
Improving Quality of Service in Edge Computing Networks

Colin Rabe
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

rabex028@morris.umn.edu

ABSTRACT
Edge computing is a data processing architecture in which
a network of servers can store and process data between the
cloud and devices that are connected to it. This type of net-
work is useful because data does not need to travel as far
to be processed as it would in conventional cloud comput-
ing, so results can be returned much faster. It is considered
to be one of the enabling technologies for the expansion of
the Internet of Things. This paper examines two techniques,
called task offloading and service migration, that are being
used in current models of edge computing. These techniques
are designed to distribute work more efficiently within the
network, which results in better quality of service for users.

1. INTRODUCTION
The pace at which computers are being connected to the

Internet is rapidly accelerating. Estimates show that 50 bil-
lion devices will be connected to the Internet by the year
2020, with ten times that number in 2025 [3]. This trend
indicates the increasing relevance of the Internet of Things
(IoT) concept. IoT refers to objects capable of performing
computation that can connect to each other to share in-
formation [3]. These objects include not only desktop com-
puters and smart phones, but also vehicles, appliances, sen-
sors, medical devices, and more. The ability for such devices
to share information has the potential to make our lives
significantly more convenient, but comes with a challenge.
Huge quantities of data tend to be produced by these ob-
jects when they perform their services. Ni et. al note that
“the large amounts of data result in heavy network conges-
tion and complicated processing load on devices and control
systems” [8].

Up until now, a common way to deal with large amounts
of generated data has been to use cloud computing to pro-
cess it. In cloud computing, devices can send their data to a
powerful, but likely remote, computer that can process their
data for them. However, for many new applications involv-
ing the IoT, cloud computing would not deliver results fast
enough for devices because of the limited bandwidth of the
connections and physical distance between the cloud and de-
vices [6]. An alternative approach to address the problem is
an emerging technology called edge computing. Edge com-
puting is a paradigm in which computers that can process

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2018 Morris, MN.

the data of IoT devices are located much closer geographi-
cally to these devices than the cloud is, i.e. at the edge of a
network [6].

In this paper, we describe two different types of edge com-
puting that exist, which are called fog computing and mo-
bile edge computing (MEC). We will examine techniques
respective to each type that are presented by researchers
Yousefpour et. al [11] and Taleb et. al [7] for improving the
efficiency of these networks and thus the quality of service to
devices connected to them. In the next section, we will pro-
vide an overview of both fog and mobile edge computing, in-
troduce relevant networking concepts and terminology, and
briefly cover virtual machines. In Section 3, a technique for
improving fog computing networks will be explained, and
we will discuss the results of a simulation that was built
for it. In Section 4, a technique for improving mobile edge
computing networks will be explained, and we will again dis-
cuss the results of a simulation that was created to test the
technique. Each of these techniques was effective in increas-
ing the performance of the networks they were used in, and
this increased performance corresponds with higher quality
of service provided to users.

2. BACKGROUND
In the context of computer technology, a network refers

to connected computers that can share information with
each other [5]. Computing devices within a network are also
known as nodes, while the connections between them are
called links. One type of node that is particularly useful in
networks is called a server. Servers help provide resources
to other nodes within the network using resource sharing.
With resource sharing, physical assets (such as more pow-
erful hardware) and logical assets (data or software) can be
accessed by any node in a network using servers [5]. Another
important type of node is called a router. Routers serve the
purpose of allowing separate networks to communicate with
each other [5].

Data is sent between nodes in units which are called pack-
ets [5]. Nodes in a network cannot communicate with each
other instantaneously; there are different types of delays that
are involved when sending packets. Propagation delay, also
called latency, for a link is the amount of time it takes for a
packet to be sent from one node to another using a particu-
lar link [4]. Transmission delay is the amount of time it takes
to propel all of the information in a packet from a node into
a link.



2.1 Edge Computing Networks
The edge of a network, as defined by Shi et. al in [6],

can be any point along a link between computing devices
and cloud servers that network resources, such as servers or
routers, are found. Edge computing is then defined as “the
enabling technologies allowing computation to be performed
at the edge of the network...” [6].

