
Machine Learning and Music Composition

Daniel Woeste
Division of Math and Science

University of Minnesota, Morris
Morris, Minnesota, USA 56267

woest015@morris.umn.edu

ABSTRACT
Throughout history, musical composition has been thought
of as limited to those gifted with a higher insight. As com-
puters have risen in prominence, they have also asserted
themselves as an almost necessary tool used in the field of
music. Recent advancements in machine learning technolo-
gies has possibly provided a new way for computers to be
used in the field of music, as well as possibly bringing mu-
sic composition to the masses. Machine learning offers the
unique possibility of having a program generate the song,
leaving the user to edit or pick the song closest to their mu-
sical tastes.

Keywords
Random Forests, Markov Chains, Machine Learning

1. INTRODUCTION
Music has become an almost daily part of our lives, whether

it is through background in movies, commercials, or even lis-
tening to it for the sake of listening to a song. For many of us,
our interactions with music are mostly a passive experience,
listening rather than contributing. Recent advancements in
machine learning may give people the chance to produce mu-
sic tailored to their personal music tastes. These programs
can be used as musical assistance to enhance or fill in gaps in
musical knowledge. They can also be used to autonomously
generate music without much input from the end user.

In this paper, I will cover three possible methods that
may be used to generate music. These two methods are
random forests, and markov chains explored by Ackerman
et al. [1], and Klinger et al. [3] respectively. We will start the
paper, in Section 2, by going over the necessary musical and
machine learning terminology necessary to understand the
larger concepts. From there we move into Section 3, where
I describe exactly what the programs are and the general
ideas behind them. After that we progress to Section 4,
were we cover how the programs were built and trained to
produce music. Finally, we will discuss the actual results of
the research in Section 5.

2. BACKGROUND

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2017 Morris, MN.

In this section, we discuss the necessary terminology both
musically and that of machine learning to understand con-
cepts throughout the rest of the paper.

2.1 Music
In this section we explain the terminology that is impor-

tant to the musical side of this paper.
A melodic progression is the interval traveled when chang-

ing from one note to another. These intervals are broken
down into whole steps and half steps. Combining several
progressions together produces a melody. A melody is a
combination of pitches, rhythms and note duration. At
any point during a piece of music, the most important part
played is considered the melody.

Chords are when several notes are being played at the
same time. This can have a pleasing effect known as har-
mony, otherwise known as consonance, or a clashing effect
known as dissonance. While most songs tend to be har-
monic, dissonance gives the music drive and forward motion.
Without dissonance, music can lack a sense of progression.
Dissonance, in a simple sense, gives the music a direct path
to follow, moving from a clash to peace and harmony

If a more in depth understanding of music is desired,
please refer to The Enjoyment of Music by Forney et al. for
a step by step build up of musical terminology and ideas [2].

2.2 General Machine Learning Framework
All of the methods described in this paper share a sim-

ilar framework that would be useful to understand. The
commonality between all the methods is that every note is
generated in relation to a sequence of previous notes. Some-
times the new note is only dependent on a single previous
note, while in other circumstances it depends on a larger set
of notes. This method of relying on previous notes allows the
program to generate new notes that fit well with the current
melodic progression. Similar to how a sentence is formed,
each new word is dependent on the previous word to make
a coherent thought. A coherent melody is created by using
notes that blend well with the overall theme already being
expressed.

2.3 Machine Learning
Machine learning, a subcategory of artificial intelligence,

is an area of computer science that focuses on programs
that are able to systematically change their behavior. These
learning systems are able to make alterations to their behav-
ior. Training uses existing musical melodies. These melodies
are used as a “final answer” that the programs are built to-
wards. Using multiple passes over the training melodies, the



Figure 1: Decision tree example

program slowly approaches a correct answer by comparing
new changes to the target melodies. After a set training
time, the program is able to generate melodies that are sim-
ilar in style, but not identical to the training data set. We
will go over training in more detail in Section 4. This style
of data driven learning allows machine learning programs to
be well suited for applications such as self-driving cars, text
prediction, online recommendations, and even the field of
music composition.

