Modeling Polyphony with Neural Networks

Francisco Elias Montanez
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
monta215@morris.umn.edu

ABSTRACT

JamBot is a framework capable of modeling polyphonic mu-
sic by learning meaningful representations of chord embed-
dings and using that as guidance for generating pleasing
polyphonic music. It utilizes two long short-term memory
networks, the first for generating a chord progression which
is used for structural guidance by the second network for its
generation of polyphonic music.

Keywords

Machine Learning, Neural Networks, Polyphonic Music

1. INTRODUCTION

Musical metacreation is a fascinating sub-field of compu-
tational creativity that focuses on providing machines with
the ability to achieve musical tasks. The idea of algorith-
mic music composition has been around for years, stretch-
ing as far back as the 1700s where a German system called
Musikalisches Wiirfelspiel used dice to randomly generate
music from a series of options [7]. With the rise of comput-
ers, advancements in the field of artificial intelligence and
increased computational power, algorithmic music compo-
sition has advanced rather quickly. Tasks have gone from
generating simple melodies and accompaniments to full scale
compositions.

In this paper we analyze JamBot [2], a framework cre-
ated by students at the Swiss Federal Institute of Technol-
ogy in Zurich, that is capable of modeling polyphonic mu-
sic by learning meaningful representations of chord embed-
dings and using that as structural guidance for generating
pleasing polyphonic music. We begin by introducing basic
background information of both music and machine learn-
ing in Section 2. We follow by presenting the JamBot [2]
framework, analyzing its structure and process for generat-
ing polyphony in Section 3. Then we present our results in
Section 4 followed by a conclusion in Section 5.

2. BACKGROUND

In this section, we explain concepts and terminology needed
to understand the rest of the paper.

2.1 Machine Learning

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, December 2018 Morris, MN.

Machine learning is a sub-field of artificial intelligence in
which statistical techniques are used to provide computer
systems the ability to learn from data and make predictions
or determinations from what it has learned.

2.1.1 Neural Networks

Artificial neural networks are frameworks inspired by the
human brain that are designed to recognize patterns in data
and perform tasks generally without being programmed.
They are composed of interconnected units referred to as
nodes or artificial neurons. These nodes form separate layers
known as the input layer, hidden layer(s), and output layer.
The edges connecting nodes between layers have weights
that assign significance to nodes. These weights can am-
plify the nodes, making them more influential in the follow-
ing layer or dampen the nodes, making them less influential
in the following layer.

Input nodes provide external information to the network.
No computations are performed here. The information is
simply passed on to the nodes in the hidden layer. When
the information moves from the input to hidden nodes, each
input is multiplied by its respective weight. Those results
are summed up and the sums move to the hidden nodes
where they are run through an activation function. An ac-
tivation function is a non-linear function used to introduce
non-linearity into its result. By introducing non-linearity
into the network, the network is able to learn and model
more complex kinds of data such as audio or images. The
activation function takes one number and applies a fixed
mathematical operation on it. The result is then sent to
the output nodes where similar computations are performed.
The output nodes give the final result, or prediction of the
network. In a neural network inputs are given, activation
functions do not change, but weights do change. We go over
this in more detail in Section 2.1.2.

A feed-forward neural network is a network in which in-
formation moves in one direction, from input layer to hidden
layer to output layer. Feed-forward networks have no notion
of time since they only consider current input. This limita-
tion affects their performance with time dependent tasks or
sequences.

A recurrent neural network is a neural network in which
connections between nodes can make a cycle. A recurrent
node stores previous input and merges it with its current
input. This gives the network a sense of memory about pre-
vious information. The ability to consider previous input
makes recurrent neural networks more efficient with time
dependent tasks or sequences than feed-forward networks.
Theoretically, recurrent neural networks have infinite mem-

ory. In practice however, they are limited to looking back a
couple of steps.

2.1.2 Training

Training is the process of steadily improving machine learn-
ing algorithms ability to make predictions. Training begins
with the dataset being split into two sets, the training set
and the testing set. In supervised training, each dataset
sample has an expected output called a label. Supervised
training works by feeding an algorithm the labeled train-
ing set, comparing the network’s outputs to the labels and
adjusting the weights throughout the network in order to
improve the accuracy of the network.

