
Secure Hash Algorithm 3

Courtney Cook
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

cookx876@morris.umn.edu

ABSTRACT
I discuss the Secure Hash Algorithm (SHA) 3, also known
as Keccak. Keccak uses the sponge construction, unlike pre-
vious SHAs, and I give an explanation of how both the con-
struction itself and the internal functions of Keccak work. I
investigate the security of SHA3 and briefly compare it to
that of SHA2 and SHA1.

Keywords
SHA, Sponge Construction, Keccak

1. INTRODUCTION
Nearly everything done online uses hash functions; from

password storage to site certification. However, algorithms
that take a long time to compute are not feasible in our
fast-paced world, no matter how secure they are. SHA3 is
the newest of the SHA standards, meaning all government
facilities and government contractors will be using at least
this level of security, so it is essential it is up to the task,
both cryptographically and by its efficiency [6]. Whether it’s
password storage or the transfer of credit card information,
a more widespread use of SHA3 will make the average user’s
information less likely to be stolen or changed in transit.

In section 2 I’ll provide background information necessary
to understand the function of SHA3, in section 3 I’ll describe
the base construction of SHA3, in section 4 I’ll explain the
details of SHA3’s inner functions, in section 5 I’ll provide
details on the security of SHA3, and in section 6 I’ll con-
clude.

2. BACKGROUND

2.1 Hash Functions
Hash functions are defined as any one-way function that

can be used to map data of arbitrary size to data of a fixed
size. Thus, the input cannot be calculated from the output,
and no matter how long the input is, the output will be a set
size dependent on which hash is being used. Hash functions
are often used as a way to certify that data has not been
changed. They should be collision-free and deterministic,
which respectively mean that two different inputs should
have different outputs and collisions are hard to find, and

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2018 Morris, MN.

hashing the same input several times should result in the
same output each time. When a document is run through
a hash function, the output is a unique ‘fingerprint’ of that
document, so if the document is ever changed the fingerprint
will change as well. [7]

Two important properties of hash functions are diffusion
and confusion. In order to implement confusion, a small
change in the input should result in a large change in the
output, and to implement diffusion that change should be
spread out over the output, not concentrated in any one part
of the input. This makes it difficult for attackers to guess at
the inputs based on the relative outputs.

The National Institute of Standards and Technology (NIST)
released a hashing standard in 1993, which was immediately
recalled by the National Security Agency. The NSA fixed
a few errors and then released Secure Hash Algorithm 1
(SHA1) in 1995. The previous hash was retroactively titled
SHA0.

SHA1 uses the Merkle-Damg̊ard construction, which pro-
cesses each block of the input with a one-way compres-
sion function using message digests. It is susceptible to
length-extension attacks, which is when an attacker adds
more information to a message without changing the hash,
so neither the sender nor the receiver realize anything was
changed.[9]

SHA2 was released in 2001, also by NIST. SHA2 consists
of six different functions which differ only in their digest
length. It also uses the Merkle-Damg̊ard construction, mak-
ing it also somewhat susceptible to length-extension attacks.

An important factor in hash functions is how easily colli-
sions can be found. Collisions are when two different inputs
result in the same output. In 2015 a method of finding
collisions in SHA1 was published, and in 2017 Google man-
aged to actually find a collision [3]. Theoretically, a similar
method could be used to find a collision in SHA2, because
of its construction.

Even before methods of finding collisions were known,
technology was evolving faster than the SHAs could keep
up with. In 2006 NIST sent out a call for submissions for a
new SHA to be sent in. Submissions closed in 2008. The en-
tered functions went through rigorous testing and study, and
the winner, built by Guido Bertoni, Joan Daemen, Michaël
Peeters, and Gilles Van Assche, and called Keccak, was of-
ficially named SHA3 in 2015.[6]

2.2 Operators
In this section we introduce the necessary notation for the

rest of the paper.

