Secure Hash Algorithm 3

Courtney Cook

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

> 17 November 2018 Senior Seminar

Almost everything you do online uses a hash function

Almost everything you do online uses a hash function

Passwords

Almost everything you do online uses a hash function

- Passwords
- Site certificates

Almost everything you do online uses a hash function

- Passwords
- Site certificates
- Message authentication

"Any function that can be used to map data of arbitrary size to data of a fixed size"

"Any function that can be used to map data of arbitrary size to data of a fixed size"

SHA-256[My] ->

8ed6791bdf3d61a1e6edcbb253979b0a6bef7f3d99dda0fb49cffe96923514b6

SHA-256[My name is Courtney] ->

543ab313f11d6316f84438e074964058613ffa595f1494f81eeafad23364b7cb

SHA-256, www.movable-type.co.uk

"Any function that can be used to map data of arbitrary size to data of a fixed size"

SHA-256[My] ->

8ed6791bdf3d61a1e6edcbb253979b0a6bef7f3d99dda0fb49cffe96923514b6

SHA-256[My name is Courtney] ->

543ab313f11d6316f84438e074964058613ffa595f1494f81eeafad23364b7cb

SHA-256[My name is Courtnet] ->

602e1fad697d322020a89b03339458cdcfabfef70a6173ae1daf4feafebe4a76

SHA-256, www.movable-type.co.uk

"Any function that can be used to map data of arbitrary size to data of a fixed size"

SHA-256[My] ->

8ed6791bdf3d61a1e6edcbb253979b0a6bef7f3d99dda0fb49cffe96923514b6

SHA-256[My name is Courtney] ->

543ab313f11d6316f84438e074964058613ffa595f1494f81eeafad23364b7cb

SHA-256[My name is Courtnet] ->

602e1fad697d322020a89b03339458cdcfabfef70a6173ae1daf4feafebe4a76

HASH[Pay me \$30] = HASH[You owe me \$50] \leftarrow collision!

SHA-256, www.movable-type.co.uk

Outline

- Background
 - History
 - Operators
 - Notation
 - Liner Feedback Shift Registers
 - Padding
- Base Construction
- Inner Workings
- Conclusion

Outline

- Background
 - History
 - Operators
 - Notation
 - Liner Feedback Shift Registers
 - Padding
- Base Construction
- Inner Workings
- 4 Conclusion

SHA1 - 1995, NSA. 160 bits. Somewhat vulnerable to collisions and length-extension attacks

SHA1 - 1995, NSA. 160 bits. Somewhat vulnerable to collisions and length-extension attacks

SHA2 - 2001, NSA. 224, 256, 384 or 512 bits.

SHA1 - 1995, NSA. 160 bits. Somewhat vulnerable to collisions and length-extension attacks

SHA2 - 2001, NSA. 224, 256, 384 or 512 bits.

SHA3 - 2015, chosen via competition.

XOR (\oplus) : Adding bits modulo 2

0011

⊕0101

=0110

XOR (⊕) : Adding bits modulo 2

AND (△) : Multiplying bits modulo 2

0011 0011 ⊕0101 ∧0101 =0110 =0001

XOR (\oplus) : Adding bits modulo 2

AND (∧) : Multiplying bits modulo 2

NOT (\neg) : Bit flipping

 \neg (0011)

0011 ⊕0101 =0110 0011 ∧0101 =0001

101 =1100

Working in set of all strings of 0s and 1s $(\varepsilon, 0, 1, 0010101, 100001, etc)$

Working in set of all strings of 0s and 1s $(\varepsilon, 0, 1, 0010101, 100001, etc)$

Concatenation of strings A and B is A||B. (0100||101 = 0100101)

```
Working in set of all strings of 0s and 1s (\varepsilon, 0, 1, 0010101, 100001, etc)
```

Concatenation of strings A and B is A||B. (0100||101 = 0100101)