In the remainder of this section we will describe other ba-
sics of machine learning including decision trees, overfitting,
and finite automata.

2.3.1 Decision Trees and Random Forests
Decision trees are branching structures that represent tests

and their possible outcomes, see Figure 1. In this exam-
ple node, and the corresponding question being asked, are
represented by rectangular boxes. The outcomes of these
tests/questions are represented by the branches away from
the nodes. In this case the outcomes are binary value, an-
other possibility used in Figure 10 is to tie weights to the
branches. The decision trees in this paper are read in a top
down style, meaning that the tree in Figure 1 would be read
by first asking if the piece of music was in the key of C. If
answer to that question was a true statement, then we would
progress through the tree down the branch indicating true.
Following the tree the rest of the way through, we would
reach the output of the tree, represented by the eighth and
quarter values in the nodes at the lowest level of the tree [4].

Random Forests are a direct extension of decision trees,
they are built using a multitude of decision trees. This re-
sults in there being many answers that can be selected for
the final output. The problem of the multitude of answers is
solved by taking a ”vote” of the outputs of the decision trees.
A distribution forms from this consensus, and the most com-
mon answer is picked as the final answer. For these trees to
be built from a training data set, the training data needs

Figure 2: Finite Automata made for an example
rhythm in Klinger et al. [3]

to be broken down into smaller chunks that can be used to
train individual trees. The small sections of data are used
to reduce overfitting of the decision trees by preventing one
feature from becoming dominant.

2.3.2 Overfitting
A possible side effect with decision trees and all types

of machine learning is overfitting. Machine learning algo-
rithms and programs, such as decision trees, develop over-
fitting because the algorithm itself becomes too complex.
Through multiple iterations of training, the algorithm de-
velops too many parameters that are overly specific to the
training data set. When this happens the program begins to
learn and integrate small fluctuations in the data that are
inconsequential to the actual outcome, instead of learning
the overall “big picture.” A learning system that has devel-
oped overfitting cannot be accurately run on data that is not
the training data. Overfitting can be prevented by taking a
system that has already been trained, and manually altering
the program to remove the level of detail that it has. Musi-
cally this means that a program developed for composition
would only be able to produce the exactly, or almost identi-
cal, pieces of music to what it was trained on. It would have
failed to grasp the style of music, but instead would only be
able to repeat exactly the music it has learned.

2.3.3 Finite Automata
Finite automata, otherwise known as finite state machines,

are representations of an abstract computational model; see
Figure 2. Finite state machines represent a stochastic model
of the data. These state machines can only exist in one po-
sition at a time. Every possible move is represented by a
probability, but the path through the automata is chosen
at random, following the probabilities given. In Figure 2,
we can see an automata that starts on a quarter note, this
node has only one possible move, and that is a 100% chance
to move to node labeled eighth. This node now has three
possible directions that it could progress, it has 60% chance
of returning to itself, and a 20% chance of either progressing
back to initial node, or to the final node.

3. METHODS



Now that we have covered the necessary background in-
formation, we can now progress onto the two programs in-
troduced earlier in the introduction. These two programs
are ALYSIA, and markov chains.

3.1 ALYSIA
Automated LYrical Song-writing Application, ALYSIA, is

a program that uses random forests to generate melodies for
the lyrical inputs constructed by Ackerman et al [1]. These
are built around an original set of songs that Ackerman et
al. wanted to emulate, in this case, pop songs. Ackerman
et al. used the data format Musix-XML, MXL, because it
allows the random forests to pull ideas out of the training
data. This process is known as training and we will go over
it in section 4.1. Ackerman et al. chose random forests
for their research because it allowed, after the fact, easy
evaluation of why one note would be chosen after another.
They are structured in a way that allows the user to read
and determine the most important features from the trees.
It is nearly impossible to do this for other methods, such as
markov chains.

ALYSIA was developed to produce music for a given set
of lyrics; these lyrics could be anything from a poem to
an existing song, which we wish to recompose into a differ-
ent style. It was also built as a system that functions in a
co-creative nature, providing the ability to output multiple
melodic options at once, allowing the user to insert their
own musical tastes into the final output.