The first type of edge computing is called fog computing.
In fog computing, a network of nodes consists of three dis-
tinct layers of nodes arranged as a hierarchy. An IoT layer
exists on the bottom, a fog layer in the middle, and a cloud
layer on top [11]. The IoT layer is solely comprised of IoT
devices that can communicate with the upper two layers.
The fog layer contains fog nodes, which are typically routers
(or other similar network connection devices) that contain
embedded servers within them [1]. Fog nodes are located
near IoT nodes and can process IoT requests that do not
require permanent storage or would benefit from very quick
responses. Finally, the cloud layer includes cloud servers, to
which the IoT layer can send more complicated tasks. The
IoT layer does not necessarily need to communicate through
the fog layer to reach the cloud layer; requests can be sent
to any layer directly.

The second type of edge computing is called mobile edge
computing (MEC). MEC is similar to fog computing in that
there is an intermediate layer of servers that exist between
the cloud and IoT devices. However, MEC is designed specif-
ically for devices that are mobile. In particular, MEC servers
are designed to communicate with cellular network systems
and are typically located near the towers for this infrastruc-
ture [1]. Another key difference between fog computing and
mobile edge computing is that MEC servers make use of
virtualization, whereas fog nodes do not.

2.2 Virtualization Layers
Virtual machines are simulations of computer processes,

such as applications or operating systems, that have been
installed and are running inside of another computer. They
have the same behavior that an independent machine run-
ning those processes would have [10]. They are useful in
MEC networks because they help compartmentalize huge
amounts of data, which makes it easier to manage.

In the model of MEC that we studied, there are three
different layers of virtualization that are used in the MEC
nodes. The first layer is called the base, and consists of the
operating system, or kernel, of the virtual machine. The next
is called the application layer. It contains only data that is
necessary to run an application. The last layer is known
as the instance layer. It contains specific information about
the state of an application. An example of a virtual machine
that uses all three of these layers would be a Windows op-
erating system with Microsoft Office installed on it running
with multiple documents open. Respectively, these can rep-
resent the base, application, and instance layers of a virtual
machine that can be run inside a MEC node.

3. FOG OFFLOADING
The first optimization technique for edge computing net-

works that is discussed is fog offloading. It is only applicable
for fog computing networks. The goal of fog offloading is to
reduce the service delay for IoT devices [11]. Service delay is
the length of time it takes for a response to be received by

an IoT device after it has made a request to a fog node. Of-
ten, these requests involve data analytics tasks across wide
applications, for example, forest fire detection and air qual-
ity monitoring [3]. Fog offloading reduces service delay by
approximating which fog node can complete a request the
fastest, and then sending the request to that optimal node.
If too many nodes are busy, or if the request is too compli-
cated, the request is sent to the cloud instead of a fog node.
A node that can complete a task the fastest depends on the
complexity of the request, the number of tasks already wait-
ing to be processed by a node, the computational power of a
node, and the distance from a node to the device that made
a request.

Fog nodes require time to process each request they re-
ceive, which is known as processing delay. In the model pro-
posed by Yousefpour et. al, tasks can be categorized into
light tasks and heavy tasks based on their average process-
ing times [11]. For example, a light task might be a sensor
needing to estimate the average temperature of a room (a
simple calculation), while a heavy task could be a traffic
camera requesting the licence plate of a car to be read from
an image it has taken (image processing) [11]. A node can
identify whether a request is light or heavy by checking the
first packet in a request, which records its type. If a fog node
receives multiple requests, they can wait in a queue inside of
the node until they are ready to be processed. The estimated
waiting time (W ) for a node is the amount of time it will
take for a node to process all of the requests in its queue,
plus the amount of time it will take for it to complete the
request it is currently working on [11]. W can be estimated
by keeping track of the average processing times of light and
heavy tasks and counting the types of tasks in the queue.
Each node j has a threshold value θj that is checked every
time a node receives a new request. If the fog node has a
smaller estimated waiting time than this value, the fog node
will begin working on the new request, or add it to its queue.
If the node has a greater estimated waiting time than the
threshold, the request will be offloaded to a neighbor of the
fog node, or to the cloud. The number of times a request
is offloaded is maintained as Nfwd. If Nfwd exceeds a value
eM called the offload limit, then the request is sent to the
cloud instead of a neighboring fog node. Here, e stands for
the offload limit, and M stands for a given fog network.

