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Texture

• Describes musical layers in terms of 

number and purpose

• Monophonic

• Polyphonic
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Monophonic vs Polyphonic

Polyphonic

• Multiple layers

• More than one note at a time

Monophonic

• Single layer

• One note at a time
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MIDI via Piano Roll

• Musical Instrument Digital Interface

• No sound

• Carries events that represent note 

information

Event: Note ON

Event: Note OFF
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Monophonic Example
Time
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Polyphonic Example
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Difficulty of Modeling Polyphony

• Music is sequential

• Maintaining coherence

• Coincidences of notes
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Overview

• Framework modeled loosely after 

the human brain

• Designed to recognize patterns in 

data

• Learn to perform tasks by 

considering examples, generally 

without being programmed
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Network Structure

• Input layer

• Hidden layer(s)

• Output layer

Input layer

Hidden layer

Output layer
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Node Structure

• Inputs X1, X2, X3

• Weights W1, W2, W3

• Activation function f(x)

• Output Y
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Training

• Process of improving networks 

ability of making predictions

• Supervised – each dataset sample 

has an expected output

• Purpose is to adjust weights so the 

predicted output is reasonably close 

to expected output
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Training

• Dataset is split into training and 

testing sets 

• Weights are initialized randomly

• Training set is run through the 

network
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Training

• Loss function determines how close 

predicted output is to expected 

output

• Lower value = higher accuracy

• Higher value = lower accuracy

• We want to minimize loss function
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Training

• Gradient – direction and size of each 

loss function 

• Backpropagation calculates 

gradients

• Gradient descent uses gradients to 

update weights accordingly
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Training

• Process is repeated until predicted 

output is reasonably close to the 

expected output

• Testing set is used to evaluate the 

network
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Training Difficulties

• Vanishing gradient – size of 

gradients decrease exponentially as 

they are distributed back through 

network layers

• Network is unable to learn or learns 

extremely slow
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Training Difficulties

• Exploding gradients – size of 

gradients increases exponentially 

causing an unstable network

• Weights are unable to be updated
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Training Difficulties

• Overfitting – network learns training 

data too well

• Network performs well on training 

set but poorly on testing set

• Unable to generalize on new data

21



Outline

I. Background

II. JamBot

III. Results

IV. Conclusion

22



Remember

• Music is sequential

• Must know what has been played to 

determine what could be played 

next
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Recurrent Neural Network

• Information cycles through a loop

• Ability to `remember’ previous 

input

• Useful for modeling sequences

• Limited to looking back a couple of 

timesteps
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LSTM Network

• Introduces memory cells with gating 

architecture

• Gates decide whether cells should 

keep or forget previous states in 

each loop

• Allow modeling of long term 

sequences

25



JamBot
Overview

• Composed of Chord LSTM and 

Polyphony LSTM

• Chord LSTM outputs probabilities of 

every chord to be played in next bar

• Polyphonic LSTM outputs 

probabilities of every note to be 

played in next timestep

26



Outline

I. Background

II. JamBot

• Training Data

• Chord LSTM

• Polyphonic LSTM

III. Results

IV. Conclusion

27



Training Data

• Subset of Lakh MIDI dataset 

consisting of 86,000 MIDI files

• All MIDI data is in Major/relative 

Minor scale

• Transposed to same key

Lakh MIDI Dataset Scales
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Chord LSTM

• 3 most occurring notes in every bar 

form a chord

• 50 most occurring chords replaced 

with IDs

• Chord/ID pair stored in dictionary

• Encoded as vectors Xchord
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Chord LSTM

• Embedding matrix Wembed used to 

capture relationships between 

chords

• Xchord · Wembed = Xembed

• Xembed used as input

10-Dimensional Chord Embedding Xembed
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Chord LSTM
32

• Goal is to learn meaningful 

representation of chords

• Outputs vectors that contain 

probabilities for all chords to be 

played next
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Chord IDs in Embedding Space
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Prediction

• Feed seed of variable length into 

network

• Next chord predicted by sampling 

output probability with hyper-

parameter temperature
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Prediction

• Temperature = 0

• No variation in prediction
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• Temperature = 1

• Lots of variation in prediction
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Polyphonic LSTM

• Piano roll data is extracted from 

dataset
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Polyphonic LSTM

• Notes played at each timestep 

represented as vectors

• Entry = 1 if note is played

• Entry = 0 if not is not played

N
o

te
s

time
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Polyphonic LSTM

• Piano roll vector

• Embedded chord of next timestep

• Embedded chord which follows 

chord of next timestep

• Binary counter
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Polyphonic LSTM

• Input vectors fed to network

• Output of LSTM at time t  = yt
poly

• Outputs vector with same number of 
entries as there are notes

• Every entry is probability of the 
corresponding note to be played at 
next time step conditioned on all 
inputs of the timesteps before
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Prediction

• Feed seed consisting of piano roll 

and corresponding chords

• Notes which are played at next time 

step are sampled from output vector 

yt
poly

• Notes are sampled independently
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Results

• JamBot Generation - Song 2 , Tempo 

140 BPM, Instrument Electric Guitar 

(Jazz)

• JamBot Generation - Song 3, Tempo 

160 BPM, Instrument Bright Acoustic 

Piano

• JamBot Generation - Song 4, Tempo 

100 BPM, Instrument Orchestral Harp
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Conclusion

• Generated music has long term 
structure

• Coherence is present and music is 
pleasing

• Learned meaningful embeddings 
where related chords are closer 
together in embedding space

• Missing emotional build
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