Truncating M to its first ℓ bits is $\lfloor M \rfloor_{\ell}$. $(|10110100|_4 = 1011)$

```
Working in set of all strings of 0s and 1s (\varepsilon, 0, 1, 0010101, 100001, etc)
```

Concatenation of strings A and B is A||B. (0100||101 = 0100101)

Truncating M to its first ℓ bits is $\lfloor M \rfloor_{\ell}$. (|10110100|₄ = 1011)

A series of n 0s or 1s will be written 0^n or 1^n So 111100 can be written 1^40^2 If the number of bits is unknown, we'll use 0^* or 1^*

Liner Feedback Shift Registers are given as polynomial

Liner Feedback Shift Registers are given as polynomial Input is a linear function of previous state

Liner Feedback Shift Registers are given as polynomial Input is a linear function of previous state $x^3 + x^2 + 1$ means:

Liner Feedback Shift Registers are given as polynomial

Input is a linear function of previous state

$$x^3 + x^2 + 1$$
 means:

- internal state is 3 bits long

Liner Feedback Shift Registers are given as polynomial

Input is a linear function of previous state

$$x^3 + x^2 + 1$$
 means:

- internal state is 3 bits long
- get next bits by XORing bits at spaces 0 and 2

Liner Feedback Shift Registers are given as polynomial Input is a linear function of previous state

$$x^3 + x^2 + 1$$
 means:

- internal state is 3 bits long
- get next bits by XORing bits at spaces 0 and 2

LFSR 100

Output

Liner Feedback Shift Registers are given as polynomial Input is a linear function of previous state

$$x^3 + x^2 + 1$$
 means:

- internal state is 3 bits long
- get next bits by XORing bits at spaces 0 and 2

LFSR	Output
100	- -
110	0

Liner Feedback Shift Registers are given as polynomial

$$x^3 + x^2 + 1$$
 means:

internal state is 3 bits long

Input is a linear function of previous state

- get next bits by XORing bits at spaces 0 and 2

LFSR	Output
100	-
110	0
111	0

Liner Feedback Shift Registers are given as polynomial

Input is a linear function of previous state

$$x^3 + x^2 + 1$$
 means:

- internal state is 3 bits long
- get next bits by XORing bits at spaces 0 and 2

LFSR	Outpu
100	=
110	0
111	0
011	1

Padding

Hash functions work with a specific block size

Hash functions work with a specific block size

Protect against extension attacks

Hash functions work with a specific block size

Protect against extension attacks

Multi-rate padding : input = M||10*1

Hash functions work with a specific block size

Protect against extension attacks

Multi-rate padding : input = M||10*1

The number of 0s depends on how many are needed to complete a block.

Hash functions work with a specific block size

Protect against extension attacks

Multi-rate padding : input = M||10*1

The number of 0s depends on how many are needed to complete a block.

0110011 with a block size of 4 becomes

0110|011 0110|0111|0001

Outline

- Background
- Base Construction
- Inner Workings
- Conclusion

Transformation *f*, padding, and the bitrate r (and capacity c) r+c=length of state s

Transformation f, padding, and the bitrate r (and capacity c) r+c=length of state s

Variable input and output length, but fixed-length transformation

Transformation f, padding, and the bitrate r (and capacity c) r+c=length of state s

Variable input and output length, but fixed-length transformation

Absorbing: XOR r-length blocks into *s*, interleaved with the transformation

Transformation f, padding, and the bitrate r (and capacity c) r+c=length of state s

Variable input and output length, but fixed-length transformation

Absorbing: XOR r-length blocks into *s*, interleaved with the transformation

Squeezing: output r-length blocks, interleaving with transformation *f*

Small Example

Small Example

Input: 10010100

f(x): Circular Left Shift by 1 (Shift left by 1 bit)

Block length: 4

Capacity: 2

Output length: 12

Small Example

Input: 10010100

f(x): Circular Left Shift by 1 (Shift left by 1 bit)