Ackerman et al. built ALYSIA around the idea of being
able to extract features from the music and to use those
features to help generate melodies. This feature extraction
was made to look for patterns and other ideas of melodic,
lyrical, or rhythmic importance to the target music. There
were fifty-nine extractable features built into the program,
including [1]:

• First Measure - A boolean variable indicating whether
or not the current note belongs to the first measure of
the piece

• Key Signature - The key signature that applies to the
current note

• Time Signature - The time signature that applies to
the current note

• Offset within Measure - The number of beats since the
start of the measure

• Syllable Number - The syllable position within its word

• Scale Degree, Accidental, and Duration of 5 previous
notes

These features are used to to determine the shape, potion,
and lyrical importance of every note in the pieces of music
used for training.

ALYSIA has several user input parameters that can change
how the program produces its melodies. These parameters
are known as Explore/Exploit, Melody Count, and Rhythm
Restriction [1]. The first of these parameters, Explore/Exploit,
is an integer parameter that determines how strictly the pro-
gram follows the distribution of outputs from the random
forest. Giving a higher value to Explore/Exploit the more
the program will “exploit” the decision trees. This means

Figure 3: Absolute Model [3]

that the program will be more likely to choose the most
common output and follow the rules more. Conversely, with
a lower value, the program will be more likely to explore mu-
sical ideas, more likely to stretch the rules and not choose
the most common output [1].

Melody Count is also an integer parameter. In this in-
stance, the parameter determines the number of different
melodies being produced at one time. This ties directly into
the co-creative nature of ALYSIA, giving the user direct
control of how many choices they will have at the end of
process [1].

The last parameter, Rhythmic Restriction, is used to de-
termine specific rhythmic values that the user would like to
be remove from the selection process. For instance, if the
the user would like to eliminate some of the less common
notes, such as a dotted half note, they would then enter
that value into Rhythmic Restriction. The value dotted half
note would them be removed from the process entirely when
generating a new set of melodies [1].

3.2 Markov Chains
Klinger et al. [3] made a program that uses markov chains

to produce music. Markov chains differ from the earlier
style, discussed in Section 3.1, in the way that the next note
is determined. Markov chains use an entirely a probabilistic
model to determine the next note value. Instead of asking a
series of questions, the markov chain model used relies solely
on the previous note and a set of probabilities to transition
to the next note, as seen in Figure 2.

Similar to ALYSIA, Klinger et al. also broke down the
generation of music into two categories, rhythm and pitch.
The markov process follows a set pattern of events. First,
a rhythmic pattern is developed. From there the markov
chained used for rhythm is then run to produce a series of
pitches. Once both of the models have been run, and we have
series of rhythms and pitches, the two are then combined
together to produce the final melodic output.

Due to the nature of pitch values having a name, and an
interval the markov chain method broke down the ability
to produce pitches into two different methods. These two
methods are absolute and relative markov chains.The abso-
lute model, seen in Figure 3, for the markov chain uses direct
pitch values from the octave (CDEFGABC). This style of
model allows for an easy to read output, because the markov
chain is telling you directly what the note transitions are.
The drawback to this is that it requires more configuration
from the user beforehand. The user is required to specify
the key and scale of that they would like the final piece to
be in [3]. A melody generated by Figure 3 would start on an
A, from there it would transition between staying on the A
to moving to B and back. Once the transition to the C has
occurred, it will complete the ascending line up to the E.
If the markov chain needs to produce more pitch sequences
after the E it will loop back to the first node, A, and start
over.

On the other hand the relative model, seen in Figure 4,



Figure 4: Relative Model [3]

Figure 5: A single bar melody produced after the
second iteration of markov chains

determines pitch changes by using interval lengths. By using
the distance between notes rather than an absolute value of
the note, this give the user much more freedom with the
output of the relative pitch markov chain. By this we mean
that the key, instrument, and position within the octave can
be changed at anytime.

The last step to the markov model is to do post processing,
known as mutation and recombination, uses the methods
one-point mutation, note splitting, and recombination. The
goal for each of these is to change the melodies made by the
markov chain program, after the fact, in order to make it
more complex and interesting [3].

