Point-of-Interest Recommendation Systems in Location-Based Social Networks

Tony Song

LBSN? POI?

Location-based social networks (LBSNs):

Social networks tied with geographical information

Point-of-interest (POI):

A specific location where users show interest (restaurant, bar, cinema, etc.)

Motivation - Big question

Table of Contents

- Backgrounds
 - Tensor
 - Matrix Factorization
 - Markov Chain
- Algorithms
 - FPMC
 - FPMC-LR
 - TAD-FPMC
- Performance Analysis

Table of Contents

- Backgrounds
 - Tensor
 - Matrix Factorization
 - Markov Chain
- Algorithms
 - FPMC
 - FPMC-LR
 - TAD-FPMC
- Performance Analysis

Tensor

- Generalization of vectors
- Multi-dimensional arrays in Java

ID TENSOR/ VECTOR		2 D I	TENS VIATRI	OR /		3D TENSOR/ CUBE
5 7 45 12	- 9 3	4	2	5 8	7	-9 4 2
- 6 3 2 2 1	1	2 3	- 6	4 5	2	3 0 1 2 1 2 3 - 6
6 3 - 9	2 2	3	- 1	72	6	22 3 -1

5D TENSOR MATRIX OF CUBES

Review:

Matrix multiplication

A technique to factor a matrix as a product of multiple matrices

Question:

Given a matrix of user ratings for different locations, **predict empty ratings** 0 (n/a)

Location\User	User 1	User 2	User 3
Tony's Sushi	5	4	0 (n/a)
Theatre	3	3	1
Dollar Store	0 (n/a)	0 (n/a)	2

Matrix L

Location\Feature	shopping	food
Tony's Sushi	?	?
Theatre	?	?
Dollar Store	?	?

Matrix U

Feature\User	User 1	User 2	User 3
shopping	?	?	?
food	?	?	?

\bigcirc	
	\bigcirc

Location\User	User 1	User 2	User 3
Tony's Sushi	5	4	0 (n/a)
Theatre	3	3	1
Dollar Store	0 (n/a)	0 (n/a)	2

Matrix L

Location\Feature	shopping	food
Tony's Sushi	1	5
Theatre	2	1
Dollar Store	5	2

Matrix U

Feature\User	User 1	User 2	User 3
shopping	1	1	0.1
food	0.8	0.6	0.75

\bigcirc	
	\bigcirc

Location\User	User 1	User 2	User 3
Tony's Sushi	5	4	0 (n/a)
Theatre	3	3	1
Dollar Store	0 (n/a)	0 (n/a)	2

Matrix L

Location\Feature	shopping	food
Tony's Sushi	1	5
Theatre	2	1
Dollar Store	5	2

Matrix U

Feature\User	User 1	User 2	User 3
shopping	1	1	0.1
food	0.8	0.6	0.75

\bigcirc	
	\bigcirc

Location\User	User 1	User 2	User 3
Tony's Sushi	5	4	1 * 0.1 + 5 * 0.75 = 4
Theatre	3	3	1
Dollar Store	0 (n/a)	0 (n/a)	2

What's the point?

Based on the calculated predictions, we can make **recommendations**.

Location\User	User 1	User 2	User 3
Tony's Sushi	5	4	4
Theatre	3	3	1
Dollar Store	5	5	2

Markov Chain (MC)

Stochastic model to represent different states (locations) and their transitional possibilities.

	Home	School
Home	0.3	0.7
School	0.9	0.1

Markov Chain (MC) for Sets

Each state is now a set of locations instead of a single location.

	Home	School	Cafe	#
Home	1/2	1/2	1/2	2
School	1/1	0/1	1/1	1
Cafe	0/1	1/1	0/1	1

Table of Contents

- Backgrounds
 - Tensor
 - Matrix Factorization
 - Markov Chain
- Algorithms
 - FPMC
 - FPMC-LR
 - TAD-FPMC
- Performance Analysis

POI Recommendation History over Time

Factorized Personalized Markov Chain (FPMC)

Problem of Markov chain

One Markov chain is used for all users (Recommendation is not personalized)

How FPMC solves the problem

Having a Markov chain for each user

Factorized Personalized Markov Chain (FPMC)

Make a Markov chain for each user 1.

2 Stack them one onto another

- 3. Factor the cubic tensor using tensor factorization
- Calculate predictions using the factors 4.

	User 1			User 2			User 3			}	
From location	0.2	?	?	?	?	?		0.2	0.4	0.7	
	0.5	0.1	?	0.3	?	0.1		?	0.1	?	
	?	?	0.3	0.6	?	?		?	0.5	?	

To location

1. Make a Markov chain for each user

2. Stack them one onto another

- 3. Factor the cubic tensor using tensor factorization
- 4. Calculate predictions using the factors

- Stack them one onto another 2.
- Factor the cubic tensor using tensor factorization 3.
- Calculate predictions using the factors 4.

User

- 1. Make a Markov chain for each user
- 2. Stack them one onto another
- 3. Factor the cubic tensor using tensor factorization
- 4. Calculate predictions using the factors

Probability of user \underline{u} going from location \underline{I} to location \underline{I}

$$x_{l,i,u} \approx \sum_{p=1}^{F} \sum_{q=1}^{F} \sum_{r=1}^{F} g_{pqr} L_{lp} I_{iq} U_{ur}$$

FPMC with Localized Region Constraint (FPMC-LR)

Problems of FPMC

Generic method for any recommendation systems

Computationally expensive

How FPMC-LR solves the problem

POI-specific method

Only consider nearby locations when predictions are made

- 1. Make a Markov chain for each user
- 2. Stack them one onto another
- 3. Factor the cubic tensor using tensor factorization
- 4. Calculate predictions using the factors

Time-Aware Decaying FPMC (TAD-FPMC) 🕔

Problem of FPMC-LR

Complex user behavior over time is not incorporated

How TAD-FPMC solves the problem

Adding time variable when calculating the recommendations

Time-Aware Decaying FPMC

- 1. Make a Markov chain for each user
- 2. Stack them one onto another
- 3. Factor the **cubic tensor** using tensor factorization
- 4. Calculate predictions using the factors

To location

Table of Contents

- Backgrounds
 - Tensor
 - Matrix Factorization
 - Markov Chain
- Algorithms
 - FPMC
 - FPMC-LR
 - TAD-FPMC
- Performance Analysis

Performance Analysis - Evaluation Metric

- 1. Each Algorithm recommends a list of top-*N* places.
- 2. Recommendation is correct if the user indeed visited any place in the list at time *t*.

Top-3 recommendations

Performance Analysis

POI specific models (FPMC-LR & TAD-FPMC) show much better performance

Performance Analysis

Variations of TAD-FPMC far outperform all existing models

Size of Top-N list (NYC data)

Conclusion

Contact

Tony Song songx823@morris.umn.edu https://github.com/frogrammer

References

[1] C. Cheng, H. Yang, M. R. Lyu, and I. King. Where you like to go next: Successive point-of-interest recommendation. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI '13, pages 2605–2611. AAAI Press, 2013.

[2] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30–37, Aug. 2009.

[3] X. Li, M. Jiang, H. Hong, and L. Liao. A time-aware personalized point-of-interest recommendation via high-order tensor factorization. ACM Trans. Inf. Syst., 35(4):31:1–31:23, June 2017.

[4] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. In Proceedings of the 19th International Conference on World Wide Web, WWW '10, pages 811–820, New York, NY, USA, 2010. ACM.

[5] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for personalized tag recommendation. In Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM '10, pages 81–90, New York, NY, USA, 2010. ACM.