Block length: 4 Capacity: 2

Output length: 12

Padding:

1001 0100 1001

1001 0100 1001

Absorb:

$$s_0^a = 000000$$

 $s_1^a = s_0^a \oplus 1001||00$

000000

 $\oplus 100100$

=100100

$$s_2^a = f(s_1^a)$$

= $f(100100)$
= 001001

1001<u>0100</u>1001

Absorb:

$$s_2^a = 001001$$

 $s_3^a = s_2^a \oplus 0100||00$

001001 ⊕010000

=011001

$$s_4^a = f(s_3^a)$$

= $f(011001)$

=110010

1001 0100 <u>1001</u>

Absorb:

$$s_4^a = 110010$$

 $s_5^a = s_4^a \oplus 1001 || 00$

$$\begin{array}{r}
110010 \\
\oplus 100100 \\
=010110 \\
s_6^a = f(s_5^a) \\
= f(010110) \\
= 101100
\end{array}$$

1001 0100 1001

Absorb:

$$s_4^a = 110010$$

 $s_5^a = s_4^a \oplus 1001 || 00$

110010 ⊕100100 =010110

$$s_6^a = f(s_5^a)$$

= $f(010110)$
= 101100

$$Z = \varepsilon$$
$$s_0^s = 101100$$

1001 0100 1001

Absorb:

$$s_4^a = 110010$$

 $s_5^a = s_4^a \oplus 1001 || 00$

$$\begin{array}{c}
110010 \\
\oplus 100100 \\
= 010110
\end{array}$$

$$s_6^a = f(s_5^a)$$

= $f(010110)$
= 101100

$$Z = \varepsilon$$
 $s_0^s = 101100$

$$Z = \lfloor s_0^s \rfloor_4$$

= 1011

1001 0100 1001

Absorb:

$$s_4^a = 110010$$

 $s_5^a = s_4^a \oplus 1001 || 00$

$$110010
\oplus 100100
= 010110
s_6^a = f(s_5^a)
= f(010110)
= 101100$$

$$Z = \varepsilon$$
 $s_0^s = 101100$

$$Z = \lfloor s_0^s \rfloor_4$$

= 1011
 $s_1^s = f(s_0^s)$
= $f(101100)$
= 011001

1001 0100 1001

Absorb:

$$s_4^a = 110010$$

 $s_5^a = s_4^a \oplus 1001 || 00$

$$110010
\oplus 100100
=010110
s_6^a = f(s_5^a)
= f(010110)$$

=101100

$$Z = 1011$$

 $s_1^s = 011001$

$$\begin{split} Z &= Z || \lfloor s_1^s \rfloor_4 \\ &= 1011 |0110 \end{split}$$

1001 0100 1001

Absorb:

$$s_4^a = 110010$$

 $s_5^a = s_4^a \oplus 1001 || 00$

$$110010
\oplus 100100
=010110
s_6^a = f(s_5^a)
= f(010110)
=101100$$

$$Z = 1011$$

 $s_1^s = 011001$

$$Z = Z||[s_1^s]_4$$

= 1011|0110
 $s_2^s = f(s_1^s)$
= $f(011001)$
= 110010

1001 0100 1001

Absorb:

$$s_4^a = 110010$$

 $s_5^a = s_4^a \oplus 1001 || 00$

$$s_6^a = f(s_5^a)$$

= $f(010110)$
= 101100

$$Z = 1011 | 0110$$

 $s_2^s = 110010$

$$Z = Z||\lfloor s_2^s \rfloor_4$$

= 1011|0110|1100

1001 0100 1001

Absorb:

$$s_4^a = 110010$$

 $s_5^a = s_4^a \oplus 1001 || 00$

$$s_6^a = f(s_5^a)$$

= $f(010110)$
= 101100

Squeeze:

$$Z = 1011|0110$$

 $s_2^s = 110010$

$$Z = Z||[s_2^s]_4$$

= 1011|0110|1100

Output: 101101101100

Outline

- Background
- Base Construction
- Inner Workings
- Conclusion

There are 7 different versions of Keccak, labelled 0-6 (ℓ)

