
Musical Metacreation:
Modeling Polyphony

with Neural Networks
FRANCISCO ELÍAS MONTAÑEZ

DIVISION OF SCIENCE AND MATHEMATICS

UNIVERSITY OF MINNESOTA, MORRIS

MORRIS, MINNESOTA, USA

NOVEMBER 17, 2018

Outline

I. Background

II. JamBot

III. Results

IV. Conclusion

2

Outline

I. Background

• Texture

• What is a neural network?

II. JamBot

III. Results

IV. Conclusion

3

Texture

• Describes musical layers in terms of

number and purpose

• Monophonic

• Polyphonic

4

Monophonic vs Polyphonic

Polyphonic

• Multiple layers

• More than one note at a time

Monophonic

• Single layer

• One note at a time

5

MIDI via Piano Roll

• Musical Instrument Digital Interface

• No sound

• Carries events that represent note

information

Event: Note ON

Event: Note OFF

6

Monophonic Example
Time

7

1 Bar 1 Bar

Polyphonic Example
8

Time

1 Bar 1 Bar

Difficulty of Modeling Polyphony

• Music is sequential

• Maintaining coherence

• Coincidences of notes

9

Outline

I. Background

• Texture

• What is a neural network?

II. JamBot

III. Results

IV. Conclusion

10

Overview

• Framework modeled loosely after

the human brain

• Designed to recognize patterns in

data

• Learn to perform tasks by

considering examples, generally

without being programmed

11

Network Structure

• Input layer

• Hidden layer(s)

• Output layer

Input layer

Hidden layer

Output layer

12

Node Structure

• Inputs X1, X2, X3

• Weights W1, W2, W3

• Activation function f(x)

• Output Y

13

Training

• Process of improving networks

ability of making predictions

• Supervised – each dataset sample

has an expected output

• Purpose is to adjust weights so the

predicted output is reasonably close

to expected output

14

Training

• Dataset is split into training and

testing sets

• Weights are initialized randomly

• Training set is run through the

network

15

Training

• Loss function determines how close

predicted output is to expected

output

• Lower value = higher accuracy

• Higher value = lower accuracy

• We want to minimize loss function

16

Training

• Gradient – direction and size of each

loss function

• Backpropagation calculates

gradients

• Gradient descent uses gradients to

update weights accordingly

17

Training

• Process is repeated until predicted

output is reasonably close to the

expected output

• Testing set is used to evaluate the

network

18

Training Difficulties

• Vanishing gradient – size of

gradients decrease exponentially as

they are distributed back through

network layers

• Network is unable to learn or learns

extremely slow

19

Training Difficulties

• Exploding gradients – size of

gradients increases exponentially

causing an unstable network

• Weights are unable to be updated

20

Training Difficulties

• Overfitting – network learns training

data too well

• Network performs well on training

set but poorly on testing set

• Unable to generalize on new data

21

Outline

I. Background

II. JamBot

III. Results

IV. Conclusion

22

Remember

• Music is sequential

• Must know what has been played to

determine what could be played

next

23

Recurrent Neural Network

• Information cycles through a loop

• Ability to `remember’ previous

input

• Useful for modeling sequences

• Limited to looking back a couple of

timesteps

24

LSTM Network

• Introduces memory cells with gating

architecture

• Gates decide whether cells should

keep or forget previous states in

each loop

• Allow modeling of long term

sequences

25

JamBot
Overview

• Composed of Chord LSTM and

Polyphony LSTM

• Chord LSTM outputs probabilities of

every chord to be played in next bar

• Polyphonic LSTM outputs

probabilities of every note to be

played in next timestep

26

Outline

I. Background

II. JamBot

• Training Data

• Chord LSTM

• Polyphonic LSTM

III. Results

IV. Conclusion

27

Training Data

• Subset of Lakh MIDI dataset

consisting of 86,000 MIDI files

• All MIDI data is in Major/relative

Minor scale

• Transposed to same key

Lakh MIDI Dataset Scales

28

Outline

I. Background

II. JamBot

• Training Data

• Chord LSTM

• Polyphonic LSTM

III. Results

IV. Conclusion

29

Chord LSTM

• 3 most occurring notes in every bar

form a chord

• 50 most occurring chords replaced

with IDs

• Chord/ID pair stored in dictionary

• Encoded as vectors Xchord

30

Chord LSTM

• Embedding matrix Wembed used to

capture relationships between

chords

• Xchord · Wembed = Xembed

• Xembed used as input

10-Dimensional Chord Embedding Xembed

.