Exclusive Or, written XOR and denoted ⊕, is adding bits
modulo 2. If both bits are 0 or both are 1, the result is 0.
If only one bit is 1, the result is 1. It is applied bitwise,
without any carrying over. See the examples below.

AND, ∧, is bitwise multiplication. The only way for the
result to be 1 is for both factors to be 1, otherwise the result
is 0.

When operating on strings of more than 1 bit, line up the
strings and work straight down:

0011 ti.i0011

⊕ 0101 ∧ 0101

= 0110 = 0001

NOT, ¬, switches all 1s to 0s and all 0s to 1s. For example,
110010 becomes 001101. This operation only requires one
input string, instead of at least two like XOR and AND. [8]

2.3 Notation
Z∗2 is the set of all strings comprised of 0s and 1s, including

the empty string, which is a string with no 0s and no 1s.
Strings of 0 and 1 are where all work takes place.

A series of n 1s or 0s will be denoted 1n or 0n, therefore
13021 = 111001. If the amount is not specified or is variable,
we use 1∗ or 0∗. This could also mean no 1s or no 0s, and
thus be the empty string.

Let the concatenation of strings A and B be denoted A||B.
Concatenation is putting strings together consecutively, so
101||001 = 101001.

Truncating a string M to its first ` bits is denoted bMc`.
Thus b1100010c5 = 11000.

2.4 Linear Feedback Shift Registers
Shift registers are a set of binary states that shift over as

new data is inputted. A linear feedback shift register (LFSR)
is a shift register in which the next input value is determined
by the previous values. It is expressed as a polynomial, with
the highest power denoting the size of the internal state and
each subsequent power denoting which values will be XORed
together to determine the next input.[7]

For example, x3 + x2 + 1 means that the internal state is
3 bits long, and the bits at spaces 2 and 0 will be XORed.
If we start with a value of 101, the 1 at the right end is
outputted and that 1 and the 1 at the left end are XORed
to get 0, then shifted to the right, so the next state is 011
and the rightmost bit becomes the output: 1. Then the
bits 1 and 0 are XORed for 1 and the 0 is outputted, so
the state is 101 and the output so far is 10. You can keep
going, concatenating the output bits to the previous output,
until the output is as long as needed. LFSRs are often used
to make pseudo-random number generators, because if an
LFSR has a large unknown polynomial the outputs cannot
be predicted.

LFSRs will start to repeat after a period of time that
depends on the polynomial, but is at most 2p− 1 where p is
the highest power. If a long non-cyclic output is needed, a
very large-degree polynomial is required.

2.5 Padding
Hash functions require the input length be a multiple of a

specific block length r, so padding is concatenated to the end
of the input message. It also can be used to obfuscate the
input, so padding is added even if the original input is al-
ready a multiple of r in length. Let the message and padding

together be denoted as M||pad[r]. Padding often needs spe-
cific attributes, so we will use the following definitions from
[1].

Definition 1. A padding rule is sponge-compliant if it never
results in the empty string and if it satisfies the following
criterion:

∀n ≥ 0,∀M,M ′ ∈ Z∗2 : M 6= M ′ =⇒

M ||pad[r] 6= M ′||pad[r]||0nr

That is, if two messages are not the same, then the padded
version of the messages will not be the same, nor will they
only differ by the concatenation of n block-lengths of zeros.
Thus sponge-compliant padding schemes cannot be of the
form ‘pad with 0s until it is x blocks in length.’ In addition,
some padding must be added to ensure that the empty string
is never the input.

Definition 2. Simple padding, denoted by pad10*, appends
a single bit 1 followed by the minimum number of bits 0 such
that the length of the result is a multiple of the block length.

Simple padding will pad at least one bit, 1, and at most the
number of bits in a block, 10x−1. Here x is the block length.
For example, given a string 010110 and a block length 4,
simple padding will concatenate 10 to the end for a result of
01011010, which is 8 bits long. This is often not sufficient
for security, because XORing a bit with a 0 results in that
bit, which is then viewable and can be used to decrypt the
rest of the block if enough padding was appended. That is,
if the block length is 32 and the input is 32 bits, 1031 will
be appended, giving a whole block of mostly 0s. The next
simplest padding scheme is needed.