There are 7 different versions of Keccak, labelled 0-6 (ℓ)

Consists of n_r rounds of R, where R = $\iota \circ \chi \circ \rho \circ \pi \circ \theta$. $n_r = 12+2\ell$

There are 7 different versions of Keccak, labelled 0-6 (ℓ)

Consists of n_r rounds of R, where $R = \iota \circ \chi \circ \rho \circ \pi \circ \theta$.

$$n_r = 12 + 2\ell$$

Works on state $\alpha = [5][5][w]$

$$w=2^\ell$$

There are 7 different versions of Keccak, labelled 0-6 (ℓ)

Consists of n_r rounds of R, where

$$\mathsf{R} = \iota \circ \chi \circ \rho \circ \pi \circ \theta.$$

$$n_r = 12+2\ell$$

Works on state $\alpha = [5][5][w]$

$$w = 2^{\ell}$$

$$s[w(5y+x)+z]=\alpha[x][y][z]$$

There are 7 different versions of Keccak, labelled 0-6 (ℓ)

Consists of n_r rounds of R, where

$$\mathsf{R} = \iota \circ \chi \circ \rho \circ \pi \circ \theta.$$

$$n_r = 12+2\ell$$

Works on state
$$\alpha = [5][5][w]$$

$$w=2^{\ell}$$

$$s[w(5y+x)+z]=\alpha[x][y][z]$$

Keccak-0:

$$\alpha[1][1][1] \rightarrow s[2^0(5*1+1)+1] = s[7]$$

There are 7 different versions of Keccak, labelled 0-6 (ℓ)

Consists of n_r rounds of R, where

$$\mathsf{R} = \iota \circ \chi \circ \rho \circ \pi \circ \theta.$$

$$n_r = 12+2\ell$$

Works on state $\alpha = [5][5][w]$

$$w=2^\ell$$

$$s[w(5y+x)+z]=\alpha[x][y][z]$$

Keccak-0:

$$\alpha[1][1][1] \rightarrow s[2^0(5*1+1)+1] = s[7]$$

The state of Keccak [Keccak Reference]

Theta

```
FOR x = 0 to 4
    C[x][z] := \alpha[x][0][z]
    FOR y = 1 to 4
       C[x][z] := C[x][z] \oplus \alpha[x][y][z]
   END FOR
END FOR
FOR x = 0 to 4
   D[x][z] := C[x-1][z] \oplus C[x+1][z-1]
   FOR y = 0 to 4
      \alpha[x][y][z] := \alpha[x][y][z] \oplus D[x][z]
   FND FOR
END FOR
```

Theta

```
FOR x = 0 to 4
    C[x][z] := \alpha[x][0][z]
    FOR y = 1 to 4
       C[x][z] := C[x][z] \oplus \alpha[x][y][z]
   END FOR
END FOR
FOR x = 0 to 4
   D[x][z] := C[x-1][z] \oplus C[x+1][z-1]
   FOR y = 0 to 4
      \alpha[x][y][z] := \alpha[x][y][z] \oplus D[x][z]
   FND FOR
END FOR
```

The state is collapsed down into 2 dimensional plane in array C

FOR x = 0 to 4

Theta

```
C[x][z] := \alpha[x][0][z]
    FOR y = 1 to 4
       C[x][z] := C[x][z] \oplus \alpha[x][y][z]
   END FOR
END FOR
FOR x = 0 to 4
   D[x][z] := C[x-1][z] \oplus C[x+1][z-1]
   FOR y = 0 to 4
      \alpha[x][y][z] := \alpha[x][y][z] \oplus D[x][z]
   FND FOR
END FOR
```