In order to determine which neighboring node to offload
a task to, in the model created by Yousefpour et. al nodes
communicate their estimated waiting times to each other,
as well as the propagation delays between each pair. The
neighboring node with the smallest sum of estimated waiting
time plus propagation delay is chosen as the node to which
the request is offloaded.

3.1 Service Delay
The model presented by Yousefpour et. al describes service

delay with the equation below.

di = pI
i · (Ai) + pF

i · (XIF
ij + YIF

ij + Lij)

+ pC
i · (XIC

ik +YIC
ij +Hk+XCI

ki +YCI
ki ),

j = f(i); k = g(i)

(1)

Here, di represents service delay for an IoT node i working
on a task. Then pI

i is the probability that an IoT node i can
complete its task without using the fog network or the cloud,
and Ai is the average amount of time it takes for the IoT



node i to complete a task. pF
i is the probability that the IoT

node will send the task to the fog layer. XIF
ij and YIF

ij respec-
tively represent the propagation and transmission delays for
IoT node i to send a request to fog node j. The transmission
delay is found by finding the sum of each transmission delay
across all of the links between IoT node i and fog node j
(if there is more than one link). Lij is the amount of time it
takes for the fog layer to process IoT node i ’s request that
is initially sent to fog node j. Lij is covered in greater detail
in the next subsection.

The second line of this equation handles the case where
an IoT node’s request skips the fog layer and is immediately
sent to the cloud to be processed. pC

i is the probability of
of this event happening. XIC

ik and YIC
ij are the propagation

and transmission delays between the IoT node i and cloud
server k. Accordingly, XCI

ki and YCI
ki are the propagation and

transmission delays from the cloud server k back to the IoT
node i. As with the transmission delay in the fog layer, the
transmission delays YIC

ij and YCI
ki are equivalent to the sums

of the transmission delays for each link between the the cloud
server k and IoT node i.
Hk is the average delay for the cloud server to process

a task sent to it. The last components of the service delay
equation are the functions j = f(i) and k = g(i). Given an
IoT node i, they assign a particular fog node j and cloud
server k to which it will send its requests. For example, these
functions may be defined as assigning IoT node i to the fog
node and cloud server with the least amount of propagation
delay among all of the choices [11].

3.2 Fog Layer Delay
In the equation below, Lij from the service delay equation

is defined as:

Lij(x) = Pj · (W j + XFI
ji + YFI

ji ) + (1− Pj)

·
[
[1− φ(x)] · [XFF

jj′ + YFF
jj′ + Lij′(x + 1)]

+ φ(x) · [XFC
jk +YFC

jk +Hk+XCI
ki +YCI

ki ]
]
,

j′ = best(j); k = h(j)

(2)

Lij(x) is the amount of delay that is incurred in the fog layer
from fog node j at the x’th time a task sent from IoT node
i has been offloaded. Therefore the equation for Lij(x) is
recursive, with the parameter x indicating how many times
the request has been already offloaded. The base case for
the recursion is eM, and the parameter x begins at 0. The
delay amount includes the possibilities of the request being
offloaded to multiple other fog nodes, and/or sent to the
cloud if necessary.

When an IoT node i sends a request to its assigned fog
node j, the request has the probability Pj of being accepted
into the queue, and probability (1 − Pj) of being rejected.
In the case where a request is accepted into a fog node’s
queue, it will have an average waiting time W j before it is
finished being processed, and will also sustain a propagation
XFI

ji and transmission YFI
ji delay to be sent back to the IoT

node that made the request. Shown below is the offloading
function φ(x).

