Musical Metacreation:
Modeling Polyphony
with Neural Networks

FRANCISCO ELIAS MONTANEZ
DIVISION OF SCIENCE AND MATHEMATICS
UNIVERSITY OF MINNESOTA, MORRIS
MORRIS, MINNESOTA, USA

NOVEMBER 17, 2018




QOutline

[.  Background
II.  JamBot
III. Results

IV. Conclusion




QOutline

[.  Background
¢ Texture

» What is a neural network?

II. JamBot
ITII. Results

IV. Conclusion




Texture

* Describes musical layers in terms of
number and purpose

* Monophonic

* Polyphonic




Monophonic vs Polyphonic

Monophonic Polyphonic
» Single layer ¢ Multiple layers

* One note at a time * More than one note at a time




MIDI via Piano Roll

Event: Note OFF
* Musical Instrument Digital Interface

* No sound

* Carries events that represent note
information

R Event: Note ON




Monophonic Example

Time

1 Bar . 1 Bar




Polyphonic Example

Time

v

1 Bar 1 Bar
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Ditticulty of Modeling Polyphony

* Music is sequential
* Maintaining coherence

* Coincidences of notes
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Overview

» Framework modeled loosely after
the human brain

* Designed to recognize patterns in
data

* Learn to perform tasks by
considering examples, generally
without being programmed
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Network Structure

* Input layer

« Hidden layer(s)

* Output layer

Input layer

Hidden layer

Output layer
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Node Structure

* Inputs X1, X2, X3

* Weights W1, W2, W3

¢ Activation function f(x)

* Output Y

W1

W2

W3

f(x) = tanh(x) =

2

14+e2x

1
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Iraining

* Process of improving networks
ability of making predictions

* Supervised — each dataset sample
has an expected output

* Purpose is to adjust weights so the
predicted output is reasonably close
to expected output




15 ..
ITraining

* Dataset is split into training and
testing sets

* Weights are initialized randomly

Training set Testing set

¢ Training set is run through the

network
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Iraining

Loss function determines how close
predicted output is to expected
output

Lower value = higher accuracy

Higher value = lower accuracy

We want to minimize loss function
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Iraining

* Gradient — direction and size of each
loss function

 Backpropagation calculates
gradients

 Gradient descent uses gradients to
update weights accordingly

J(w)
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ITraining

* Process is repeated until predicted
output is reasonably close to the
expected output

¢ Testing set is used to evaluate the

network

Training set

Testing set
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Training Difficulties

* Vanishing gradient — size of
gradients decrease exponentially as
they are distributed back through
network layers

* Network is unable to learn or learns
extremely slow




- Training Difficulties

+ Exploding gradients — size of
gradients increases exponentially
causing an unstable network

* Weights are unable to be updated
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Training Difficulties

* Opverfitting — network learns training
data too well

* Network performs well on training
set but poorly on testing set

* Unable to generalize on new data
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Remember

* Music is sequential

* Must know what has been played to
determine what could be played

next
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Recurrent Neural Network

Information cycles through a loop

Ability to remember’ previous
input

A
Useful for modeling sequences Qg

Limited to looking back a couple of
timesteps
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2 L.STM Network

: . forget gate
* Introduces memory cells with gating Gt
, self-recurrent

architecture T connection
* Gates decide whether cells should

keep or forget previous states in

each loop memory cell memory cell

input ' ] output

+ Allow modeling of long term
sequences

input gate output gate
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JamBot
Overview

* Composed of Chord LSTM and
Polyphony LSTM

* Chord LSTM outputs probabilities of
every chord to be played in next bar

* Polyphonic LSTM outputs
probabilities of every note to be
played in next timestep

input MIDI training data

pre
processing

extract

train

extract

train

train

gL‘I'IL‘I"i.I[L‘

generated
chord
progression

polyphonic
LSTM

input

generate MIDI file
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Training Data

Lakh MIDI Dataset Scales

* Subset of Lakh MIDI dataset
o ] Other: 27.6% \
consisting of 86,000 MIDI files

All MIDI data is in Major/relative
Minor scale

Major/Relative Minor: 72.4%

¢ Transposed to same key

B Major/Relative Minor [l Other
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Chord LSTM

3 most occurring notes in every bar
form a chord

50 most occurring chords replaced
with IDs

Chord/ID pair stored in dictionary

Encoded as vectors X .4

# of Occurences

16

14

12

10

Occurrences

Note Occurences Per Bar

0.:

0

14

3 3
0 0 .0_-
Fa G# A At B

0 50 100 150

Chords

200 250 300
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Chord LSTM

* Embedding matrix W, ;.4 used to

capture relationships between
chords

¢ Xchord | Wembed = X

embed

* Xembeq Used as input

10-Dimensional Chord Embedding X

1] ey

Chord ID

r

1.76
-2.19
0.37

\

embed
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Chord LSTM

 Goal is to learn meaningful
representation of chords

 Outputs vectors that contain
probabilities for all chords to be
played next

Chord IDs in Embedding Space

41 4

32
24 11

15 26
17 7

12 18

36
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Prediction

* Feed seed of variable length into
network

* Next chord predicted by sampling
output probability with hyper-
parameter temperature
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Prediction

¢ Temperature =0 ¢ Temperature =1

 No variation in prediction * Lots of variation in prediction
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Polyphonic LSTM

* Piano roll data is extracted from

dataset
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Polyphonic LSTM

* Notes played at each timestep
represented as vectors

* Entry =1 if note is played

* Entry = 0 if not is not played

Notes

SO -

time

O = O .-

— O = e

—_ o o .-
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Polyphonic LSTM

Piano roll vector

Embedded chord of next timestep

Embedded chord which follows
chord of next timestep

Binary counter

0
3.579

0.256

> Piano roll

> Chord

> Next Chord

FAN

> Counter




Polyphonic LSTM

Input vectors fed to network

+ Output of LSTM at time t =

/ P( o 1|xpa }”Jp:)ll)) \

poly

t
. y poly —
* QOutputs vector with same number of

sy 0L /
entries as there are notes \ P (nN — 1|x P()/)r: X;J()/ \)

 Every entry is probability of the
corresponding note to be played at
next time step conditioned on all
inputs of the timesteps before
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Prediction

* Feed seed consisting of piano roll
and corresponding chords

* Notes which are played at next time
step are sampled from output vector

t
y poly

 Notes are sampled independently

y poly —

[ P(ny = l|xpo

\ P(nN - 1|xp;)

s

X

pol)

) p()lly) \

) /
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Results

¢ JamBot Generation - Song 2, Tempo
140 BPM, Instrument Electric Guitar

(Jazz)

¢ JamBot Generation - Song 3, Tempo
160 BPM, Instrument Bright Acoustic
Piano

* JamBot Generation - Song 4, Tempo
100 BPM, Instrument Orchestral Harp
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Conclusion

* Generated music has long term
structure

 Coherence is present and music is
pleasing

* Learned meaningful embeddings
where related chords are closer
together in embedding space

* Missing emotional build
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