The state is collapsed down into 2 dimensional plane in array C

D's entries are XOR of previous and diagonal next entries of C

Theta

```
FOR x = 0 to 4
    C[x][z] := \alpha[x][0][z]
    FOR y = 1 to 4
       C[x][z] := C[x][z] \oplus \alpha[x][y][z]
   END FOR
END FOR
FOR x = 0 to 4
   D[x][z] := C[x-1][z] \oplus C[x+1][z-1]
   FOR y = 0 to 4
      \alpha[x][y][z] := \alpha[x][y][z] \oplus D[x][z]
   FND FOR
END FOR
```

The state is collapsed down into 2 dimensional plane in array C

D's entries are XOR of previous and diagonal next entries of C

 α XORed with corresponding D entry

Theta

```
FOR x = 0 to 4
    C[x][z] := \alpha[x][0][z]
    FOR y = 1 to 4
       C[x][z] := C[x][z] \oplus \alpha[x][y][z]
   END FOR
END FOR
FOR x = 0 to 4
   D[x][z] := C[x-1][z] \oplus C[x+1][z-1]
   FOR y = 0 to 4
      \alpha[x][y][z] := \alpha[x][y][z] \oplus D[x][z]
   FND FOR
END FOR
```

The state is collapsed down into 2 dimensional plane in array C

D's entries are XOR of previous and diagonal next entries of C

 α XORed with corresponding D entry

For massive diffusion

FOR x = 0 to 4

FOR y = 0 to 4

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\alpha[a][b][z] := \alpha[x][y][z]$$
END FOR
END FOR

Ρi

FOR x = 0 to 4 FOR y = 0 to 4 $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ $\alpha[a][b][z] := \alpha[x][y][z]$ END FOR END FOR

Lanes shifted

Ρi

FOR x = 0 to 4 FOR y = 0 to 4 $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ $\alpha[a][b][z] := \alpha[x][y][z]$ END FOR END FOR

Lanes shifted

For long-term diffusion

$$\mathsf{R} = \iota \circ \chi \circ \underline{\rho} \circ \pi \circ \theta.$$

Rho

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
FOR t = 0 to 23
$$\alpha[x][y] := ROT(\alpha[x][y], (t+1)(t+2)/2)$$

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
END FOR

Rho

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
FOR t = 0 to 23
$$\alpha[x][y] := ROT(\alpha[x][y], (t+1)(t+2)/2)$$

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
END FOR

Every lane is rotated by a function of t:

$$\frac{(t+1)(t+2)}{2}$$

Rho

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
FOR t = 0 to 23
$$\alpha[x][y] := ROT(\alpha[x][y], (t+1)(t+2)/2)$$

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
END FOR

Every lane is rotated by a function of t:

$$\frac{(t+1)(t+2)}{2}$$

Order the lanes are rotated = lane shift in π

Rho

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
FOR t = 0 to 23
$$\alpha[x][y] := ROT(\alpha[x][y], (t+1)(t+2)/2)$$

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
END FOR

Every lane is rotated by a function of t:

$$\frac{(t+1)(t+2)}{2}$$

Order the lanes are rotated = lane shift in π

So when t = 2, rotate lane at α [2][3] by 6

Rho

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
FOR t = 0 to 23
$$\alpha[x][y] := ROT(\alpha[x][y], (t+1)(t+2)/2)$$

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
FND FOR

Every lane is rotated by a function of t:

$$\frac{(t+1)(t+2)}{2}$$

Order the lanes are rotated = lane shift in π

So when t = 2, rotate lane at α [2][3] by 6

For inter-slice dispersion

Chi

```
FOR x = 0 to 4

FOR y = 0 to 4

\alpha[x][y] := \alpha[x][y]

\oplus (\neg \alpha[x+1][y] \land \alpha[x+2][y])

END FOR

END FOR
```