The first of these post processing methods is known as
one-point mutation. It is a function that takes the melodic
output of the markov chains and traverses over it. As one-
point mutation is traversing over the melody, every note
that it encounters has a low probability of being raised or
lowered in pitch value [3]. In Figure 6, we can see that
the second note, from the left, has been raised up a half
step. This is indicated by the sharp or # symbol. The
method also changed the values of the fourth and fifth note
in the sequence, it lowered them one step and two steps
respectively.

Note-splitting is a process that is almost identical to the
the previous operation, one-point mutation. The difference
in the two operations is that instead of changing pitch, note-
splitting changes the duration of the note [3]. In Figure 7,
we can see that the second and third notes, both eighth
notes, have been split into a run of sixteenth notes. The
note durations have been cut in half.

The final style of post-processing is known as recombina-
tion. Recombination is a method of combining two separate
melodies, into a new singular idea. It is working towards try-
ing to introduce different melodic ideas into the same piece.
For the markov chain program, this would mean that two

Figure 6: Previous melody after one-point mutation
operation

Figure 7: Previous melody after note splitting op-
eration

different melodies would have to be generated. Recombina-
tion then takes these melodies and splices them together,
without losing any of the original parent melody. The re-
sult is a new piece that is twice as long and that modulates
between the melodic ideas.

4. TRAINING AND EVALUATION
Now that we have covered the concepts and ideas behind

two methods for producing music, we can now move onto
how these programs were trained to understand whether or
not the music they produced is good or not. Training of
these methods relies heavily on being able to evaluate the
melodies after each generation.

4.1 ALYSIA
ALYSIA started with a training set of twenty-four pop

songs, all consisting of a similar style. The specific songs
were not listed by Ackerman et al. [1]. After having selected
the songs to be used, they then needed to be converted to
the correct file format used by ALYSIA, the file format is
XML as mentioned earlier in Section 3.1. From there the fea-
ture extraction can then be applied to the freshly formated
training data. Ackerman et al. states that of the twenty-
four songs and fifty-nine extractable features they were able
to make 12,358 observations on the songs that were used to
build the final decision trees.

For the actual construction of the trees themselves, Ack-
erman et al. only states that they use R to build the trees
for the random forests. No more information is given on the
construction of the trees [1].

Once everything is complete and generated songs are ready
to be evaluated, Ackerman et al. used the same set of fea-
ture extractions to evaluate the new melodies. They used
feature extraction to compare the actual note, the note from
the original melody used for training, to the produced note
from the decision trees. This was done with the goal of cre-
ating random forests that would mimic the target style of
the training data [1].

4.2 Markov Chains
The markov chain method approached the problem of

choosing a training set a little differently than the ALYSIA
method. Klinger et al. [3] started with the idea of intro-
ducing large amount of variance into the initial songs that
were used to train the rest of the system. They specifically
state that the initialization melodies should contain enough
variance to produce innovative melodies. Otherwise, the
program runs the risk of producing identical music to the
training data [3].

Taking that idea in mind, Klinger et al. generated their
own initial melodies by using random walks of notes and
rhythms. They hoped that the random nature of the ini-
tial melodies would introduce the level of variance need to
produce good innovative melodies [3].



Figure 8: Rests on Downbeats with a value of 0 for
the first melody and 1 for the second [3]

Figure 9: Repeated Pitch with a value of 0 in the
first melody and 1 in the second [3]

Klinger et al. [3] tried several methods of evaluation. Two
of these that we will talk about in this paper are Feature
Extraction and Decision Trees.

Similar to the feature extraction described for ALYSIA,
Klinger et al. is looking for ideas or patterns that could be
important for determining the quality of the music. Instead
of looking for specific musical parameters, such as key signa-
ture, the markov chain method made several functions that
calculated ratios out of prominent features within the music.
Two of these features are rests on downbeats, and repeated
pitch.

