation. In Sections 3 and 4 we present the
modifications and the results of experiments indicating that
these modifications would indeed improve performance in
the Tor network. In Section 5, we discuss the impact that
these changes have on Tor’s anonymity goals.

2. BACKGROUND
The Tor network consists of three main components: the

relays, the directory servers, and the clients. Tor relays are
run by volunteers around the world, mostly concentrated
in Europe and North America. As of October 2017, there
are over 6000 relays in the network [7]. The relays report
their existence, bandwidth capabilities, and other informa-
tion to the central directory servers. There are 9 of these
servers scattered across Europe and North America. Clients
then consult these servers to learn about the about avail-
able relays and their properties. To reduce the damage that
a compromised directory server would cause, clients will not
act on information received from a directory server unless a
majority of the servers agree with it [6].

In order for a user to contact a server over the Tor network,
the client must go through several steps, the first of which
is path selection. To select a path, clients randomly choose
three relays from the list of all available relays that they



have learned about from the directory servers, weighted by
bandwidth. Some additional restrictions will cause some
paths to be discarded. For example, paths are not permitted
to have the same relay twice.

The next phase is circuit construction. In this phase, the
client initializes a circuit through the relays in the path. To
do so, the client negotiates an encrypted connection to the
first relay. Through that connection, the client negotiates a
connection with the second, and the connection to the third
relay is the negotiated through the second relay. The newly
constructed circuit is then added to a pool of circuits, if it
passes a quality test. In Section 4, we explain the current
behavior of the test and proposed modifications to it.

Finally, in circuit selection, the client selects a circuit from
the pool to service the request. Note that circuits can handle
multiple requests simultaneously and thus the circuit selec-
tion phase does not remove the circuit from the pool. In
Section 3 we describe proposed modifications to this stage
which prioritize the selection of faster circuits.

Because constructing circuits can take a fair amount of
time, the Tor client builds the pool when launched. Thus,
only the circuit selection phase must be done when issuing
a new request. Whether they’ve been used or not, circuits
are cycled out of the pool after a while and replaced by new
ones, triggering the path selection and circuit construction
phase for each new one.

3. THE AVOIDING BOTTLENECK RELAY
ALGORITHM

A circuit can only operate at the speed of the slowest re-
lay in the circuit. If a relay is the slowest point in some
circuit, we refer to the relay as a bottleneck relay or simply
a bottleneck. A relay that is a bottleneck can only provide
bandwidth to a new circuit by reducing the bandwidth allo-
cated to its current circuits, so it would be better if clients
avoided using such relays. The more thinly spread that a
bottleneck’s bandwidth currently is, the less it will have to
offer new circuits.

The Avoiding Bottleneck Relay Algorithm (ABRA) is a
set of modifications to Tor which allow clients to avoid cir-
cuits containing serious bottlenecks during the circuit selec-
tion phase. In this section, we describe the implementation
of ABRA in Tor relays and clients, and present experimental
results demonstrating the ability of the implementation to
improve performance in the Tor network.

3.1 Creating a weight
If a relay is not currently using all its bandwidth, then

it is not restricting any of it circuits. Clients should prefer
this relay over relays that are a bottleneck since this relay
will be able to provide at least a small amount of bandwidth
that isn’t coming from the bandwidth currently allocated to
other circuits, thus improving the total throughput of the
network.

Just because two relays have currently allocated all their
bandwidth, does not mean that these relays would serve a
new client equally poorly. For example, if relay A is maxed
out with a single circuit running at 30 Mb/s, and relay B is
maxed out with two circuits running at 20 Mb/s each, then
relay A is a better candidate for placement in a new circuit
since it would cap the bandwidth at 15 Mb/s, while relay
B would cap it at 13.3̄ Mb/s. This is because of Tor’s flow

control algorithm, which tries to share bandwidth equally
between its circuits [4].

If a relay is using all of its bandwidth, then it is likely
slowing at least one circuit, although it is not necessarily a
bottleneck on all of its circuits. If one circuit is using less
bandwidth than some other circuit, then the slower one must
not be limited at this relay, since the relay would happily
increase the speed of the slower circuit by reducing the speed
of the faster one. So when a relay’s bandwidth capacity is
exhausted, we expect that all the circuits restricted at this
relay will be using roughly the same amount of bandwidth,
and that there will be some number of circuits using various,
lower amounts of bandwidth.

The goal of ABRA is to use this knowledge about the way
bandwidth is divided between circuits to produce a metric
indicating how much a relay will delay a circuit. In order to
do this, the relay needs to measure the bandwidth of each
circuit and perform statistical grouping of these bandwidths
to determine on which of the circuits this relay is a bottle-
neck.

In order to determine how much bandwidth a circuit is
using, the relay records how much data was sent over the
circuit in the last g milliseconds. Every w seconds, the relay
divides the maximum value recorded in this interval by g,
and sets this value to be the bandwidth of the circuit.