For this to work, a loss function is used to determine how
close output values are to labels. A loss function with a
lower value signifies higher accuracy while a loss function
with a higher value signifies lower accuracy. The purpose
of training is to minimize the loss function thus reducing
the difference between predicted values and labels. In or-
der to minimize the loss function gradients must be found.
A gradient is the direction and magnitude of a loss func-
tion. Gradients are calculated via chain rule from Calculus
in backpropagation. Backpropagation is a supervised learn-
ing algorithm used to calculate gradients with respect to the
weights in the network. The calculated gradients are used
to update the weights in the network accordingly via gradi-
ent descent, an optimization method that updates weights
starting from the output layer and moves backwards towards
the input layer. This process is repeated until the network’s
predicted outputs are reasonably close to the labels. At this
point we can say the network has been trained. From here,
the testing set is run through the network to evaluate its
performance. We want to have low value loss functions as
that indicates the network is able to generalize on new un-
seen data. If the values of the loss functions are high, we can
determine that the network is unable to generalize on new
data. This is known as overfitting which we discuss more in
detail in Section 2.1.3. In this context, the term “generalize”
refers to how well the patterns learned by the network apply
to examples not seen by the network during training.

2.1.3 Training Difficulties

Difficulties may arise during training. Among the most
common difficulties are vanishing gradients, exploding gra-
dients, and overfitting.

Vanishing gradients are present with gradient-based learn-
ing methods and backpropagation. This problem is caused
by the activation function chosen. Activation functions such
as the commonly used sigmoid function compress their input
into the range of 0 and 1.

1

os

0.4

oz

Backpropagation calculates gradients by using the chain rule
in Calculus. When calculating the gradients of earlier lay-
ers, the gradients which were compressed by the activation
function, in this example the sigmoid function, go through
series of multiplications. This causes the gradients to be-
gin to decrease in magnitude exponentially |5]. When the
gradients become too small, weights are updated by those
extremely small values causing a slowdown in training and
in some cases, preventing the network from learning.

Exploding gradients are the opposite of vanishing gradi-
ents. They occur when gradients that are greater than 1 are
propagated back through the network layers. As they are
propagated backwards, gradients accumulate through expo-
nential growth caused by the series of multiplications [5].
This “explosion” of gradients creates an unstable network
that is unable to learn from a training set.

Overfitting is a term used to describe a network that mod-
els the training set too well causing it to be unable to gen-
eralize on new data. In predictive modeling, the true under-
lying pattern we wish to learn is referred to as the “signal”
while irrelevant information is referred to as “noise”. Over-
fitting happens when a network learns or “memorizes” the
noise of the training set. This can happen by not having suf-
ficient samples in the training set for the network to learn
the actual underlying pattern. We say a network “overfits”
when it performs well with the training set but poorly with
the testing set.

2.2 Musical Concepts

2.2.1 Terminology

A note is the combination of pitch and duration of a sound.
In a typical piano keyboard, there are seven white-colored
notes represented by the following letters of the English al-
phabet: A B, C, D, E, F, and G. There are five black-colored
notes, referred to as accidentals, which represent Cg/Db,
D4/Eb, F§/Gb, G4/Ab, and Ag/Bb. This twelve note pattern
is repeated throughout the length of the keyboard. The start
of a repetition is called an octave. An octave is the distance
between two notes with the same letter representation.

A chord is a combination of two or more notes played
together. A series of chords is known as a chord progression.
Chord progressions are usually accompaniments to melodies.
A melody is a sequence of notes that tend to be the main
theme of a song. Playing melodies along with chords or other
accompaniments produces harmony, a pleasing effect created
by the interaction of notes being played simultaneously.

For the pleasing effect to occur, melodies and accompani-
ments must be in the same scale. A scale is a sequence of
small intervals of notes from which melodies and harmonies
can be created. The most common scales are the major, nat-
ural minor, harmonic minor, melodic minor and the blues
scale. The first note of a scale is called the root note. The
combination of a scale and a root note define what is known
as a key. To keep track of time, music is usually divided
into measures. Measures are sections of equal time length
consisting of equal number of beats.

2.2.2 Monophonic vs Polyphonic

Texture is a basic element of music that describes musical
layers in terms of number and purpose. For the purposes
of this paper, we will focus on monophonic and polyphonic
textures.