φ(x) =

{
0 x < eM,

1 x = eM.

If the number of times a request has been offloaded in
the fog layer is less than the threshold to send a request

to the cloud, φ(x) = 0, otherwise if the amount of times a
request has been offloaded equals the threshold, φ(x) = 1.
Note that the second condition ensures that x can never be
greater than eM.

In the case where a request is rejected from entering a
fog node’s queue, and the offload threshold has not been
reached, fog node j will offload the request to its most suit-
able neighbor j ′. This costs another propagation delay XFF

jj′

and transmission delay YFF
jj′ for sending the request to fog

node j ′. The recursive term Lij′(x + 1) is then added, which
represents the associated costs of attempting to process the
request at fog node j ′. When a request has been offloaded
the maximum number of times, if the last fog node the re-
quest visits offloads the request, it will do so to the cloud.
This then requires propagation delay XFC

jk and transmission

delay YFC
jk from the last fog node to the cloud server k to be

sustained. There will also be a cloud processing delay Hk,
and propagation delay XCI

ki and transmission delay YCI
ki for

sending the response back from the cloud server k to the IoT
node i.

The final pieces of the fog delay equation are the functions
best(j) and h(j). best(j) assigns a fog node j to its best or
most suitable neighbor, j ′. h(j) assigns the fog node j to its
cloud server k. The value of best(j) may change at any time
because the best neighbor for j may depend on the estimated
waiting times of the neighboring fog nodes.

3.3 Fog Offloading Simulation
To test the performance of this model, Yousefpour et. al

created a simulation of a fog computing network that in-
cludes IoT devices, fog nodes, and cloud servers [11]. The
network consists of five hundred IoT nodes, twenty-five fog
nodes, and six cloud servers for each trial that is run. IoT
nodes are capable of producing both light and heavy re-
quests. IoT nodes are considered to have processing power
comparable to an Arduino Uno R3 microcontroller, and fog
nodes are considered to have processing power comparable
to an Intel dual-core i7 cpu. Yousefpour et. al note that “In
the worst case, a fog node’s processing capability is found to
be around 3000 times faster than that of an IoT node gen-
erating type light requests... and 200 times faster than that
of an IoT node generating type heavy requests” [11]. Cloud
servers are also one hundred times faster than fog nodes.

The network can behave in three different ways that are
compared during the simulation. The first way is called No
Fog Processing (NFP) in which the IoT devices in the net-
work will either process their own requests, or send the re-
quests directly to the cloud without using any fog nodes.
The second way is called Light Fog Processing (LFP), in
which IoT nodes can interact with both the fog and cloud
layers of the network, but only send light requests to the fog
layer. Heavy requests can still be sent to the cloud in LFP
configuration. The last configuration is All Fog Processing
(AFP) in which IoT nodes can send both light and heavy
requests to the fog layer and to the cloud, i.e. there are no
restrictions on where requests can be sent.

3.4 Simulation Results
Figure 1 shows the service delay among all three types of

network configurations as the offload limit eM within the
fog layer is increasing. Expected results using the analyti-
cal model, denoted by the label -anl, are compared to the
simulation results, which shows that they are nearly equiva-



Figure 1: Effect of increasing the cloud offload
threshold on service delay [11]

Figure 2: Effect of increasing the probability of us-
ing fog layer on service delay [11]

lent. Increasing eM has no effect on the NFP configuration,
which does not use the fog layer, however, it doesn’t appear
to affect the LFP configuration either. The reason for this
is that the propagation and transmission delays are negligi-
ble for light requests. For the AFP configuration, it can be
seen that when offloading heavy requests too many times,
service delay is significantly increased. When eM is greater
than five for AFP, it is not advantageous to use the fog layer
at all. These findings suggest that the optimal eM for a fog
computing network with offloading is low for heavy requests.