Geddes et al. [4] performed a set of experiments with dif-
ferent values of g and w combined with different statistical
grouping methods and found that g = 100 ms and w = 1 sec
paired with the following grouping method, produced results
closest to those that would be produced by an algorithm
having full knowledge of the network.

Algorithm 1 Head/Tail clustering algorithm

1: function HeadTail(input,threshold)
2: mean← sum(input)/len(input)
3: head← {d ∈ input | d ≥ mean}
4: if len(head)/len(input) < threshold then
5: head← HeadTail(head, threshold)

6: return head

The pseudo-code for the Head/Tail algorithm is given in
Algorithm 1 (from [5] as cited in [4]). The algorithm takes
in a set of numbers and a threshold. The mean of the input
is computed and all members of the input greater than or
equal to the mean are placed in the head. If the percent of
the input that is placed in head is less than the threshold,
the algorithm makes a recursive call with head as the new
input. Otherwise, head is returned.

The relay employs HeadTail by passing it the set of all
the bandwidths of circuits currently running through the re-
lay. The relay then sets weight =

∑
1
hi

, where hi is the ith

value in the head returned by the Head/Tail clustering algo-
rithm. It is important to note that weight will be frequently
changing as circuits running through the relay come and go
and as the amount of traffic passing through the circuits
changes. Every five seconds, the relay broadcasts a message
down each of its circuits specifying the current computed
weight. [4]

Going back to our previous example with relays A and B,
if we assume that the Head/Tail algorithm correctly identi-
fies the limited circuits, then A has a weight of 1/30 = 0.03̄,
and B has a weight of 1/20 + 1/20 = 0.1.



3.2 Using weight to inform circuit selection
As the client builds circuits and adds them to the pool

of available circuits, it begins receiving a weight from each
of the relays in each of the circuits. For each circuit, the
client sums these weights to compute a total weight for the
circuit. [4]

When the client performs a circuit selection, it first checks
to see if any of its circuits have a weight of 0, which would
indicate that this circuit contains no bottlenecks. If so, the
client randomly selects from this subset, biased towards cir-
cuits with higher bandwidth. If no circuits have a weight of
0, the client randomly chooses from the pool, biased towards
circuits with a lower weight. [4]

3.3 Empirical Evaluation
Because these changes modify the behavior of the relay

and client components of Tor, they cannot be tested by sim-
ply deploying a few machines on the Tor network. To collect
empirical evidence on the performance properties of these
changes, Geddes et al. employed Shadow1, a powerful net-
work simulation tool designed for the testing of complex dis-
tributed systems such as Tor or Bitcoin. In order to mimic
the various usage patterns found in the real world, they con-
figured Shadow to have 500 relays, 1350 web clients, 150
bulk clients, and 500 web servers. The web clients download
320 KB files and randomly pause between 1 millisecond and
1 minute before starting the next download. Bulk clients
download 5 MB files and take no breaks.

Four different metrics were measured in this experiment:
total network utilization, time to first byte (TTFB), web
download times (from the web clients), and bulk download
times (from the bulk clients). The total network utilization
was computed by having each relay record how many bytes
it relayed every 10 seconds. These measurements are then
summed across all 500 relays to get the total network uti-
lization for that 10 second period. Clients determine TTFB
by measuring how much time passes between initiating a
download and receiving the first byte of that download.

The total network utilization was found to be on average
14% higher when using ABRA than when using unmodified
Tor. All clients had improved download times with some
web clients seeing improvements of almost 200%, and bulk
clients consistently experiencing an increase of 5-10%. The
only metric by which ABRA performed more poorly was
TTFB where 12-13% of the downloads had an increased
TTFB, while the rest of the downloads had the same TTFB
as standard Tor [4].

4. CIRCUIT-RTT
As we saw in the previous section, ABRA provides a mech-

anism for clients to select well-performing circuits from their
pool of currently built circuits. In contrast, Circuit-RTT re-
places one of the checks that Tor performs on circuits before
they are added to the pool. Implementing Circuit-RTT is
also more straightforward than ABRA since it requires no
modification of the relay software.

Circuit-RTT uses round-trip time (RTT) as its core metric
for the selection of circuits. Currently, the Tor implementa-
tion measures the time to build a circuit and if it takes too
long, those circuits are rejected. Circuit-RTT works on the
assumption that testing the RTT of a circuit right after its

1https://shadow.github.io/

construction is a good indicator of how well the circuit will
serve the user. The authors of [1] performed experiments re-
vealing the distribution of RTTs in the Tor network. They
then implemented and tested a circuit selection mechanism
based on the results of the statistics collected. [1]

4.1 Circuit Build Time
The current version of Tor records how long the construc-

tion of a circuit takes. Using the last 1000 build times,
the Tor client estimates what percent of all possible circuits
would take less time to build than this one. If the percent-
age is over a certain limit, then the circuit will not be added
to the pool, but its build time will replace the oldest entry
in the list of build times. Throughout the rest of the paper,
we’ll refer to this algorithm as CBT.