Figure 1: MIDI data displayed in a piano roll.
Event: Note OFF

Event: Note ON

A monophonic texture consists of one layer, a melodic
line with no accompaniment. In monophonic music, also
known as monophony, only one note is played at a time.
Monophony is not defined by the number of instruments,
but by the melodic arrangement. As long as the instruments
play the exact same melodic arrangement simultaneously, a
piece can classify as monophonic.

A polyphonic texture consists of two or more layers that
are independent of each other. Polyphonic music, also called
polyphony or counterpoint, has independent melodic lines
that are played simultaneously. Staggering the same melodic
line also classifies a piece as polyphonic.

In terms of generating by a computer program, mono-
phonic music is much simpler to generate. This is due to
monophony only having one layer, the melodic line. Only
pitch and duration are considered. Polyphonic music is
much harder to generate due to there being multiple notes
being played at any given time. Along with pitch and dura-
tion, polyphony also considers coincidence of notes.

2.2.3 MIDI

Musical Instrument Digital Interface, or MIDI, is a proto-
col that permits electronic musical instruments, computers,
and various other hardware to communicate. MIDI itself
does not create sounds, but instead carries a sequence of
messages and instructions called events that represent note
information such as

e Note On: the pitch of the pressed key represented with
a value from 0 to 127

e Note Off: the time when a pressed MIDI key is released

These sequences of messages are interpreted by a MIDI de-
vice, such as a MIDI keyboard, to produce sound. MIDI
contains 128 different pitches, each labeled by the pitch the
octave is in. C1 denotes the pitch of C in octave 1. MIDI
contains the range from AOQ to G9. The entire range can be
seen in what is called a Piano Roll. A piano roll is a way
of visualizing notes. Within a piano roll, MIDI data and
parameters such as the ones mentioned here can be edited.
Figure 1 displays events of notes.

3. JAMBOT

It has been stated that feed-forward neural networks are
not effective at modeling sequences. This is because nodes in

Figure 2: Simplified structure of LSTM node.

forget gate
~ self-recurrent
connection
memory cell _ memory cell
" output
input gate output gate

the network only consider their current input and not input
from previous iterations. Music is sequential, and to model
it effectively we must be able to model patterns from se-
quences of input data. Recurrent neural networks can model
sequences effectively but are difficult to train. The vanishing
and exploding gradient problems discussed in Section 2.1.3
make learning long-term temporal dependencies difficult.

A way to avoid vanishing and exploding gradients is by
using long short-term memory, or LSTM networks. LSTM
networks are a variant of recurrent neural networks discussed
in Section 2.1.1, that introduce memory cells with a gating
architecture. The memory cells consist of an input gate,
a “forget” gate, and an output gate that regulate the flow
of information in and out of the cell @ The “forget” gate
is responsible for removing information that is no longer
needed from the cell state. It takes two inputs, the hidden
state from the previous cell and the input at that timestep.
These inputs are multiplied by their respective weight and
run through a sigmoid function, which outputs a vector with
values ranging from 0 to 1 that correspond to values in the
cell state. If the result is a 0 for a value in the cell state, the
“forget” gate removes that information. If the result is a 1,
the information is kept. That vector is then multiplied to
the cell state. The input gate is responsible for adding new
information to the cell state. Like the “forget” gate, it first
determines what information needs to be added to the cell
state by taking the hidden state from the previous cell and
input at that timestep and running them through through a
sigmoid function. This acts as a filter for information. Those
same inputs are run through a hyperbolic tangent function,
a non-linear activation function with a range from -1 to 1,
which then outputs a vector that contains all the possible
values that can be added to the cell state. The output of
the sigmoid function is multiplied by the output vector from
the hyperbolic tangent function which is then added to cell
state via addition. This process ensures that only important
information is added to cell state. The output gate is re-
sponsible for outputting useful information from the current
cell state. The current cell state is run through a hyperbolic
tangent function, outputting a vector with values within the
range of -1 and 1. The cell state from the previous cell and
input at that timestep are run through a sigmoid function
and output a vector, which is then multiplied by the vector
outputted from the hyperbolic tangent. The result is sent as
the output and to the hidden state of the next cell. Figure
2 shows a simplified LSTM node structure.

Figure 3: Chord occurrences in shifted dataset.