Figure 2 shows the service delay among each type of net-
work configuration as the probability of sending requests to
the fog layer increases. The value of eM for this trial is 1. To
give a better sense of how each configuration performs, de-
lays for light and heavy requests are separated in the graph
and are denoted by the subscripts L and H. Note that pI

i for
all IoT nodes is set to 0.2. This graph shows that as requests
are sent to the fog layer with increasing probability, the av-
erage service delay decreases for the requests that are able
to take advantage of the fog layer based on which configura-
tion they are sent from. Both Figures 1 and 2 demonstrate
how utilizing fog computing to offload tasks results in lower
service delay, and thus better quality of service for users
compared to traditional cloud computing.

Note that in Figure 1, LFP mode outperforms AFP mode.
This occurs because the settings used for the trial in Figure
1 inundated the fog node queues with requests, so that they
were almost always full. If they were not full, the only type of
requests that could enter the queues were light because the
queues were still nearly full. Therefore, whenever a heavy
task was sent to the fog layer, it would not be able to be
accepted into any of the queues, which contributed to the
increased delay seen for AFP mode.

4. SERVICE MIGRATION
The second technique covered in this paper for increas-

ing the quality of service of edge networks is known as ser-
vice migration. Service migration is only applicable to MEC
networks, and improves service within these networks by
decreasing latency. Each MEC node has a limited zone of

coverage called a service area. If devices travel outside of
the service area of a MEC node they are connected to, it
can result in slower response times for the services they are
using or even result in a suspension of service [8]. Service
migration is the process of a MEC network moving the ser-
vices that a device is using from one node to another based
on the availability of another node with a better service area
for the location of the device.

There are several factors which contribute to the decision
for a MEC node to migrate its services to another node. One
factor is the suitability of the current service area for the
device. Another consideration is how many viable alternative
nodes there are for the service to migrate to. A third is how
much time and network resources it will require to perform
a service migration (migration cost). Finally, nodes must try
to predict if or how long a device is likely to stay within a
particular service area.

One key difference between fog computing and MEC is
that it is common for MEC models to use virtual machines
to handle service requests [1]. MEC nodes do not always
need to transfer every layer to another node when they mi-
grate a service. Nodes often store copies of operating systems
and applications when they are frequently used so that they
can be reused for the instance layers that require them. In
such cases, only the instance layers need to be transferred
between nodes, which reduces the migration cost of perform-
ing a particular service migration. This is because less data
needs to be sent over the network and MEC nodes do not
have to dedicate as much time and hardware resources to
downloading data.

4.1 Follow-Me Cloud Scheme
One of the proposed methods for conducting service mi-

gration over a MEC network is proposed by Taleb et. al
in [7] called Follow-Me Cloud (FMC). FMC is a framework
designed to transfer user services from one MEC node to
another so that the service “follows” the user as they move
to provide better quality of service. In this scheme however,
the term data center (DC) is used instead of the term MEC
node, but they can be considered to be roughly the same in
this context [8]. In the FMC framework, depicted in Figure



Figure 3: Model of a FMC MEC network. µ-DCs stand for
micro-DCs [7]

3, multiple DCs are connected to each other as a network
to provide service for users in a particular geographic area.
These DCs are also connected to routers, or other network
connecting devices, so that devices can receive service from
the network at these points [7]. The DCs implement the vir-
tualization scheme detailed in the background section.

Each DC can be classified into two types. Micro-DCs are
implemented as local or integrated storage for the routers
and are capable of running VMs. They also match users
with their corresponding services and conduct migrations to
other micro-DCs. Macro-DCs are servers which provide more
permanent storage required for VMs and instantiate services
that had not been running on micro-DCs. Each macro-DC is
conncected to one or more micro-DCs, and each micro-DC is
connected to one or more routers. Each FMC network also
contains a controller (FMCC). The FMCC is responsible for
making decisions on whether a service should be migrated
based on the migration cost.