Definition 3. Multi-rate padding, denoted by pad10*1, ap-
pends a single bit 1 followed by the minimum number of bits
0 followed by a single bit 1 such that the length of the result
is a multiple of the block length.

Multi-rate padding ensures that the last block of input
is not composed entirely of zeros. It appends at least two
bits, 11, and at most the number of bits in a block plus 1,
10x−11. Given the string 0101101 and block length 4, Multi-
rate padding will add a 1 then 3 0s, then another 1, for a
result of 010110110001, which is 12 bits long.

3. SPONGE CONSTRUCTION
SHA3 is built using a method known as a sponge construc-

tion [2]. A sponge construction has variable-length input
and output, up to multiples of its block size r. This makes
it very versatile and leads to an easier implementation than
other functions. [1]

3.1 Overview of Sponge Construction
A sponge construction consists of a fixed-length compres-

sion function f , the padding to be used, and the bitrate r,
which is the same as the block size. All the work of the con-
struction and function will run in a state, denoted S. The
state has two parts: the bitrate and the capacity. Some-
times the capacity c is also specified in the function call, but
if not, c is calculated using the given r and the default value
of s, which is the length of S. The sponge construction is so

Figure 1: XORing blocks into the state, without f

named because it has two main parts: the absorbing phase
and the squeezing phase.

To begin, all the bits in S are initialized to zero. The
input message is padded following the rules given in Section
2.5 for multi-rate padding and cut into blocks of length r.
The r-bit input blocks are XORed into the first r bits of the
state, interleaved with applications of f . This means that
the function f is run between every block XORing. This
compresses the input down into an s-sized block. Thus, Si

= f(Si−1 ⊕ blocki). Figure 1 shows an example of blocks
being absorbed into S, without the interleaving of f .

Once all the message blocks have been processed, the state
is squeezed: the first r bits of the state are returned as output
blocks concatenated with any previous output, interleaved
again with applications of f . The number of output blocks
is chosen by the user.

The last c bits of the state are never directly affected by
the input, nor are they ever directly output by the squeez-
ing. That is, the capacity bits of a state si are never output
during the squeezing of state si, though depending on the
compression function some may be outputted later. This
makes length-extension attacks impossible under normal op-
eration, because an attacker never knows the entire state at
a single time.

3.2 Example of Sponge Construction
Let us call the function sponge[g, 10∗1, 4] where g is the

compression function, and g = Circular Left Shift by 1. The
bitrate is 4, and the capacity is 3. The input will be 0101101,
and we want our output to be 12 bits long.

The state is set to 0000000. The input 0101101 is concate-
nated with the padding, then split into 4-bit size chunks:
0101 1011 0001. Each chunk is then concatenated with 0s
until they are the length of the state, so the capacity bits
are not changed: 0101000, 1011000, and 0001000. The state
becomes the old state XORed with each chunk and then run
through g in rounds until all blocks have been absorbed.

round 1:

S = 0000000 //the state is set to all zeroes

S = 0000000

⊕ 0101000

= 0101000

S = g(S) = 1010000 //the state is g(previous state)

round 2:

S = 1010000

⊕ 1011000

= 0001000

S = g(S) = 0010000

round 3:

S = 0010000

⊕ 0001000

= 0011000

S = g(S) = 0110000

Once we absorb the entire input the squeezing begins.
We’ll use Z as the output.

Z = bSc4 = 0110

round 1:

S = g(S) = 1100000

Z = Z||bSc4 = 01101100

round 2:

S = g(S) = 1000001

Z = Z||bSc4 = 011011001000

Now our output is the desired length, and we return Z =
011011001000, which is the hash of the input 0101101.