4.2 Building a Model of RTT distribution
Circuit-RTT performs the exact same role as CBT, but

rather than using the build time of the circuit, it measures
the RTT of the circuit and uses that metric as the criterion
by which the circuit will be kept or discarded.

After a circuit is built, the client can communicate di-
rectly with any of the relays in the circuit. If a client sends a
bad request, the relay will send back an error. Circuit-RTT
exploits this feature by sending a request that is specifi-
cally designed to fail at the last relay in the circuit. The
client records how much time passes between the sending of
the bad request and the receiving of the error response and
stores this value as the RTT of the circuit. [1]

With the ability to measure the RTT for a circuit, clients
could simply discard circuits that have an RTT over a cer-
tain threshold. However, clients connect over Internet con-
nections of various speeds and connect to the Internet at
various locations relative to the Tor relays. To handle this
variance, Circuit-RTT must, just like CBT, be given knowl-
edge of what distribution the RTTs will fall into if the client
were to take many circuits and test their RTT.

19 computers across Europe were used to study the distri-
bution of RTTs in the Tor network. Each of these computers
built 1 million circuits and measured the RTT once on every
circuit. It was found that the distribution of the RTTs can
be closely approximated by a Generalized Extreme Value
(GEV) distribution, although the parameters of the distri-
bution varied from client to client.[1]

4.3 Testing the selection method
Implementing Circuit-RTT requires modifying clients to

record and store the RTT for circuits as described in the
previous section. When circuits are discarded for any reason
(e.g. age), the client does not discard the RTT measurement,
but instead keeps the RTT for the 1000 most recent circuits.
Working under the assumption that these RTTs can be fit
to a GEV distribution, the client finds the parameters that
cause the curve to best fit the collected points.

When the client builds a new circuit, it can now check
what percent of all circuits will be faster or slower than this
new circuit, based on the parameters for the GEV distribu-
tion that the client has computed.

The developers of Circuit-RTT deployed modified clients
on 19 on computers across Europe, each constructing 1 mil-
lion circuits. These clients did not build circuits and add
them to a pool. Instead, for each circuit built, the clients
measured the build time, the RTT, the latency to google.com



Table 1: Latency under CBT and Circuit-RTT
CBT (ms) Circuit-RTT (ms) Percentage Change

Median 309 300 -2.9%
90th percentile 541 499 -7.8%

Table 2: Bandwidth under CBT and Circuit-RTT
CBT (Mb/s) Circuit-RTT (Mb/s) Percentage Change

Median 3.24 3.30 +1.9%
90th percentile 1.10 1.14 +3.6%

and then discarded the circuit. They then analyzed the col-
lected data to determine which ones would have been allowed
into the pool when using CBT and which would have been
allowed in when using Circuit-RTT.

As summarized in Table 1, when filtering the collected
data to only contain the top 80% of circuits, using the build
time of the circuit to judge its quality leaves us with circuits
having a median TTFB of 309 ms and a 90th percentile of
541 ms. Using the RTT of the circuit to judge its quality
would result in use of circuits with a median TTFB of 300
ms and a 90th percentile of 499 ms. These are improvements
of 2.9% and 7.8% respectively, a statistically significant dif-
ference. [1]

When filtering the data points to only contain the top 50%
of circuits, the difference between CBT filtering and Circuit-
RTT filtering becomes even larger, but filtering the circuits
so drastically would damage the anonymity guarantees that
Tor aims to provide. They also explored using CBT filtering
and Circuit-RTT filtering together, but found that this did
not perform as well as Circuit-RTT alone. [1]

To determine the impact on bandwidth, the developers
used a very similar experiment to the previous one. The only
differences are that the experiment only used 7 computers,
each one making 100,000 measurements, and bandwidth was
measured instead of latency. To measure the bandwidth of
a circuit, the clients downloaded a single 5 MB file which
was mirrored around the world on a commercial content de-
livery network. The developers then considered bandwidth
measurements that would be left when only keeping circuits
with CBT or RTT measurements in the best 80%. As sum-
marized in Table 2, clients achieved higher bandwidth with
Circuit-RTT than with CBT, but the improvement was not
as large as the improvement to latency. [1]

5. IMPACT ON ANONYMITY
In the previous two sections, we presented two different

strategies for improving the performance of the Tor network.
While both were shown to successfully improve various met-
rics of performance, we have not explored how these modi-
fications to Tor impact the anonymity guarantees provided
by the network.