4.2 Markov Decision Process
The Markov Decision Process (MDP) is one of several

methods that can be implemented for performing service
migration in MEC networks. An MDP is a mathematical
construct that is used to represent situations that require
making decisions which involve outcomes that are partially
random, but also partially controlled [9]. An MDP uses time
to be a factor over which decisions are made. A discrete time
MDP considers time to be made of equal sized chunks that
cannot be broken up further, whereas in a continuous time
MDP, time progresses uninterrupted. The key elements of
a discrete time MDP include states the system can be in,
actions that can be taken at those states, transition prob-
abilities of moving to different states given an action and
a present state, and rewards for performing actions within
states [9]. A continuous time MDP is similar, but the most
notable difference is that instead of using transition proba-
bilities, transition rates are used. A transition rate is how
often a particular state is transitioned to when an action is
performed at a different state [2].

MDPs for modeling specific networks can be used in the
FMCC for making migration decisions. The goal of using

Figure 4: One dimensional MDP [8]

an MDP is to find the optimal action to perform at each
state, or in other words, to maximize the expected reward
for performing actions. There are two variants of MDP that
can be used in the FMCC, one dimensional MDP and two
dimensional MDP [8]. In one dimensional MDP, devices are
considered to be moving along a straight line, with MEC
nodes placed along that line and devices moving through
their service areas. We will proceed to discuss the imple-
mentation of the one dimensional version.

Figure 4 shows a continuous time MDP for an MEC net-
work, with the circles representing the states of the MDP,
the arrows showing the transitions, and the notation above
the arrows constituting the transition rates. Each state rep-
resents an MEC node and the numbers denote the distance
away from the node that is currently processing a user’s ser-
vice. The circle g is the node that is the maximum distance
away from the current node; if the device travels farther
than this distance the service must be migrated to the opti-
mal MEC node, otherwise service interruption would occur.
At each state an action can be taken, “migrate” or “don’t
migrate”. a1 is the migrate action, which means that a de-
vice’s service will be migrated to the optimal MEC node. In
this scheme, the optimal MEC node for a device is always
the node that contains the device in its service area [8]. a2 is
the other action that can be taken, in which the same node
continues to process a device’s service. u is a parameter for
the mean of an exponential distribution, 1/u, which corre-
sponds to approximately how long devices will remain in a
state (stay time). 0 ≤ p ≤ 1 is the probability that a user’s
service will move to another MEC node further away from
the node processing their service, and (1 − p) is the prob-
ability they will move closer to the node processing their
service.

To find the best actions to take for MDPs that model MEC
networks, the continuous time MDP must be converted to
a discrete time MDP [8]. With this conversion, transition
probabilities can be derived from the rates. The probabilities
are shown below by the piece-wise function:

p(s′|s, a) =


0 s′ = 0, a = a1

p s′ = s+ 1, s 6= g, a = a2

1− p s′ = s− 1, s 6= 0, a = a2

0 otherwise.

s is a state that the user is currently in, s′ is the state
they may transition to, and a is an action. The notation on
the left hand side is a conditional probability. It gives the
probability of transitioning to a particular state, assuming



the device is within a specific state and that a particular
action has been performed.

The function that gives the reward for performing actions
involves both a cost and benefit. The cost of performing a
migration can be given as the piece-wise function:

c(a) =

{
cm a = a1

0 a = a2

cm is the cost of partially or completely migrating a service.
The cost involves starting the VM at the new MEC node,
deciding what information is necessary from the old MEC
node to be sent to the new MEC node, and sending the
information over the network link between them [7]. There
is no cost involved if the service is not migrated. The benefit
of performing a migration is given by Q(s′), which is the
quality of the connection to the MEC node processing a
service from the perspective of a user who is currently in
the service area for state s [7]. Taleb et. al used latency
in their simulation of FMC to measure quality. The reward
function is then defined as:

r(s, s′, a) = Q(s′)− c(a)

In other words, the reward is the quality that can be gained
by performing a migration minus the cost required for doing
so. Note that the higher the latency is between a device and
the MEC node processing their service, the greater the re-
ward will be for migrating. The reward function needs to be
augmented with the transition rates of the continuous time
MDP shown in Figure 4 before it can be used for optimiza-
tion [7]. This augmented version is shown below:

R(s′, s, a) = r(s′, s, a)α+β(s
′
,s,a)

α+c

Where α is a predefined constant, β is the transition rate
between s and s′ with action a, and c is a stay time param-
eter [7].
Together with the transition probabilities described earlier,
the modified reward function is used in an optimization pro-
cedure called value iteration, which finds the optimal set of
actions to take at each state [7].