Rests on downbeats determines the ratio between the num-
ber of downbeats and the number of downbeats on which
there is a rest. A downbeat is the very beginning of the bar,
notice in Figure 8 that the melody is broken into four sec-
tions. Each of these sections is separated by a vertical line.
The beginning of each of the groups, from the left hand side,
is the downbeat, it indicates the begging of the bar. A rest,
indicated by the small black box on the middle line of the
staff in the second example of the figure, indicates a break
in the music, a place with no sound. In Figure 8 are two
melodies with 4 downbeats: One with a value of 0 with no
rests and one with 3 rests and a resulting value of 0.75 [3].

Repeated pitch calculates the ratio number of note transi-
tions with interval zero and the number of notes. What this
means is that, while moving through the music, every note
that is the same as the next note has an interval of zero. Ev-
ery note that is not that same has a non-zero interval. So,
in Figure 9 in the first example, the first two notes are not
the same, they have an interval of 1. While, in the second
example the first two notes are the same so they have and
interval of zero. In the example in Figure 9 is one melody
without pitch repetition, value 0, and one with all possible
pitch repetitions, value 1, [3].

Klinger et al. then tried an evaluation method using de-
cision trees. Using the Weka-library in JAVA, Klinger et
al. built a variety of decision trees with different numbers
of fitness classes, otherwise known as final scores. The deci-
sion tree in Figure 10 has only two fitness classes, 0 and 10.

Figure 10: Example of a decision tree used to evalu-
ate melodic outputs for markov chains [3]. The ovals
in this decision tree indicate the feature the is being
evaluated, while the boxes indicate the final score.

This tree was built as an extension to feature extraction. By
providing the decision trees with these features, the decision
tree is then able to string the feature values together to find
series of questions that are important.

If the feature Repeated Rhythm Patterns of Four Notes is
very small, <=0.16667, and Rhythmic Range is also not very
high, <=0.75, the individual is classified as a bad melody,
the left most box. But Repeated Rhythm Patterns of Four
Notes is very small, <=0.16667, and Rhythmic Range is
high, >0.75, and the Note Pitch Changing with Chord Change
is also high, >0.8333, it is classified as being a good one, the
third box from the left. Likely the following explanation
holds: In the examples the chords are often changing with
the bars. So if the rhythmic range is high there is a good
possibility that the rhythm is confusing, but if there is al-
ways a note on the first beat in a bar it is considered not
bad [3].

5. RESULTS
With there evaluation methods ALYSIA was able to achieve

an accuracy of 86.79% for their rhythmic model. Ackerman
et al. [1] derived this from a chart of all predicted notes
made by ALYSIA. The table compared all of the predicted
rhythmic values with what the expected value was. This
gives a breakdown, for each note length, of how many were
predicted correctly, and how many where predicted incor-
rectly. When a note was predicted incorrectly, the chart
also indicated what the predicted note value was. Using
this, Ackerman et al. calculated the average accuracy for
all of the notes predicted to get their results. This chart
showed that there were three major groupings of notes that
were predicted by ALYSIA, sixteenth, eighth, and quarter
notes [1].

When training towards their original set of twenty-four
pop songs they were able to achieve an error of only 4.6%
when the next note should have been an eighth note. Con-
versely, they had an error of 78.5% for note predictions when
the next note should have been a dotted half note, the dot on
the note adds length to it [1]. This points to the fact that the



Figure 11: Markov chain results plotting decision
tree vs interactive evaluation [3]

random forests were much better at predicting the average
case rather than obscure fringe cases. Which is unsurprising,
due to the fact that random forests should be better able to
predict the cases that they encounter the most. There were
also large groupings of predictions around non-dotted six-
teenth, eighth, and quarter notes.

In the case of the pitch model ALYSIA was able to ob-
tain an accuracy of 72.28% accuracy. Ackerman et al. used
the same method breaking down and charting the predic-
tions compared to the expected note to calculate the pitch
accuracy as well. Unlike the rhythm model, the pitch model
had large evenly spaced groupings of predictions throughout
the octave. The error rate, depending on the note ranged
between 18.5% to 42.1% for non-modified notes. Whereas
the notes that had modifications, either a sharp or a flat
to change pitch, generally had a much higher error rates,
reaching 72.7% in one instance [1]. This indicates that the
program was much better at predicting notes when they fol-
lowed the original key signature of the piece, but experienced
a drop off of accuracy when predicting notes that may not
have fit as well with the flow of the melody. This loss of ac-
curacy in the pitch model, compared to the rhythm model,
may point towards an inherent increase in complexity when
predicting pitch.