5.1 Timing Attack
If an attacker outside the Tor network is able to observe

all traffic entering and leaving the Tor network, then it will
be able to carry out what is referred to as a timing attack.

Suppose the attacker wishes to know whether a particular
client is talking to a particular server. This attacker can
watch the traffic flowing through the network and come to
the conclusion that whenever the client sends a piece of into

Figure 1: Circuits compromised under ABRA

the Tor network, we see a chunk of data with the same
size come out of the Tor network a short time later and
go to a particular server. Thus the attacker can determine
that the client and server are indeed talking to each other
despite the fact that their connection is obfuscated through
the Tor network. This attack works because Tor introduces
no artificial delays into its traffic, and Tor explicitly does
not protect against such an attack. [2]

Another type of attacker is one that controls some fraction
of all the relays in the network. We refer to these as mali-
cious relays, and we will assume that they can cooperate in
their attempts to de-anonymize traffic.

If a circuit is composed of entirely of malicious relays, the
attacker can trivially detect that it controls the whole circuit
and has thus de-anonymized it. If only the first and last
relay in the circuit are both controlled by the attacker, the
attacker will not have any immediate reason to associate the
traffic passing through the two relays. However, the attacker
can perform the same time and size measurements that a
global attacker would use to de-anonymize traffic. Thus, we
call a circuit compromised when the attacker controls both
the start and the end of the circuit [4]. This is an attack that
Tor can defend against, or rather, we wish to avoid adding
means by which an attacker could compel clients to choose
malicious relays more than non-malicious relays.

5.2 Malicious relays with ABRA
When modified to use ABRA, clients assume that relays

correctly compute their own weight and broadcast it hon-
estly. The relays’ declarations of weight are signed to pre-
vent relays from lying about each other, but malicious relays



could simply claim a weight of 0 in order to increase their
chance of being used by clients.

During the experiments described in Section 3.3, Geddes
et al. [4] recorded what circuits were in the client’s pool
when every circuit selection choice was made. After the
experiment was complete, they recorded how often clients
selected a compromised circuit. They then re-ran each se-
lection choice with the weights of all malicious relays set to
0, and recorded how often clients would have selected the
compromised circuits.

The more relays that an attacker has, the more likely we
are to use compromised circuits. To determine how the at-
tacker’s power grows with relation to the fraction of the
network that it controls, these choices were simulated with
various numbers of relays being granted to the attacker.

The results of these calculations are visually presented in
Figure 1. The upper and lower bounds of the colored regions
mark the the 90th and 10th percentile respectively, and the
dashed lines represent the median. When the malicious re-
lays were assumed to always report 0, circuits compromised
by the attacker are selected more frequently. For example,
when the attacker controls 20% of the network, the median
percent of circuits compromised is around 5% with ABRA,
and increases to around 7% when the malicious relays lie.
We also see that as the attacker controls an increasing frac-
tion of the network, its ability to compromise circuits grows
more rapidly when its relays lie.

If ABRA were to be implemented in the live Tor net-
work, the lying relays would draw traffic away from honest
relays, thus driving down the weight of the honest relays.
This would in turn increase the chance of clients selecting
circuits containing honest relays, indirectly drawing traffic
away from the malicious relays. We would thus impact of
lying relays to be less than that measured in the above ex-
periment, since the experiment only counted what how many
times clients would have chosen a compromised circuit, as-
suming that the malicious relays were being dishonest for
the first time.

5.3 Concerns with Circuit-RTT
Implementing Circuit-RTT only requires modifications to

the Tor client, and none to the relays. However, when per-
forming the measurement of the RTT of a circuit, recall that
the client sends a request that it knows the end relay will
reject, in order to measure how long it takes for the error
message to get back.

If the end relay is malicious, it has no means of sending
the error message back faster. All that the malicious exit
relay can do is delay the sending of the error message, thus
discouraging the client from using that circuit [1]. This is
not beneficial to the attacker since its goal is to have clients
create as many compromised circuits as possible.

6. CONCLUSION
In this paper, we described the basics of the Tor network

and two recent efforts to improve its performance. Both
ABRA and Circuit-RTT provide performance improvements
in the Tor network. Circuit-RTT impacted TTFB more
than it did throughput, while ABRA improved throughput
more than it did TTFB. This is not surprising since TTFB
and RTT are essentially the same metric and this is what
Circuit-RTT uses to accept or reject circuits. ABRA favors
relays that haven’t used all their capacity, so it is natural

that download speeds and total network throughput were
improved. ABRA does not explicitly factor RTT into its
metric so it isn’t surprising that TTFB was not favorably
impacted.

Because Circuit-RTT and ABRA modify different parts
of the life-cycle of Tor circuits, it would be possible to im-
plement both of them simultaneously and potentially com-
pound their improvements. As the Tor network continues
to gain additional users, maintaining and improving its per-
formance will be paramount to its continued success.
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