Point-of-Interest Recommendation
Systems in Location-Based Social
Networks

Tony Song




LBSN? POI?

Location-based social
networks (LBSNs):

Social networks tied with
geographical information

Point-of-interest (POI):

A specific location where
users show interest
(restaurant, bar, cinema, etc.)
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Motivation - Big question
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1D TENSOR/ 2D TENSOR / 3D TENSOR/
VECTOR MATRIX CUBE

e Generalization of
vectors

e Multi-dimensional
arrays in Java

4D TENSOR 5D TENSOR

VECTOR OF CUBES MATRIX OF CUBES
6/33



Matrix Factorization (MF)

Review:

Matrix multiplication Ri1)3| ==

7/33



Matrix Factorization (MF)

A technique to factor
a matrix as a product

of multiple matrices 2 6|2 | mml 28131




Matrix Factorization (MF)

Question;

Given a matrix of user ratings
for different locations, predict
empty ratings 0 (n/a)

Location\User

Tony's Sushi

Theatre

Dollar Store




Matrix Factorization (MF)

Matrix L
Location\Feature | shopping food Matrix U
Tony's Sushi ? ? Feature\User | User 1 | User 2 | User 3
Theatre ? ? % shopping ? ? ?
Dollar Store ? ? food ? ? ?
O Location\User User 1 User 2 User 3
] Tony's Sushi 5 4 0 (n/a)
h 3 3 1
Theatre
O
Dollar Store | 0 (n/a) 0 (n/a) 2
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Matrix Factorization (MF)

Matrix L
Location\Feature |  shopping food Matrix U
Tony's Sushi 1 g Feature\User | User 1 | User 2 | User 3
Theatre 2 1 % shopping 1 1 0.1
Dollar Store 5 2 food 0.8 0.6 | 0.75
O Location\User User 1 User 2 User 3
I Tony's Sushi 5 4 0 (n/a)
]
e Theatre 3 3 1
Dollar Store | 0 (n/a) 0 (n/a) 2
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Matrix Factorization (MF)

Matrix L
Location\Feature |  shopping food Matrix U
Tony's Sushi 1 g Feature\User | User 1 | User 2 | User 3
Theatre 2 1 % shopping 1 1 0.1
Dollar Store 5 2 food 0.8 0.6 | 0.75
O Location\User User 1 User 2 User 3
— Tony's Sushi 5 4 1*0.1+45%0.75=4
]
e Theatre 3 3 1
Dollar Store 0(n/a) 0 (n/a) 2
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Matrix Factorization (MF)

What's the point? Location\User

Based on the calculated
predictions, we can make
recommendations.

Tony's Sushi

Theatre

Dollar Store




Markov Chain (MC)

0.3 Stochastic model to represent
0.7 different states (locations) and their
transitional possibilities.

Home School
0.9 Home 0.3 0.7
0.1
School 0.9 0.1

14/33



Markov Chain (MC) for Sets

Location {H,S}  {H,C} {S} Each state is now a set of locations

Home instead of a single location.
School Home | School Cafe
Home 1/2 1/2 1/2
cate School 1/1 0/1 1/1
Cafe 0/1 1/1 0/1
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POl Recommendation History over Time

Traditionally used for
recommendation systems

* FPMC (2010)

¢+ FPMC-LR (2013)

FPMC + Only considering
nearby locations

ﬁ ® TAD-FPMC (2017) ®

Combining MF + MC FPMC + Capturing complex

behavior of users over time
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Factorized Personalized Markov Chain —

(FPMC)

Problem of Markov chain How FPMC solves the problem

One Markov chain is used for === Having a Markov chain for each user
all users (Recommendation is
not personalized)

18/33



Factorized Personalized Markov Chain (FPMC)

1. Make a Markov chain for each user

User 1 User 2 User 3
0.2 ? ? ? ? ? 0.2 04 0.7
From
location | 92|01 ? 03| ? | 0.1 2 01| 2
? | ? |03 06 ? | ? ? |05 ?
To location
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Factorized Personalized Markov Chain (FPMC)

2. Stack them one onto another

S A
N n2.nalnzy O
? ? 2
0.2 ? ? ?
| From
From
location 0.5 0.1 ? ? location
? ? 103
To location
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Factorized Personalized Markov Chain (FPMC)

3. Factor the cubic tensor using tensor factorization

User
,oe‘ '
) ° From location
— i Feature tensor
From L 1
location O
To location
To location
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Factorized Personalized Markov Chain (FPMC)

4. Calculate predictions using the factors

Probability of user u going from
location [ to location i

F F F

xl,i,u ~ Z Z Z gPCITL lpI iqU ur
p=1g=1r=1
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FPMC with Localized Region Constraint @

(FPMC-LR)

Problems of FPMC How FPMC-LR solves the problem

Generic method for any mmsmm) POl-specific method

recommendation systems _ .
Only consider nearby locations when

Computationally expensive E— predictions are made
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FPMC with Localized Region Constrain (FPMC-LR)

Make a Markov chain for each user

Stack them one onto another

Factor the cubic tensor using tensor factorization
Calculate predictions using the factors

i \)Q)Q} \)(OQ}
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100
Sl < location

location

B ORI

To location
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Time-Aware Decaying FPMC (TAD-FPMC) (V)

Problem of FPMC-LR How TAD-FPMC solves the problem
Complex user behavior over Adding time variable when calculating
time is not incorporated the recommendations
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Time-Aware Decaying FPMC @

B ORI

From
location

o
<&

Make a Markov chain for each user
Stack them one onto another
Factor the cubic tensor using tensor factorization
Calculate predictions using the factors

User 1

User 2

User 3

To location
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Performance Analysis - Evaluation Metric

Top-3 recommendations

07 8 SSW
e
X

S
32
A3

1. Each Algorithm recommends

olis @ Guthrie Theater /" |

: uE y il @46} T .
2 s ‘7f/)&{ op
T id Nt Korean BBQ
op 1 ‘@
Zenbox 4

a list of top-N places. o 5, DOWNTOWN g TOF Bank Stadium O
SN FOLIN) / H : .
v; S%, - | 2 T = Ul\t}‘l'versny of
. . . & S S innesota
2. Recommendation is correct if e &
. .. i 17A X A Fier Pkyy,
the user indeed visited any , ELLIOT PARK 3 |
= Missjss,,
. o . @ 6th i 0 4.
place in the list at time t. v @
@" (5] reV|OUS g
3 i Location =g
o E Franklin Ave E Franklin Ave E Franklin Ave
> T YT 8 & SEWARDE ¢
s 5 2 E22nd St © a = e
=h 3 2 he =l
> " Eoamst @ . @ & E2ahs
o b= ‘;
1 = 5
: E 26th S % % Top 2
: th St A .
Aggrican (¥ United Noodles

= Swedish Institute




Performance Analysis - Evaluation Metric

# of correct predictions 1

Precision =

# of recommendation rounds 5

Top-4
Recommendations
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Performance Analysis
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Performance Analysis
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Conclusion

Traditionally used for
recommendation systems

* FPMC (2010)

¢+ FPMC-LR (2013)

FPMC + Only considering
nearby locations

ﬁ * TAD-FPMC (2017) @

Combining MF + MC FPMC + Capturing complex

behavior of users over time
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Questions?



Contact

Tony Song
songx823@morris.umn.edu


https://github.com/frogrammer
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