Chi

```
FOR x = 0 to 4

FOR y = 0 to 4

\alpha[x][y] := \alpha[x][y]

\oplus (\neg \alpha[x+1][y] \land \alpha[x+2][y])

END FOR

END FOR
```

NOT of lane in next x spot AND lane two x spots over

Chi

```
FOR x = 0 to 4

FOR y = 0 to 4

\alpha[x][y] := \alpha[x][y]

\oplus (\neg \alpha[x+1][y] \land \alpha[x+2][y])

END FOR

END FOR
```

NOT of lane in next x spot AND lane two x spots over XOR with original lane

Chi

FOR x = 0 to 4
FOR y = 0 to 4

$$\alpha[x][y] := \alpha[x][y]$$

 $\oplus (\neg \alpha[x+1][y] \land \alpha[x+2][y])$
END FOR
END FOR

NOT of lane in next x spot AND lane two x spots over XOR with original lane

Non-linear

$$\mathsf{R} = \underline{\iota} \circ \chi \circ \pi \circ \rho \circ \theta.$$

$$\alpha$$
[0][0] := α [0][0] \oplus RC_{ir}

$$\mathsf{R} = \underline{\iota} \circ \chi \circ \pi \circ \rho \circ \theta.$$

$$\alpha$$
[0][0] := α [0][0] \oplus RC_{ir}

RC_{ir} determined by a Linear Feedback Shift Register

$$\mathsf{R} = \underline{\iota} \circ \chi \circ \pi \circ \rho \circ \theta.$$

$$\alpha$$
[0][0] := α [0][0] \oplus RC_{ir}

RC_{ir} determined by a Linear Feedback Shift Register

Changes from round to round Number of non-zero bits is $\ell+1$

$$\mathsf{R} = \underline{\iota} \circ \chi \circ \pi \circ \rho \circ \theta.$$

$$\alpha$$
[0][0] := α [0][0] \oplus RC_{ir}

RC_{ir} determined by a Linear Feedback Shift Register

Changes from round to round Number of non-zero bits is $\ell+1$ (Meaning if $\ell=4$, there are 16 bits, of which 5 are 1s)

$$\mathsf{R} = \underline{\iota} \circ \chi \circ \pi \circ \rho \circ \theta.$$

 α [0][0] := α [0][0] \oplus RC_{i_r}

RC_{ir} determined by a Linear Feedback Shift Register

Changes from round to round Number of non-zero bits is $\ell+1$ (Meaning if $\ell=4$, there are 16 bits, of which 5 are 1s)

LFSR output is XORed with lane at α [0][0]

$$\mathsf{R} = \underline{\iota} \circ \chi \circ \pi \circ \rho \circ \theta.$$

 α [0][0] := α [0][0] \oplus RC_{ir}

RCir determined by a Linear Feedback Shift Register

Changes from round to round Number of non-zero bits is ℓ +1 (Meaning if ℓ =4, there are 16 bits, of which 5 are 1s)

LFSR output is XORed with lane at α [0][0]

To disrupt symmetry

Outline

- Background
- Base Construction
- Inner Workings
- Conclusion

Conclusion

A user of the Secure Hash Algorithm 3 can decide what trade-offs they want to make (speed vs security)

Conclusion

A user of the Secure Hash Algorithm 3 can decide what trade-offs they want to make (speed vs security)

Because in SHA3 the capacity only interacts with the transformation, it is not as vulnerable to length-extension attacks as previous SHAs are.

Conclusion

A user of the Secure Hash Algorithm 3 can decide what trade-offs they want to make (speed vs security)

Because in SHA3 the capacity only interacts with the transformation, it is not as vulnerable to length-extension attacks as previous SHAs are.

Collisions found for SHA1, can be applied to SHA2.

Thank You

Elena Machkasova, advisor

References

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. Cryptographic sponge functions.

SHA-3 competition (round 3), 2011.

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. The Making of Keccak.

Cryptologia, 2014.

Questions?

