Point-of-Interest Recommendation Systems in
Location-Based Social Networks

Myeongjae Song
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
songx823@morris.umn.edu

ABSTRACT

Accurate point-of-interest (POI) recommendations are key
to the success of location-based social networks (LBSN) since
it will attract more users and advertisers to the platform. To
achieve the POI recommendation task, many methods are
proposed and used in practice from generic recommendation
system methods to POI specific algorithms. In this paper,
we will analyze a novel recommendation technique, factor-
ized personalized Markov chain (FPMC) model, which is a
combination of matrix factorization and Markov chain mod-
els. We will also explore enhancements of FPMC optimized
for POI specific characteristics such as users’ movement con-
straint and complex behavior over time. Experimental re-
sults show POI specific methods outperform generic recom-
mendation models. It also verifies that the more POI char-
acteristics a system incorporates, the more accurate the pre-
diction.

Keywords

Recommendation Systems, Point-of-Interest Recommenda-
tion, Location-Based Social Networks

1. INTRODUCTION

Nowadays, location-based social networks (LBSN), such
as Facebook places, Tinder, and Yelp, have been gaining a lot
of attention with the widespread use of smartphones embed-
ded with the global positioning system (GPS). Even though
LBSNs are relatively new compared to the traditional social
networking services, millions of active users use the plat-
form on a daily basis voluntarily sharing their location in-
formation. Many of these LBSNs allow users to “check-in” to
places like a restaurant or cinema; we call these checked-in
places the points of interest (POI) of the users. Users can
share videos, pictures, or reviews about these places via this
“check-in” feature. Based on the collected user data, LB-
SNs provide POI recommendations. POI recommendation
is very important for LBSNs for two reasons. First, users are
more likely to use the platform and check-in places for their
own benefit if the quality of recommendation is accurate.
Second, it allows targeted advertisers to serve specific user
groups. Therefore, accurate POI recommendation is crucial
for the success of LBSNs. [1]

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, December 2017 Morris, MN.

6000———————————7——7— 7T T T T T T T T T T T T
—»— Shop

-+ Travel Spot
5000 —*— Food
—r— College & University

—— Arts & Entertainment
4000F| —F Great Outdoors
—®— Home, Work, Other

Nightlife Spot

3000

Chick-in Times

2000+

1000F

A S

" | I L 1 L i
0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23
Hour

Figure 1: Relationship between time interval and check-in
location category in NYC. [3]

Even though POI recommendation is a type of recom-
mendation system, it has distinct characteristics mainly due
to its geographical nature. For instance, recommending a
movie is a fairly different task from recommending a place.
A movie recommendation system can recommend any movie,
but a POI recommendation system should not recommend
a sushi restaurant in Tokyo for a user in Minnesota. The
following are meaningful differences between conventional
recommendations and POI recommendation:

— The types of checked-in places are highly related to
the time period. Figure 1 shows check-in data in NYC
from an LBSN (Foursquare) over different hours of a
day. The number of check-ins clearly varies depending
on the time.

— People are likely to visit nearby places because of ge-
ographical limitation. Not many people are willing to
fly to Japan from the US just for a nice sushi restau-
rant. [3]

— The transition between POIs is strongly affected by
the user’s own preference. Li et al. [3] refer to this as
a long-term individual preference. For instance, some
people go to the gym after work, but some people go
home right away after work.

— A wuser’s next location is highly related to the user’s

Location {H, S} {H, C} {s}

= N
School . .
Cafe .

(a) Transition diagram of a Markov chain for sets.

Home | School Cafe #
Home 1/2 1/2 1/2 2
School 1/1 0/1 1/1 1

Cafe 0/1 1/1 0/1 1

(b) Transition matrix for (a).

Figure 2: Markov chains for sets.

current location. We would call this the sequential
feature of POI recommendations.