This is a simplified example, with our compression func-
tion being a circular shift. The actual compression function
used for SHA3 is much more complicated.

4. THE INNER FUNCTION
Most of the work done in Keccak is done by its inner f

function, of which there are 7 different permutations, called
Keccak-f [b]. Here b=25·2` and ` goes from 0 to 6, so b
ranges from 25 to 1600 and is the width of the permutation.
A larger b means a higher security level. Each Keccak-f [b]
is a permutation over Zb2, the set of all strings composed of
0s and 1s that are of length b.

Each permutation Keccak-f [b] is a series of operations on
a state α, which can be best visualized as a three-dimensional
array, as opposed to the sponge state S which is thought of
as one-dimensional. α has the construction α[5][5][w], with
5 and w being the lengths of each array and w = 2`. Then,
for each x and y between 0 and 4 and z between 0 and w-1,
α[x][y][z] corresponds to the position (x, y, z), which is a bit
0 or 1. This can also be written as α[x, y, z]. See Figure 2
for terminology used to describe the state α.

For the purposes of switching between the three-dimensional
Keccak state α and the one-dimensional sponge construction
state S, α maps to S by

S[w(5y+x)+z] = α[x][y][z] (1)

For example, in Keccak-f [25], α[1][1][1] maps to S[7]. All
operations on x or y are done modulo 5, and operations on
z are done modulo w.

Figure 2: Terminology for the state α [2]

Keccak consists of nr rounds of R, where R = ι ◦ χ ◦ π ◦
ρ ◦ θ. Each function is defined below. nr = 12+2`, and thus
changes for each variation of Keccak. The pseudocode in
subsequent sections is taken from [2].

4.1 Transformations of Keccak
ROT(a, b) indicates all bits of a being shifted over by b

spaces, that is, a[x] → a[x + b mod (w-1)], where w is the
length of a. Each of the following subsections details the
functions of R, starting from the right, which are applied
first.

4.1.1 Transformation θ

Figure 3: Theta
1: for x = 0 to 4 do
2: C[x] = α[x, 0]
3: for y = 1 to 4 do
4: C[x] = C[x] ⊕ α[x, y]
5: end for
6: end for
7: for x = 0 to 4 do
8: D[x] = C[x− 1]⊕ ROT (C[x+ 1], 1)
9: for y = 0 to 4 do

10: α[x, y] = α[x, y]⊕ D[x]
11: end for
12: end for

As seen in Figure 3, each lane in the bottom row of x is put
into a new array C, with one entry for each row. The lanes
in the rows above are XORed into the ones below, flattening

the state into a 2-dimensional array. Then another array is
constructed, D, and its entry in each index is the XOR of
the C entries in the previous and next indices, with the next
index shifted one bit over first. See Figure 4, where the bit
marked with o is the XOR of the bits marked with x. The
original state α is then XORed with its corresponding D
entry and becomes the new state.

Figure 4: Example of how a bit in D is calculated

θ is run in order to increase the diffusion of Keccak, and
is always run first, though the order of the other transfor-
mations was arbitrarily chosen.

4.1.2 Transformation π

Figure 5: Pi
1: for x = 0 to 4 do
2: for y = 0 to 4 do

3:

[
a
b

]
=

[
0 1
2 3

] [
x
y

]
4: α[x, y] = α[a, b]
5: end for
6: end for

The state is permuted by lanes according to the matrix
multiplication shown in Figure 5, so the lane at [1,1] becomes
the lane at [1,0]. Note that [0,0] remains the same. Figure
7 shows how the lanes are permuted, with [0,0] being at the
center. π is run to increase long-term diffusion.

4.1.3 Transformation ρ

Each lane in the state is shifted by a function of t, given
in Figure 6, Line 4. The order in which they are shifted is
given by the matrix multiplication, and so the order is also
given by Figure 7. Thus, the lane at (0,0) is not shifted.
The value of t changes for each lane shift. The function ρ is
run for diffusion between the slices.