(0] 50 100 150 200 250 300
Chords

The JamBot [2] framework is composed of two LSTM net-
works referred to as the Chord LSTM and the Polyphonic
LSTM. The Chord LSTM outputs the probabilities of chords
which is used as an input for the Polyphonic LSTM to use
as a guide for generating polyphony.

3.1 Dataset

The Lakh MIDI dataset is a collection of over 100,000
unique MIDI files. This dataset is used for training both
LSTM networks. To train the networks efficiently we con-
sider that there are thirty-six different scales and twelve dif-
ferent keys music can be in. This results in 432 unique ways
music can be learned in. Instead of letting the networks at-
tempt to learn each way, we only consider music in major
and relative minor scales since there is only one key differ-
ence between the two scales. A subset is created called the
Shifted dataset which contains all MIDI files from the orig-
inal Lakh MIDI dataset that are in the major and relative
minor scales, totaling over 86,000 MIDI files. To simplify
training even more, all MIDI data in the shifted dataset is
transposed to the same key, C major via piano roll. These
adjustments not only simplify training but also act as pre-
cautionary steps for avoiding overfitting issues that may be
caused by lack of data per key [2].

3.2 Chord LSTM

3.2.1 Data Representation

An automated process extracts chords from the dataset by
computing a histogram of all twelve notes played in the time
span of one measure. The time span of a measure is chosen
as chords tend to change every measure. The three most
occurring notes in every measure form a chord. Chords can
contain more than three notes, but in this context we only
consider chords to be three notes. From this process, 300
unique chords are found in the dataset. Of those, fifty chords
appear frequently. A separate study done on 414,059 songs
ranging from 1958 and 1991 to detect chords conducted by
Burgoyne et al. [3] lists their results of most occurring chords
found. In both datasets, the top ten occurring chords coin-
cide well, validating the chord extraction process [2]. Figure
3 shows the number of chords found and the occurrences of
them.

Brunner et al. [2] use a technique from natural language
processing to represent the extracted chords. The fifty most
occurring chords are given an integer ID and stored in a
dictionary while the remaining 250 are given an ID of an
unknown tag as there are not enough occurrences of those
chords for the network to learn anything meaningful. The

network does not know the notes that make up the chords,
it only sees the IDs. In order to be able to feed these chords
into the network they are encoded as vectors using one-hot
encoding, a process that converts categorical features or vari-
ables into numerical variables represented by a vector where
all the elements of the vector are 0 except one which has
a value of 1. In this context, each chord/ID pair is repre-
sented with a vector with a 1 for its chord and a 0 for all
other forty-nine chords. The one-hot vectors are denoted by

Xchord -

3.2.2 Structure

The first layer of the network utilizes a technique from
natural language processing called word embeddings. Word
embeddings map objects from a dictionary like the one men-
tioned in Section 3.2.1 to real number vectors. Consider the
following sentences.

e The woman eats an apple.

e The man eats an orange.

In the vector space the words apple and orange are close to-
gether because they are similar within their usage context.
Similarly, the words man and woman are close together as
well, but man and woman are not close to apple nor orange
because they are not similar within the usage context. These
embeddings are not fixed but learned from data [2]. Mikolov
et al. |4] demonstrate that embedded vector space can cap-
ture relationships without knowing any information about
the content. It is applicable here, as the goal for the net-
work is to learn a meaningful representation of the chords.
An embedding matrix is denoted by Wembed. It produces
closer results for samples that appear in the same usage
context and farther results otherwise. Wembea consists of
learnable parameters that will be adjusted during training.
The Wembed is multiplied by one-hot vectors Xchora to create
a 10-dimensional embedded chord vector denoted by Xembed
|2]. This will be the input for the Chord LSTM.

Following the first layer are the hidden layers. Brunner et
al. |2] do not specify the number of hidden layers. We only
know that there are 256 hidden cells. This could mean there
is one hidden layer which is iterated over multiple times.
Following the hidden layer is the output layer. Softmax, a
commonly used activation function in the output layer is
used as the output activation function. The softmax func-
tion compresses the outputs into a range of 0 and 1 and
divides each output such that the sum of the outputs equal
1, effectively becoming a categorical probability distribution
that describes the probability of any case to be true. The
output of the Chord LSTM is a vector that contains the
probabilities for all chords [2].