Traditionally, matrix factorization (MF) or Markov chains
(MC) have been popular techniques for producing recom-
mendations. The ideas behind MF and MC will be explored
in more detail in section 2. Because of the known drawbacks
of each model, Rendle et al. [6] propose factorized personal-
ized Markov chains (FPMC), which is a combination of MC
and MF techniques. FPMC is a robust system, but it is a
generic model and not designed for POI recommendations.
To capture the locality feature of POI recommendations,
Cheng et al. [1] extend FPMC to include localized region
(LR) information. This extension is abbreviated as FPMC-
LR. And, Li et al. [3] propose time-aware FPMC with time
decaying consideration called TAD-FPMC.

In section 2, we are going to cover mathematical back-
grounds in recommendation systems to understand the pro-
posed models. Then in section 3, we will explore the pro-
posed approaches in detail. In section 4, we will compare the
accuracy of different recommendation techniques: FPMC,
FPMC-LR, and TAD-FPMC. Finally, we will summarize our
findings in section 5.

2. BACKGROUNDS

Markov chain. A Markov chain (MC) is a stochastic
process widely adapted in many recommendation systems
including movie, item, and POI recommendations. An MC
is defined on a set of states; each state can be either a value
or a set of values. In the context of LBSN, each state repre-
sents a place where users can visit. Now, we can define an
MC as a collection of transitional probabilities among dif-
ferent states. In other words, it is a map of transitions from
one state to another state where transitions are labeled with
their probability. It is worth pointing out that the sum of
all transitions leading out of a state must sum to 1. An-
other important characteristic of MCs is that predictions of
future transitions are solely based on the present system.
Therefore, the previous iterations and future iterations are
completely independent.

When used in location predictions, we often want each
state to capture all locations visited over a specific inter-
val of time and for our transitions to occur at fixed inter-
vals. This will simplify calculations by allowing us to di-
vide a day into evenly broken hours. By expanding our set

of states to be non-empty subsets of the set of locations,
L, we accomplish this goal. This new expansion is called
Markov chains for sets. Unlike traditional MCs, the size of
the state space is 21l Figure 2a shows an MC for sets.
There are three different locations of interest home, cafe,
and school. These would be the states in a traditional MC
model. In an MC for sets, we have 7 non-empty subsets
such as {home, school} and {school}. The extended transi-
tion matrix for our expanded set of states rapidly becomes
too large to be manageable. MCs for sets deal with this by
estimating a per-location transition matrix that can be used
to calculate the probabilities of the extended transition ma-
trix. This per-location matrix is estimated using observed
transitions. Rendle et al. [6] refer to it as a transition ma-
trix, but it is something a little bit different.

It is easier to understand with an example. There are
two observed transitions in figure 2b: {home, school} —
{home, cafe} and {home,cafe} — {school}. Let us call
the location associated with a row start-location and the lo-
cation associated with a column end-location. An entry in
our per-location transition matrix is calculated by dividing
the number of transitions containing the given start-location
and end-location, by the total number of transitions con-
taining start-location. This total number is indicated in 2b
by the # column. For example, we put a 2 in the column
for the row home since 2 transitions start with a set con-
taining home. This number is then the denominator in all
the fractions of the per-location transition matrix. There is
only 1 transition from a set containing home to a set con-
taining school, so the entry for home — school is 1/2. This
represents the probability that a state containing home will
transition to a state containing school.

As illustrated in the examples above, we can imagine
Markov chains are directly applied to POI recommenda-
tions but with tens of thousands of places instead of a few
places. Note, in practice, MC based approaches use one
general transition matrix over all users.

Matrix factorization. In Linear Algebra, matrix factor-
ization (MF) is a technique to factor a matrix as a product
of multiple matrices. When used in POI recommendations,
the original matrix has two dimensions: locations and users.
Each row represents a location and each column represents a
user. Each entry in the matrix occurs at a distinct row and
column; this entry represents a user’s rating for that partic-
ular location. As you can see in figure 3, the final matrix

Matrix L

Matrix U
Location\Feature | Shopping? Food?
Tony's Sushi ? > Feature\User | User 1 | User 2 | User 3
Theatre ? ? shopping? ? ? ?
? ? ? ?
Dollar Store ? ? food: : : :
Location\User User 1 User 2 User 3
1 Tony's Sushi 5 4 0 (n/a)
Theatre 3 1 4
Dollar Store | 0 (n/a) 0 (n/a) 2
Matrix R

Figure 3: Matrix factorization of location-user matrix.

in the figure has many 0 entries which are the places users
have never visited or not rated, so no rating exist.