Figure 6: Rho

1:

[
x
y

]
=

[
1
0

]
2: for t = 0 to 23 do
3: α[x, y] = ROT (α[x, y], (t+ 1)(t+ 2)/2)

4:

[
x
y

]
=

[
0 1
2 3

] [
x
y

]
5: end for

Figure 7: Permutation of rows in π and order of
shifts of rows in ρ [2]

4.1.4 Transformation χ

Figure 8: Chi
1: for x = 0 to 4 do
2: for y = 0 to 4 do
3: α[x, y] = α[x, y]⊕ ((¬ α[x+ 1, y]) ∧ α[x+ 2, y])
4: end for
5: end for

The NOT of the next lane, ANDed with the lane two
over, is then XORed with the current lane (Figure 8, Line
3). AND is non-linear because it is a bent function, meaning
it is as far from a linear function as possible and difficult to
approximate. Because XOR is linear but AND is not, χ is
the only transformation in Keccak that is non-linear, and is
important for this reason.

4.1.5 Transformation ι

Figure 9: Iota
1: α[0][0] = α[0][0]⊕RCir

Round Constants are introduced to disrupt symmetry, be-
cause symmetry can be exploited. The number of bits that
are not equal to 0 is set to ` + 1, so as ` increases, so does
the asymmetry. The Round Constants are different between
rounds, and are determined by a linear feedback shift regis-
ter:

RC[t] = (xt mod x8 + x6 + x5 + x4 + 1)mod x

This LFSR means that the exponent xt is reduced to its
congruent polynomial in mod x8 + x6 + x5 + x4 + 1, similar
to how integers can be reduced mod an integer. Then that
polynomial is reduced mod x, meaning all values of x are
set to 0. The resulting bit will be either a 1 or a 0, the
coefficient of x0. Thus RC − ir are the round constants for
round ir. The Round Constants are XORed with a single
lane in the state, α[0,0], but will be propagated to all lanes
within a single round by χ and θ.

4.2 Running
To begin, S is initialized to 0s, which is called the root

state. The function is called by Keccak[r,c], where, again,
r is the bitrate and c is the capacity, and r+c=s. A high
bitrate and lower capacity will be faster, but a lower bitrate
and a high capacity will be more secure. The default c value
is 576, and the default r value is 1600-c. Therefore if r and
c are not specified, r is equal to 1024 and c is equal to 576.

The first block of the input is XORed into S. Then S is
mapped to α via the function in Equation 1 and R, the
composition of the five functions, is run nr = 12 + 2` times.
α is mapped back to S and the next block is XORed in. This
continues until the entire message has been absorbed. It is
then squeezed, still mapping between S and α and running
R nr times in between each output truncation.

5. CRYPTANALYSIS
Differential fault analysis (DFA) is an attack where at-

tackers inject faults into the internal intermediate variables
and then analyze the difference between the outputs to re-
cover the entire state. Faults are when a bit is flipped, either
intentionally by an attacker or accidentally. Algebraic fault
analysis (AFA) is more powerful than DFA in that it is both
more effective and efficient than DFA and also can be auto-
mated to a high degree, thus reducing the manpower needed
for analysis [4].

Lou, Athanasiou, Fei, and Wahl demonstrated that at-
tackers can insert a byte fault into the penultimate round
of SHA3, where l = 1. A byte fault is when single byte of
a message is changed, some of the bit values switching be-
tween 1 and 0 and some remaining the same. Though they
have no control over where the fault is inserted in the state
nor what the fault is, they can then see both the correct
output H and the faulty output H’. Each is a set of equa-
tions: H = ι23 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι22 ◦ χ ◦ π ◦ ρ ◦ θ(θ22ι) and
H’ = ι23 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι22 ◦ χ ◦ π ◦ ρ ◦ θ(θ22ι ⊕ ∆θ22ι),
where ∆θ22ι is the injected fault. That is, given the input
θ22ι for the penultimate round of SHA3, the output will be
H. θ22ι means the value of theta after the 22nd time round
constants are introduced in iota, zero-indexed.