Klinger et al. [3] did not provide the same level of concrete
data on their machine learning method as Ackerman et al. [1]
did for ALYSIA. One method that Klinger et al. used was an
interactive rating. A user would listen to the melodic output
and would then be prompted to give a rating from 0 to 10
in increments of 0.1. They then compared these interactive
results to the results of their other evaluation methods. We
will look at the comparison between a few decision trees, as
described in Section 2.3.1, and the interactive experience.

In Figure 11 we can see a comparison of three decision
trees with different numbers of fitness classes and levels of
pruning. Pruning is the process of removing section of the
decision tree that are ineffective at classifying fitness. What
this means is, nodes and branches are being removed from
the tree that do not constructively add to reaching a score.
This could be branches that have large amounts of repeated
questions, or nodes that are inconsequential over all. The
higher the number of fitness classes adds more granularity
to the way the decision tree can grade the melodies. A
decision tree with five fitness classes would still score from
zero to ten, but with increments of two. The individuals a to
l are sorted with respect to the interactive evaluation. The

tree with eleven fitness classes makes some errors on the bad
individuals and the unpruned one with five fitness classes is
questionable in the middle fitness area. The pruned tree
with five fitness classes leaves the best impression [3].

6. CONCLUSION
For ALYSIA, one of the main points for choosing random

forests and decision trees was to extrapolate reasons behind
the predictions of the forest. Pitch-wise, they found that
being able to look back at the previous note was by far the
most important feature. Where as, knowing the key signa-
ture of the piece proved about half as important as where the
melody had just been. This indicates that knowing where
the melody has just been can prove to be far more important
than other factors such as key signature that would have
been defined at the beginning of the piece. Interestingly,
they found that being able to look back to the fifth previous
note proved to be more important that looking back three
or four notes [1].

Rhythmically speaking, Ackerman et al. [1] found that
there was not a single feature that dominated everything
like the pitch model. They did find that beat strength was
the most important feature. Surprisingly, close behind in
third position, key signature also played an important role
in the production of rhythmic patterns. This was shocking
because key signature, conventionally, deals solely with pitch
values and has nothing to do with rhythmic.

For Klinger et al. [3], we can see that the tree that eval-
uated the most accurately, in comparison to the interactive
response, was the pruned tree with five fitness classes. This
may imply that a slight bit of human interaction during the
training or at the end may improve performance. Also, there
are a couple interesting fringe cases in Figure 11, mostly re-
lated to the eleven fitness class decision tree. For instance,
melody C, in the previously mention figure, was scored very
highly by the eleven fitness class tree, but very poorly by
the interactive score. The same thing happens but in re-
verse for melodies H and I. This may point towards the fact
that allowing more fitness classes results in a more complex
tree that looses its ability to score correctly.

In conclusion, Ackerman et al. [1] were able to extrapolate
some sense of reasoning behind the decision trees. Most of
the important features followed a logical approach to pro-
ducing music, but some of the important features ended up
being more surprising. Klinger et al. [3] was able to produce
melodies that rated very highly by both the decision trees
and the interactive experience. Generally the interactive ex-
perience and the autonomous scoring agreed fairly closely on
score, except for a few fringe cases related to the larger trees.

7. REFERENCES
[1] L. Ackerman. Algorithmic songwriting with alysia.

EvoMusArt, pages 1–16, March 2017.

[2] M. Forney, Dell‘antonio. The Enjoyment of Music.
WWNORTON, New York City, New York, 12th
edition, 2014.

[3] R. Klinger. Automatic composition of music with
methods of computational intelligence. WSEAS
TRANS, pages 1–16, March.

[4] Wikipedia. Decision trees - wikipedia, the free
encyclopedia, 2017. [Online; accessed September 12,
2017].