Our goal is filling the empty entries by calculating pre-
dicted ratings. This is where MF becomes relevant. By
factorizing the location-user matrix, it can be represented
as a product of two matrices: a location matrix L and a
user matrix U. Ratings matrix R from figure 3 is the prod-
uct of L and U: R = LU. You might notice that L and U
do not have the same dimensionality as R. For matrix mul-
tiplication to be defined, the number of columns in L and
the number of rows in U must match. We call this number
f; it represents the features. In the example, I have chosen
shopping? and food? for simplicity, but in general the algo-
rithm that does the estimating is given a value for how many
features to include and there is not always such a clear-cut
way of explaining their meaning. In the diagram, the given
number of features is 2. Once we find the two factors of
R, we can make an estimation of unknown ratings. Let ¢
be the row associated with location [, and p, € RY be the
column associated with user u. The elements of ¢; show how
related location [is to its features, and the elements of p,
show how interested user uw is in the features. If r,; is the
rating of location [from user u, we can find the estimate
rating via multiplying corresponding entries. [2]

Tul = QiPu (1)

The following are some clarifications on the estimation
process:

— The location-user matrix has many missing entries.
Thus, the matrix factors (L and U from figure 3) are
estimates whose product produces a matrix containing
entries similar to the original matrix.

— The size of f matters with respect to accuracy. If f is
too small, we do not incorporate enough features for
precise predictions. Koren et al. [2] verified increasing
the size of f results in more precise predictions.

The factors can be estimated using machine learning tech-
niques. Rendle et al. [5] use a technique known as Bayesian

personalized ranking (BPR) that attempts to produce fac-
tors that will be useful for providing a personalized ranking
for the locations. To apply BPR to Markov chains for sets,
sequential BPR (S-BPR) is used. The details of BPR and
S-BPR are beyond the scope of this paper. For more details,
see [4] and [5].

Tensor. From our point of view, a tensor is a multidi-
mensional array in any programming language. The rank
of the tensor is then the number of components needed to
specify an entry in the array. A vector is a tensor of rank 1
and a scalar is a tensor of rank 0. A rank 2 tensor can be
represented as a matrix, and higher rank tensors are thought
of as a multidimensional version of a matrix. For instance,
we can stack matrices on the top of one another to represent
a 3 rank cube-shaped tensor. Just like matrices can be fac-
torized, tensors can also be factorized. This is a key idea of
many POI recommendation approaches that we will discuss
more in the next section.

3. FACTORING PERSONALIZED MARKOV

CHAINS AND ITS IMPROVEMENTS

As we have discussed in section 2, MC and MF based
recommendation systems have fairly distinct characteristics
from each other. In this section, we will study a model
called factorized personalized Markov chains (FPMC) that
incorporates MF into MC, and its enhancements specializing
in LSBN specific data properties.

3.1 Formalization

Before we dive into the details of the algorithms, let us
introduce the notation used in this paper. Let U be a set of
users and L be a set of locations. For each user u € U, we
know their check-in history set L!, where t is the interval of
a user visit. Our goal now is, given the user check-in data
Ll ..,L'™ ' recommend a next location to a user u at time
t. This goal is roughly equivalent to finding the probability
of u checking in location [at time ¢, given a previous check-in
location ¢ at time ¢t — 1:

User 1 a[bfo[d[e][#]
o[1]1

lallo]1][1]o]o] 1]
b 0.5 1]0.50[0] 2]
[clo.5[1]0.50]0] 2]
d|[2]?[2][2]?]o]
e 2] 2[2] 0]

User 3 a[b[c[d]e]#]
2[2[2[2]?

o

o]efo]o]o]

Oo|o|O|~

alalalw

o|o|Oo|~
o= -~
o|Oo|O|~

User2 [a[bfc[d[e]#]

lall1]of[1]0]o] 1]
bll2]?2[?2]2]?]0]
c|l?2]?]?]2]2] 0]
d|[?2]?]?]2]2]0]
e|l?]?[?]2?]?] 0]