To use AFA, they turn these equations into a boolean
satisfiability problem, also called an SAT, and then let their
automation of the problem run. SATs are problems asking
if there is a way to insert either TRUE or FALSE for each
variable and have it evaluate to TRUE. If there is no way
for this to happen, such as in “a AND NOT a,” the SAT is
said to be unsatisfiable.

Using H and H’, χ22
ι can be found. Because all the oper-

ations in R are reversible, once the entire internal state at
any stage has been found, the original message can be found.
Finding χ22

ι required 39360 variables and 52160 equations,
but was computed in seconds using CryptoMiniSat, a SAT
solver. This can be improved by first identifying the fault,
than narrowing the search space accordingly [4].

Faults are injected several times and the outputs are com-
pared in order to retrieve the entire χ22

ι . On average, 80 bits
can be recovered from each fault, though they often overlap,
so more than |χ22

ι | / 80 fault injections are needed.
To protect against injected faults and random errors, many

cryptological functions either make two copies of each mes-
sage or use parity checking. Parity bits are non-message bits
added into a string, used to check that all bits in a string

were transmitted correctly. Luo, Li, and Fei offer a struc-
ture for parity checking in Keccak that is both time- and
resource-efficient [5]. They propose that the parity checks
for χ and ι can be merged, and the checks for π and ρ can,
at worst time efficiency, be merged, at best are unneeded
entirely. Thus, only two or three parity checkers are needed
to cover all five functions of R.

6. CONCLUSION
A user of the Secure Hash Algorithm 3 has remarkable

control over how the function will operate. While hashes
in general are used to map data to fixed-size strings, SHA3
offers many different output sizes. Users can adjust to their
preferred level of security versus operation time using r and c
and by using different permutations of the function. Because
SHA3 uses a different construction than SHAs 1 and 2, it is
not vulnerable to length-extension attacks nor can a collision
be found in the same manner as for SHA1. The functions
in R are such that diffusion and confusion are present, so
SHA3 is secure. As technology gets better, our protection
needs to match. Given that a collision has been found for
SHA1, SHA3 is the next step in internet security.

Acknowledgments
Thank you to Elena Machkasova, my advisor and senior sem-
inar professor, for her advice, feedback, patience, and for
teaching a cryptography class that I found incredibly enjoy-
able. Thank you also to my alum reviewer Kevin Arhelger
and to my second reader Nic McPhee for their helpful criti-
cism.

7. REFERENCES
[1] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.

Cryptographic sponge functions. SHA-3 competition
(round 3), 2011.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.
The Keccak reference. SHA-3 competition (round 3),
2011.

[3] Cryptology Group at Centrum Wiskunde Informatica
and Google. Shattered. https://shattered.io/.
[Online; accessed 4-December-2018].

[4] P. Luo, K. Athanasiou, Y. Fei, and T. Wahl. Algebraic
fault analysis of SHA-3. Proceedings of the Conference
on Design, Automation Test in Europe, 2017.

[5] P. Luo, C. Li, and Y. Fei. Concurrent error detection
for reliable SHA-3 design. Proceedings of the 26th
edition on Great Lakes Symposium on VLSI, 2016.

[6] N. I. of Standards and Technology. SHA-3 standard:
Permutation-based hash and extendable-output
functions. FEDERAL INFORMATION PROCESSING
STANDARDS PUBLICATION, 2015.

[7] C. Paar and J. Pelzl. Understanding Cryptography: A
Textbook for Students and Practitioners. Springer
Publishing Company, Incorporated, 1st edition, 2009.

[8] Wikipedia contributors. Bitwise operation —
Wikipedia, the free encyclopedia. [Online; accessed
2-November-2018].

[9] Wikipedia contributors. Secure hash algorithms —
Wikipedia, the free encyclopedia. [Online; accessed
4-December-2018].