4.3 FMC Simulation and Results
In order to test this scheme, Talib et. al created a sim-

ulation with two each of macro-DCs, micro-DCs, wireless
routers, and one FMCC [7]. The macro-DCs run Windows
XP VMs. In the simulation, two clients are connected to
one of the wireless routers, and in both cases their service
is being run on the DC that is further away from them.
The network delay (latency) to reach this DC is set to be
50ms. The other DC is closer, and is therefore optimal from
a client perspective for the service to be migrated to. Af-
ter approximately thirty seconds of running the simulation,
the service for one of the clients is migrated. For a couple
seconds, the latency this client experiences spikes to 120ms,
before dropping to below 10ms for the rest of the simulation.
The latency for the other client remains unchanged for the
duration of the simulation at 50ms. Importantly, the service
for either client is never interrupted during the migration.
The simulation showed that the client that had their service
migrated experienced significant improvement in their ping,
which corresponds with higher quality of service.

5. CONCLUSION
The continued proliferation of the Internet of Things is

generating massive amounts of data. New networking tech-
nologies and paradigms, such as edge computing, have shown
promising results in being able to help cope with this trend.
In this paper, we have discussed two different kinds of edge
computing, fog computing and mobile edge computing, and
examined one technique for each that is designed to improve
their efficiency. Being able to improve the performance of
these networks has a direct impact on the quality of service
that users perceive when connected to them. The refinement
of these systems can help make our lives more convenient
and may speed up the development of future products and
technologies.

6. ACKNOWLEDGEMENTS
I would like to thank my adviser KK Lamberty, my in-

structor for Senior Seminar Elena Machkasova, and my alumni
reviewer Dan Frazier for their helpful time and feedback they
have provided for this paper.

7. REFERENCES
[1] K. Dolui and S. K. Datta. Comparison of edge

computing implementations: Fog computing, cloudlet
and mobile edge computing. 2017 Global Internet of
Things Summit (GIoTS), August 2017.

[2] J. Linssen. Continuous-time Markov Decision
Processes. Retrieved November 23, 2018 from
https://dspace.library.uu.nl/bitstream/1874/

336084/2/bachelor_thesis_linssen.pdf.

[3] J. Ni, K. Zhang, X. Lin, and X. Shen. Securing Fog
Computing for Internet of Things Applications:
Challenges and Solutions. IEEE Communications
Surveys Tutorials, 2018.

[4] U. of California Berkeley. Packet delay, cs168.
Retrieved November 23, 2018 from
https://inst.eecs.berkeley.edu/~cs168/fa14/

discussion/slides1.pdf.

[5] G. M. Schneider and J. L. Gersting. Invitation to
Computer Science, 6th Edition. Cengage Learning,
2013.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge
Computing: Vision and Challenges. IEEE Internet of
Things Journal, 2016.

[7] T. Taleb, A. Ksentini, and P. Frangoudis. Follow-Me
Cloud: When Cloud Services Follow Mobile Users.
IEEE Transactions on Cloud Computing, February
2016.

[8] S. Wang, J. Xu, N. Zhang, and Y. Liu. A Survey on
Service Migration in Mobile Edge. IEEE Access,
6:23511–23528, April 2018.

[9] Wikipedia. Markov decision process. Retrieved
October 13, 2018 from https://en.wikipedia.org/

wiki/Markov_decision_process#Continuous-time_

Markov_decision_process.

[10] Wikipedia. Virtual machine. Retrieved October 13,
2018 from
https://en.wikipedia.org/wiki/Virtual_machine.

[11] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue. On
Reducing IoT Service Delay via Fog Offloading. IEEE
Internet of Things Journal, 5:998–1010, April 2018.