User4 [a[b[c[d[e]#]
2]2[2]2]2] 0]

ofalofo]]

NN NN

NN NN

NN NN

NN NN

NN NN

Figure 4: Personalized Markov chains. [6]

& [2][2]2]2]>

S [2[2[2[2]7]

al1lalo 575

e [o[1]1]o]o [t

10 (2

@ 0510500 H 1

= 112

80510.500?1-
5 2[2[2[2
B= 2[22]2F

to item

Figure 5: Personalized transition tensor. [6]

Ty =pl e Llie LY 2)
3.2 FPMC

Even though MC based recommendation systems were
widely studied and used because of its capacity to capture
sequential data, it lacks the personalization feature to dis-
tinguish each user. MF also has its weakness in processing
sequential information since the order in a user’s check-in
sequence is often ignored when the prediction is calculated.
In section 1, we mentioned sequential information plays a
huge role in LBSNs in that there is a strong connection be-
tween users’ recently visited locations and future locations.
Imagine a POI recommendation system with no sequential
awareness. It may recommend a family restaurant to a user
who just checked into a restaurant; this is not ideal. To take
advantage of these two complementary models, MC and MF,
Rendle et al. [6] propose FPMC.

First, let us think about what kind of recommendation
model we aim to build. We want a recommendation system
that is aware of sequential pattern and personalized for each
user. MC is good at recognizing sequential features, but it
uses one general transition matrix for every user. Then, the
question is, can we create a personalized MC? A straightfor-
ward approach is having a personalized MC per user u € U.

Figure 4 shows four different transition matrices for each
user. The question mark (?) entries mean we have no data
to estimate the probability of the transition. The problem of
these personalized MC matrices is that they are often very
sparse, so they result in poor estimations. We just do not
have enough data from each user. This is the place where
the ideas of MF can be applied. By stacking all transition
matrices of users, we can get a transition cube or tensor x.
Now, we can factorize the tensor using a tensor factorization
technique. Factorizing this tensor x produces four parame-
ters: one rank-3 core tensor and three matrices. Using an
efficient tensor factorization technique pairwise interaction
tensor factorization (PITF), we get the following estimation
equation for the probability of user u going to location [
from location 4. [7]

R v,L LU, LI IL, UI IU
Tuyig =007 077 0 v oy (3)

—_—
A B C

— A: Interaction between the user features vJ' and the
next location vlL’U

— B: Interaction between the next location v" and the
L

. I
current location v; ™.
— C: Interaction between the user features v¥"! and the
. I
current location v, v,

This is the essence of the FPMC method. To achieve the
recommendation goal &, ; i, we construct a tensor containing
MCs for users, and then we factorize the tensor into a rank-3
tensor and matrices. Finally, we calculate the prediction by
combining the corresponding entries of the factors.

3.3 FPMC-LR

FPMC successfully constructs a personalized MC model
for POI recommendation by combining ideas of MF and
MC. However, it overlooks another noticeable property of
an LBSN dataset, localized region constraint. According
to check-in data from Gowalla and Foursquare, more than
75% of check-ins from Foursquare and 80% of check-ins from

Gowalla happened within 10 km of the previously checked-
in place. [1] The observation on the LBSN data shows the
trend that users tend to check in places close to their pre-
vious check-ins, but FPMC does not really make use of this
potentially useful trend.

To add the ability to use localized region constraint in-
formation into the existing FPMC model, Cheng et al. [1]
introduce FPMC-LR which combines the FPMC model with
localized region (LR) constraints to provide accurate succes-
sive POI recommendation in LBSNs. Because FPMC-LR
only takes into account nearby candidate locations depend-
ing on where the users currently are, it reduces the compu-
tational costs and noisy information. Also, it results in more
accurate predictions as we will see in section 4.

