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LBSN? POI? 

Location-based social 
networks (LBSNs):

Social networks tied with 
geographical information

Point-of-interest (POI): 

A specific location where 
users show interest 
(restaurant, bar, cinema, etc.)
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Motivation - Big question
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Tensor

● Generalization of 
vectors

● Multi-dimensional 
arrays in Java 
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Matrix Factorization (MF)

Review:

Matrix multiplication
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2
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Matrix Factorization (MF)

A technique to factor 
a matrix as a product 
of multiple matrices
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Matrix Factorization (MF)

Question:

Given a matrix of user ratings 
for different locations, predict 
empty ratings 0 (n/a)

Location\User User 1 User 2 User 3

Tony's Sushi 5 4 0 (n/a)

Theatre 3 3 1

Dollar Store 0 (n/a) 0 (n/a) 2
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Matrix Factorization (MF)

Feature\User User 1 User 2 User 3

shopping ? ? ?

food ? ? ?

Location\User User 1 User 2 User 3

Tony's Sushi 5 4 0 (n/a)

Theatre 3 3 1

Dollar Store 0 (n/a) 0 (n/a) 2

Matrix U
Matrix L

Location\Feature shopping food

Tony's Sushi ? ?

Theatre ? ?

Dollar Store ? ?
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Matrix Factorization (MF)

Feature\User User 1 User 2 User 3

shopping 1 1 0.1

food 0.8 0.6 0.75

Location\User User 1 User 2 User 3

Tony's Sushi 5 4 0 (n/a)

Theatre 3 3 1

Dollar Store 0 (n/a) 0 (n/a) 2

Matrix U
Matrix L

Location\Feature shopping food

Tony's Sushi 1 5

Theatre 2 1

Dollar Store 5 2
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Matrix Factorization (MF)

Feature\User User 1 User 2 User 3

shopping 1 1 0.1

food 0.8 0.6 0.75

Location\User User 1 User 2 User 3

Tony's Sushi 5 4 1 * 0.1 + 5 * 0.75 = 4

Theatre 3 3 1

Dollar Store 0 (n/a) 0 (n/a) 2

Matrix U
Matrix L

Location\Feature shopping food

Tony's Sushi 1 5

Theatre 2 1

Dollar Store 5 2
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Matrix Factorization (MF)

What’s the point?

Based on the calculated 
predictions, we can make 
recommendations.

Location\User User 1 User 2 User 3

Tony's Sushi 5 4 4

Theatre 3 3 1

Dollar Store 5 5 2
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Markov Chain (MC)

Stochastic model to represent 
different states (locations) and their 
transitional possibilities.

Home School

Home 0.3 0.7

School 0.9 0.1

S
H

0.7

0.3

0.9
0.1

14/33



Markov Chain (MC) for Sets

Each state is now a set of locations 
instead of a single location.

15/33

Home

School

Cafe

Location     {H, S}         {H, C}           {S}

Home School Cafe #

Home 1/2 1/2 1/2 2

School 1/1 0/1 1/1 1

Cafe 0/1 1/1 0/1 1
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POI Recommendation History over Time

MF / MC
Traditionally used for 
recommendation systems

FPMC (2010)
Combining MF + MC

FPMC-LR (2013)
FPMC + Only considering 
nearby locations

TAD-FPMC (2017)
FPMC + Capturing complex 
behavior of users over time

S
H
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Factorized Personalized Markov Chain 
(FPMC)

Problem of Markov chain

One Markov chain is used for 
all users (Recommendation is 
not personalized)

How FPMC solves the problem

Having a Markov chain for each user
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Factorized Personalized Markov Chain (FPMC) 

1. Make a Markov chain for each user
2. Stack them one onto another
3. Factor the cubic tensor using tensor factorization
4. Calculate predictions using the factors
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Factorized Personalized Markov Chain (FPMC) 

1. Make a Markov chain for each user
2. Stack them one onto another
3. Factor the cubic tensor using tensor factorization
4. Calculate predictions using the factors
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Factorized Personalized Markov Chain (FPMC) 

1. Make a Markov chain for each user
2. Stack them one onto another
3. Factor the cubic tensor using tensor factorization
4. Calculate predictions using the factors

To location
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location

User

To location

From location

User
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Factorized Personalized Markov Chain (FPMC) 

1. Make a Markov chain for each user
2. Stack them one onto another
3. Factor the cubic tensor using tensor factorization
4. Calculate predictions using the factors

Probability of user u going from 
location l to location i
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FPMC with Localized Region Constraint 
(FPMC-LR)

Problems of FPMC

Generic method for any 
recommendation systems

Computationally expensive

How FPMC-LR solves the problem

POI-specific method

Only consider nearby locations when 
predictions are made
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FPMC with Localized Region Constrain (FPMC-LR) 

1. Make a Markov chain for each user
2. Stack them one onto another
3. Factor the cubic tensor using tensor factorization
4. Calculate predictions using the factors
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To location

From 
location
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Time-Aware Decaying FPMC (TAD-FPMC)

Problem of FPMC-LR

Complex user behavior over 
time is not incorporated

How TAD-FPMC solves the problem

Adding time variable when calculating 
the recommendations
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Time-Aware Decaying FPMC 

User 1

To location

From 
location

Tim
e

User 2 User 3 ...

1. Make a Markov chain for each user
2. Stack them one onto another
3. Factor the cubic tensor using tensor factorization
4. Calculate predictions using the factors
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Performance Analysis - Evaluation Metric

1. Each Algorithm recommends 
a list of top-N places.

2. Recommendation is correct if 
the user indeed visited any 
place in the list at time t.

 

Top-3 recommendations

Previous 
Location

Top 1
Zenbox

Top 2
United Noodles

Top 3
Korean BBQ
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Performance Analysis - Evaluation Metric

Precision  = 
# of correct predictions

# of recommendation rounds
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Top-4 
Recommendations

5 Rounds

1

5
=



Performance Analysis

POI specific models 
(FPMC-LR & TAD-FPMC) 
show much better 
performance

Size of Top-N list (NYC data)
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Performance Analysis

Variations of TAD-FPMC 
far outperform all 
existing models

Size of Top-N list (NYC data)
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Conclusion

MF / MC
Traditionally used for 
recommendation systems

FPMC (2010)
Combining MF + MC

FPMC-LR (2013)
FPMC + Only considering 
nearby locations

TAD-FPMC (2017)
FPMC + Capturing complex 
behavior of users over time

S
H
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Questions?



Contact
Tony Song
songx823@morris.umn.edu
https://github.com/frogrammer

https://github.com/frogrammer
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