.

.

1.76
-2.19
0.37

.

.

.

11

Chord ID

31

Chord LSTM
32

• Goal is to learn meaningful

representation of chords

• Outputs vectors that contain

probabilities for all chords to be

played next

11

4

45

36

7

32

Chord IDs in Embedding Space

24

12

26

41

9

15

18

17

Prediction

• Feed seed of variable length into

network

• Next chord predicted by sampling

output probability with hyper-

parameter temperature

33

Prediction

• Temperature = 0

• No variation in prediction

34

• Temperature = 1

• Lots of variation in prediction

Outline

I. Background

II. JamBot

• Training Data

• Chord LSTM

• Polyphonic LSTM

III. Results

IV. Conclusion

35

Polyphonic LSTM

• Piano roll data is extracted from

dataset

36

Polyphonic LSTM

• Notes played at each timestep

represented as vectors

• Entry = 1 if note is played

• Entry = 0 if not is not played

N
o

te
s

time

37

Polyphonic LSTM

• Piano roll vector

• Embedded chord of next timestep

• Embedded chord which follows

chord of next timestep

• Binary counter

38

xt
poly =

Polyphonic LSTM

• Input vectors fed to network

• Output of LSTM at time t = yt
poly

• Outputs vector with same number of
entries as there are notes

• Every entry is probability of the
corresponding note to be played at
next time step conditioned on all
inputs of the timesteps before

39

Prediction

• Feed seed consisting of piano roll

and corresponding chords

• Notes which are played at next time

step are sampled from output vector

yt
poly

• Notes are sampled independently

40

Outline

I. Background

II. JamBot

III. Results

IV. Conclusion

41

Results

• JamBot Generation - Song 2 , Tempo

140 BPM, Instrument Electric Guitar

(Jazz)

• JamBot Generation - Song 3, Tempo

160 BPM, Instrument Bright Acoustic

Piano

• JamBot Generation - Song 4, Tempo

100 BPM, Instrument Orchestral Harp

42

Outline

I. Background

II. JamBot

III. Results

IV. Conclusion

43

Conclusion

• Generated music has long term
structure

• Coherence is present and music is
pleasing

• Learned meaningful embeddings
where related chords are closer
together in embedding space

• Missing emotional build

44

Acknowledgements

Thank you for your time!

Thank you to my advisor Elena Machkasova for her

guidance and feedback.

45

Questions?

46

References

• G. Brunner, Y. Wang, R. Wattenhofer and J. Wiesendanger, "JamBot: Music Theory Aware

Chord Based Generation of Polyphonic Music with LSTMs," 2017 IEEE 29th International

Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, 2017, pp. 519-526.

• Philippe Pasquier, Arne Eigenfeldt, Oliver Bown, and Shlomo Dubnov. 2017. An Introduction

to Musical Metacreation. Comput. Entertain. 14, 2, Article 2 (January 2017), 14 pages. DOI:

https://doi.org/10.1145/2930672

• https://www.youtube.com/channel/UCQbE9vfbYycK4DZpHoZKcSw

47

Image References

• Humphreys, Paul. “4. Conceptual Emergence and Neural Networks.” The Brains Blog, 16 Nov.

2017, philosophyofbrains.com/2017/11/16/4-conceptual-emergence-neural-networks.aspx.

• “Deep Neural Network's Precision for Image Recognition, Float or Double?” Stack Overflow,

stackoverflow.com/questions/40537503/deep-neural-networks-precision-for-image-recognition-

float-or-double.

• “Microbiome Summer School 2017.” Microbiome Summer School 2017 by aldro61,

aldro61.github.io/microbiome-summer-school-2017/sections/basics/.

48

Image References

• Shanmugamani, Rajalingappaa. “Deep Learning for Computer Vision.” O'Reilly | Safari,

O'Reilly Media, Inc., www.oreilly.com/library/view/deep-learning-

for/9781788295628/a32bda93-3658-42ff-b369-834b9c7052e8.xhtml.

• Olah, Chris. “Understanding LSTM Networks.” Understanding LSTM Networks -- Colah's

Blog, colah.github.io/posts/2015-08-Understanding-LSTMs/.

49