FPMC-LR has a similar setting to FPMC since it is an
improvement over FPMC. Just like FPMC, the fundamen-
tal goal of FPMC-LR is to give the most suitable location
recommendation for user u at time ¢ given a sequence of
check-in data. In other words, we need to calculate z ;,
which is the probability of a user u visiting a location [at
time ¢, where 7 is the user location at time ¢t — 1. The main
difference between FPMC and FPMC-LR is in their transi-
tion tensor. As we saw earlier, FPMC takes into account all
possible locations for each user, so the tensor looks like this:

x € [0, H\U\XIL\XIL\ (4)

Unlike FPMC, FPMC-LR only considers neighborhood lo-
cations of the previous check-in location i. The tensor tran-
sition in FPMC-LR looks like this:

Y € [07 1]IUI><\LI><\Nd(L)\ (5)

The set of neighborhood locations Ng(L) is calculated by
the Haversine formula, which is used to find the shortest
distance between two points on the surface of a sphere. [1]
In this case, we assume the earth is roughly a sphere. By
applying the same tensor factorizing technique PITF to our
tensor x € [0, 1}‘U‘X|L‘X|N‘1<L)|, we can calculate the target
probability @i,

3.4 TAD-FPMC

FPMC-LR is a successful model for POI recommenda-
tion in terms of performance and efficiency; it incorporates
sequential data with personalization and locality consider-
ation. However, there is still room for improvement. Li et
al. [3] point out that the FPMC-LR approach simply cap-
tures the consecutive ordering relations in lieu of considering
complex user behavior over time. Take college students, for
example. Students have morning classes, afternoon classes,
or both in one day. When they have morning classes, some
of them have breakfast at a brunch cafe after class. When
they have afternoon classes, some of them go for a drink at
a bar after class. Simply combining them as one sequential
pattern is clearly not sufficient (e.g. recommending a bar
after an 8:00AM class). In other words, just recognizing se-
quential data is not enough for capturing the differences in
regular periodic pattern.

To make the system aware of users’ time-varying behav-
ioral trends, Li et al. [3] suggest the time-aware FPMC (TA-
FPMC) model, which is an improvement over the FPMC-LR
model. Both FPMC and FPMC-LR use a third order tensor
to construct personalized Markov chains. TA-FPMC takes
a similar approach but one step forward. Instead of a third
order tensor of user-location-location, it forms a fourth order

tensor user-time-location-location by adding a time factor.
Our transition tensor looks like this:

x € [0, 1]IUI><\TI><\LI><\LI (6)

Using the tensor factorization technique PITF that we
used earlier for FPMC and FPMC-LR, we get one rank-
3 core tensor and six matrices which capture the following
interactions similar to equation 3.

— A: Interaction between the user features v¥°7 and the
time period v} Y

— B: Interaction between the user features vJ"! and the
. I
current location vV,

— C: Interaction between the user features v7'* and the
next location vlL’U

— D: Interaction between the time period vtT’I and the

. I,T
current location v;’" .

— E: Interaction between the time period vtT’L and the
next location v"

— F: Interaction between the current location v,*" and

. LI
the next location v;”".

By adding up the corresponding entries in interaction ma-
trices, we get our target value xy ¢,

UT

5 — L,U
L, t,i,l = Uy

vtT’U —l—vg’l . vi[’U —H}LJ’L -,
—— N——

A B c (7)
4ol viI,T 4ol UZL,T T viI,L) vlL,I

D E F
There is another statistical characteristic of LBSN data
that has not gotten much attention, the time gap between
two successive check-ins. The LBSN data shows that many
of two successive check-ins span a large time gap like a year.
Based on the assumption that these successive check-ins
with large time gaps do not tell much, Li et al. [3] introduce
another factor D(At) to take into account the time-decaying
effect. The final model with all the considerations is called
TAD-FPMC. There are a few variations of TAD-FPMC that
are highly optimized for certain data, but we focus on the
most basic model of TAD-FPMC for simplicity. For more

information about TAD-FPMC, refer to [3].

4. EXPERIMENTS

In this section, we will address the following questions: 1)
How do different POI recommendation models perform in
real LBSN data? 2) Why are distance constraint and tem-
poral information particularly important in the POI recom-
mendation?