0.7

0.6

0.5

0.4

Softmax Scores

0.3

0.2

0.1

0.0

o] 5 10 15 2C
Inputs

3.2.3 Training

The network is trained with the extracted chords from
the shifted dataset for a total of four epochs. An epoch is a
unit of measurement representing one full training cycle. A
training cycle is considered full once every sample from the
training set is run though the network.

To generate a chord progression, a seed is fed into the net-
work. The first chord is generated by sampling the output
vector with temperature, a hyper-parameter with a range of 0
to 1 used to control randomness of predictions. Temperature
scales the probabilities which are chord probabilities in this
context, and then applies a softmax function to normalize
them. Sampling with a high temperature such as 1 causes all
samples to have nearly the same probability, while sampling
with low temperature such as 0 keeps the probabilities the
same. In this context, temperature controls the randomness
of chords to be generated. A temperature value of 0 results
in the same chord always being generated. A temperature
value of 1 results in a very different variety of chords gener-
ated. The generated chord is then fed back into the network
and the following chord is generated by repeating the same
procedure. The result of this is a chord progression.

3.3 Polyphonic LSTM

3.3.1 Data Representation

All MIDI data is represented via piano roll. Brunner et.
al. [2] begin by dividing every measure into eight timesteps.
A vector represents notes played at each timestep. An entry
of 1 means the note was played and an entry of 0 means the
note was not played. The vector length is the total number
of notes.

time
1 O 1 O
i
S O 1 ... 0 O
“llo o 1 1

N—

3.3.2 Structure

Polyphonic LSTM uses the Chord LSTM chord probabil-
ities output as input along with other features. The input
vector for the Polyphonic LSTM consists of the probabilities
of chords to be generated, the probabilities of the following
chords to be generated, the piano roll vector, and a counter.
The probabilities of chords and following chords come from
the Chord LSTM. They are included to give the generated
polyphony structural guidance. The first chord is used as
a basis for the structure of the polyphony. In Section 3.2.1
we mention that the network does not know the notes that
form the chords. Brunner et. al. [2| hope that the network
learned meaningful embeddings so it can identify patterns
between notes and chords.

A way to give the first generated notes a direction, so
to speak, is by including the probabilities of the following
chord to be generated. Pleasant music tends to have mo-
ments of tension and resolution. Some tension or resolution
can be present when chords change. In polyphonic music,

the melody, the generated polyphony in this context, leads
the composition to those moments. By giving the gener-
ated polyphony a sense of direction for notes to generate,
the network can model those moments thus generating more
pleasing polyphonic music. To model it effectively the net-
work needs to know when the chord change is coming. A
binary counter is used to keep track of timesteps. In this
context, a chord lasts eight timesteps. When the counter
reaches timestep seven, the network knows that a change is
to come next.

These input vectors are fed into the Polyphonic LSTM.
Brunner et al. [2] do not mention the number of hidden
layers. We only know there are 512 hidden nodes. Following
the hidden layers is the output layer. The Polyphonic LSTM
outputs a vector containing the probabilities of notes to be
generated at the next timestep given the notes that were
generated previously.

3.3.3 Training

The network is trained with 10,000 MIDI files from the
shifted dataset for four epochs. To generate polyphony, a
seed is fed into the network. The seed consists of the pi-
ano roll vector and chord vector. Notes to be generated
are sampled with hyper-parameter temperature, which we
discuss in Section 3.2.3 from the Polyphonic LSTM output
vector. In Section 2.2.2 we explain that polyphonic music
can have multiple notes playing a time. To achieve this,
Brunner et. al. [2] sample each note independently. Sam-
pling notes independently prevents the probabilities of all
other notes to be generated from changing. That way if two
or more notes can be played at the same time, they will. To
avoid large number of notes playing at the same time a limit
is implemented.

4. RESULTS

Principal component analysis or PCA is a technique that
makes data easy to visualize. Brunner et. al. [2] use PCA
to visualize chord embeddings trained on the shifted dataset
in two dimensions. Instead of plotting IDs of chords, the
notes that make up the chords are plotted for the fifteen
most occurring chords. From the visualization, Brunner et.
al. |2] note that chords containing common notes are close
together in the vector space. When applying the same tech-
nique to the original dataset and plotting chords instead of
individual notes, the result resembles the circle of fifths, a
guide used for understanding relationship between keys and
chords. Figure 4 shows the chord embeddings in two dimen-
sional space and the circle of fifths. From the diagrams we
can see the resemblance in chord placement. Thus the net-
work is able to understand principles of music theory with-
out actual rules being implemented.