4.1 Datasets

The evaluation used data collected from Foursquare, an
LBSN that provides POI recommendations. The data in-
cludes users’ check-in data for New York City from Jan.
2010 to June 2011. The statistics of data is summarized in
table 1. [3]

0.30

woce MF

-0 - FPMC
025f|..».. FPMC-LR
—— TAD-FPMC| e "

Precision

i i‘: 1|0 2|0 S’IO 4IO SIO 6IO 7‘0 86 9‘0 100
NYC:The number of recommend locations

Figure 6: Comparison of location prediction in NYC. [3]

Table 1: The statistics of data. [3]

City User
New York City | 2,581

Location | Category
206,416 249

4.2 Evaluation Metric

The main task for the algorithms is providing a list of
the top-N recommended locations ordered from the highest
probability of user visit to the lowest. Evaluation metrics
take advantage of historic data. A location recommendation
is considered correct if the user had visited that place in the
past. The evaluation metric PQN (Precision) is defined as:

(8)

The number of recommendation rounds is a constant repre-
senting the number of times a top-N list was generated and
checked if correct or not.

PaN the counts of correct predictions

~ ‘the total number of recommendation rounds

4.3 Comparison

Figure 6 shows the performance comparison among dif-
ferent algorithms of POI recommendation. The x-axis rep-
resents the number of recommended locations, N, and the
y-axis is the precision of the recommendation PQN. In
the graph, there is a huge gap between generic models (MF
and FPMC) and POI specific models (FPMC-LR and TAD-
FPMC). This verifies the importance of distance constraint
and temporal information in POI recommendations. Also,
TAD-FPMC slightly outperforms FPMC-LR. More sophis-
ticated variations of TAD-FPMC outperform all the models
examined in this paper. The curious reader is referred to [3].
The experiments were run on a quad-core machine with a
Core i7-6700K 4.0GHz 8 hyper-threading and memory size
of 32GB. [3]

5. CONCLUSION

In this paper, we have considered the point-of-interest
(POI) recommendation in LBSNs and introduced different
approaches for accurate predictions. Factorized personalized
Markov chain (FPMC) model is an elegant method com-

bining advantages of Markov chains and matrix factoriza-
tion, but it was not designed to incorporate distinct char-
acteristics of LBSN data. FPMC-LR is an enhancement of
FPMC by only considering nearby locations when calculat-
ing POI predictions. TAD-FPMC is a novel POI recommen-
dation system approach that captures complex user behav-
ior over time in addition to inheriting strengths of FPMC
and FPMC-LR. From experimental results conducted on
Foursquare data for NYC, we conclude POI recommenda-
tion specific approaches (FPMC-LR, TAD-FPMC) far out-
perform generic recommendation models such as FPMC.
Additionally, TAD-FPMC produces better predictions than
any other methods including FPMC-LR.

Acknowledgments

I thank my senior seminar professors, Peter Dolan and Kristin
Lamberty, for their helpful advice and comments throughout
the research and writing process.

6. REFERENCES

[1] C. Cheng, H. Yang, M. R. Lyu, and I. King. Where you
like to go next: Successive point-of-interest
recommendation. In Proceedings of the Twenty-Third
International Joint Conference on Artificial
Intelligence, IJCAI ’13, pages 2605—2611. AAAT Press,
2013.

[2] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30-37, Aug. 2009.

[3] X. Li, M. Jiang, H. Hong, and L. Liao. A time-aware
personalized point-of-interest recommendation via
high-order tensor factorization. ACM Trans. Inf. Syst.,
35(4):31:1-31:23, June 2017.

[4] S. Rendle and C. Freudenthaler. Improving pairwise
learning for item recommendation from implicit
feedback. In Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, WSDM
’14, pages 273282, New York, NY, USA, 2014. ACM.

[5] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized
ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI ’09, pages 452—461, Arlington,
Virginia, United States, 2009. AUAI Press.

[6] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme.
Factorizing personalized markov chains for next-basket
recommendation. In Proceedings of the 19th
International Conference on World Wide Web, WWW
’10, pages 811-820, New York, NY, USA, 2010. ACM.

[7] S. Rendle and L. Schmidt-Thieme. Pairwise interaction
tensor factorization for personalized tag
recommendation. In Proceedings of the Third ACM
International Conference on Web Search and Data
Mining, WSDM ’10, pages 81-90, New York, NY, USA,
2010. ACM.