After listening to music generated by JamBot [2], we can
hear clear long term structure. The transitions within the
songs are smooth with no sudden changes. Music style is
consistent throughout the songs as well. At times there
are dissonant notes present. This might be caused by sam-
pling with a high temperature. Even if the probabilities of
those dissonant notes are small, sampling with a tempera-
ture value of 1 increases their probabilities of being picked.
Music generated by JamBot [2] is available for listening on
YouTube. A link is provided in the reference section [1].

Figure 4: Comparison between chord embeddings
and the circle of fifths

Chord Embeddings Circle of Fifths

Major
_3 = e ==
F .G
-2 By 27 == o 1% e
G BAY 4 e © D"
-1 /8 b~
Bb
0 D ZERac £ 3 A ZHE
A - s
i ’ A af b
Db Ab bb of E_,.
B ZE gy YA Ty ZE
2 Gh/F D, O/t g
== Gh/F e
3 : Skt
cigR EESE =EQ
3 2 1 0 -1 -2 -3

S. CONCLUSION

JamBot [2] is a framework capable of generating pleas-
ing polyphonic music. It is able to extract the circle of
fifths, a guide used by many musicians for understanding
relationships between keys and chords. It provides a rel-
atively simple way of generating music. It is possible to
generate music of a specific genre by training the networks
with genre specific songs. Songs generated by JamBot [2]
are not necessarily the final product. Because JamBot [2]
generates what is essentially a MIDI file, generated songs
can be edited within a piano roll to produce more complex
songs or used as inspiration for creating a much more unique
piece.

6. ACKNOWLEDGMENTS

I would like to thank Elena Machkasova, my professor and
adviser for senior seminar, and my alumnus reviewer, Dan
Stelljes, for all your guidance and feedback.

7. REFERENCES

[1] G. Brunner, Y. Wang, R. Wattenhofer, and
J. Wiesendanger. Jambot generated music.
https://www.youtube.com/channel/
UCQbE9vEbYycK4DZpHoZKcSw/videos?shelf _id=0&
sort=dd&view=0, 2017. [Online; accessed
12-November-2018].
[2] G. Brunner, Y. Wang, R. Wattenhofer, and
J. Wiesendanger. Jambot: Music theory aware chord
based generation of polyphonic music with LSTMs.
2017 IEEE 29th International Conference on Tools with
Artificial Intelligence (ICTAI), pages 519-526, 2017.
[3] J. A. Burgoyne, J. Wild, and I. Fujinaga. An expert
ground truth set for audio chord recognition and music
analysis. 2011 The 12th International Society for Music
Information Retrieval Conference (ISMIR), pages
633-638, 2011.
T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. Proceedings of the International Conference on
Learning Representations (ICLR 2013), 2013.
R. Pascanu, T. Mikolov, and Y. Bengio. On the
difficulty of training recurrent neural networks. In
Proceedings of the 30th International Conference on

[4

[5

International Conference on Machine Learning -
Volume 28, ICML’13, pages 111-1310-1318, 2013.

[6] Wikipedia. Long short-term memory, 2018. [Online;
accessed 09-October-2018].

[7] Wikipedia. Musikalisches Wiirfelspiel, 2018. [Online;
accessed 12-November-2018].

https://www.youtube.com/channel/UCQbE9vfbYycK4DZpHoZKcSw/videos?shelf_id=0&sort=dd&view=0
https://www.youtube.com/channel/UCQbE9vfbYycK4DZpHoZKcSw/videos?shelf_id=0&sort=dd&view=0
https://www.youtube.com/channel/UCQbE9vfbYycK4DZpHoZKcSw/videos?shelf_id=0&sort=dd&view=0

	Introduction
	Background
	Machine Learning
	Neural Networks
	Training
	Training Difficulties

	Musical Concepts
	Terminology
	Monophonic vs Polyphonic
	MIDI

	JamBot
	Dataset
	Chord LSTM
	Data Representation
	Structure
	Training

	Polyphonic LSTM
	Data Representation
	Structure
	Training

	Results
	Conclusion
	Acknowledgments
	References

