Improving Quality of Service in Edge Computing Networks

Colin Rabe

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

November 17, 2018

 Fills same role as cloud computing

Open Automation Software [5]

- Fills same role as cloud computing
- Processes and stores data near devices

Open Automation Software [5]

- Fills same role as cloud computing
- Processes and stores data near devices
- Edge servers can be heterogeneous

Open Automation Software [5]

- Fills same role as cloud computing
- Processes and stores data near devices
- Edge servers can be heterogeneous
- Devices can be part of the Internet of Things (IoT)

Open Automation Software [5]

Why is it important?

- Much faster response times
- Reduces bandwidth strain
- Security of data is improved
- Applicable for autonomous vehicles, augmented reality, and the Internet of Things
- Can increase productivity in business, medical, and industrial environments

Outline

- Background
- Task Offloading
- Simulation and Results
- 4 Conclusion

Outline

- Background
 - Networks
 - Fog Computing
- Task Offloading
- Simulation and Results
- Conclusion

Networks

- Networks
 consist of
 connected
 computers that
 can share data
- They can be considered graphs with nodes and edges

Basic Computer Network

Networks cont.

- Packets are units of data that are sent over the network
- Nodes can make requests and receive responses made of packets

Networks cont.

 Propagation delay is the amount of time it takes for the first packet in a request or response to reach a node

Networks cont.

 Transmission delay is the amount of time it takes for a node to get all of the packets into the data link

Fog Computing

Composed of three layers

Yousefpour et. al. [1]

- Fog and cloud layers contain domains
- Fog nodes process tasks using queues

Outline

- Background
- Task Offloading
 - Overview
 - Service Delay
 - Fog Layer Delay
- Simulation and Results
- Conclusion

Task Offloading Overview

- The goal of task offloading is to reduce service delay
- If a fog node receives a task and its queue is full, it sends the task to a neighboring fog node, or the cloud
- Light and heavy tasks can be distinguished between each other

$$d_{i} = p_{i}^{I} \cdot (A_{i}) + p_{i}^{F} \cdot (X_{ij}^{IF} + Y_{ij}^{IF} + L_{ij}) + p_{i}^{C} \cdot (X_{ik}^{IC} + Y_{ik}^{IC} + \overline{H}_{k} + X_{ki}^{CI} + Y_{ki}^{CI})$$

$$d_i = p_i^I \cdot (A_i)$$

$$d_i = p_i^I \cdot (A_i) + p_i^F \cdot (X_{ij}^{IF} + Y_{ij}^{IF} + L_{ij})$$

$$d_i = p_i^I \cdot (A_i) + p_i^F \cdot (X_{ij}^{IF} + Y_{ij}^{IF} + L_{ij})$$

$$d_{i} = p_{i}^{I} \cdot (A_{i}) + p_{i}^{F} \cdot (X_{ij}^{IF} + Y_{ij}^{IF} + L_{ij}) + p_{i}^{C} \cdot (X_{ik}^{IC} + Y_{ik}^{IC} + \overline{H}_{k} + X_{ki}^{CI} + Y_{ki}^{CI})$$

$$d_{i} = p_{i}^{I} \cdot (A_{i}) + p_{i}^{F} \cdot (X_{ij}^{IF} + Y_{ij}^{IF} + L_{ij})$$

+ $p_{i}^{C} \cdot (X_{ik}^{IC} + Y_{ik}^{IC} + \overline{H}_{k} + X_{ki}^{CI} + Y_{ki}^{CI})$

$$d_{i} = p_{i}^{I} \cdot (A_{i}) + p_{i}^{F} \cdot (X_{ij}^{IF} + Y_{ij}^{IF} + L_{ij}) + p_{i}^{C} \cdot (X_{ik}^{IC} + Y_{ik}^{IC} + \overline{H}_{k} + X_{ki}^{CI} + Y_{ki}^{CI})$$

$$d_{i} = p_{i}^{I} \cdot (A_{i}) + p_{i}^{F} \cdot (X_{ij}^{IF} + Y_{ij}^{IF} + L_{ij}) + p_{i}^{C} \cdot (X_{ik}^{IC} + Y_{ik}^{IC} + \overline{H}_{k} + X_{ki}^{CI} + Y_{ki}^{CI})$$

Offload Limit

- The maximum number of times a request can be offloaded in the fog layer is called the offload limit, $e_{\mathcal{M}}$
- If the offload limit is reached, tasks are sent to the cloud

The offloading function is displayed below:

$$\phi(x) = \begin{cases} 0 & x < e_{\mathcal{M}}, \\ 1 & x = e_{\mathcal{M}}. \end{cases}$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI}) + (1 - P_j)$$
$$\cdot \left[[1 - \phi(x)] \cdot [X_{jj'}^{FF} + Y_{jj'}^{FF} + L_{ij'}(x+1)] + \phi(x) \cdot [X_{jk}^{FC} + Y_{jk}^{FC} + \overline{H}_k + X_{ki}^{CI} + Y_{ki}^{CI}] \right]$$

$$L_{ij}(x) =$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI})$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI})$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI}) + (1 - P_j)$$
$$\cdot \left[[1 - \phi(x)] \right]$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI}) + (1 - P_j)$$
$$\cdot \left[[1 - \phi(x)] \cdot [X_{jj'}^{FF} + Y_{jj'}^{FF} + L_{ij'}(x+1)] \right]$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI}) + (1 - P_j)$$
$$\cdot \left[[1 - \phi(x)] \cdot [X_{jj'}^{FF} + Y_{jj'}^{FF} + L_{ij'}(x+1)] \right]$$

$$L_{ij}(x) = P_{j} \cdot (\overline{W}_{j} + X_{ji}^{FI} + Y_{ji}^{FI}) + (1 - P_{j})$$

$$\cdot \left[[1 - \phi(x)] \cdot [X_{jj'}^{FF} + Y_{jj'}^{FF} + L_{ij'}(x+1)] + \phi(x) \cdot [X_{ik}^{FC} + Y_{ik}^{FC} + \overline{H}_{k} + X_{ki}^{CI} + Y_{ki}^{CI}] \right]$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI}) + (1 - P_j)$$

$$\cdot \left[[1 - \phi(x)] \cdot [X_{jj'}^{FF} + Y_{jj'}^{FF} + L_{ij'}(x+1)] + \phi(x) \cdot [X_{jk}^{FC} + Y_{jk}^{FC} + \overline{H}_k + X_{ki}^{CI} + Y_{ki}^{CI}] \right]$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI}) + (1 - P_j)$$

$$\cdot \left[[1 - \phi(x)] \cdot [X_{jj'}^{FF} + Y_{jj'}^{FF} + L_{ij'}(x+1)] + \phi(x) \cdot [X_{jk}^{FC} + Y_{jk}^{FC} + \overline{H}_k + X_{ki}^{CI} + Y_{ki}^{CI}] \right]$$

$$L_{ij}(x) = P_j \cdot (\overline{W}_j + X_{ji}^{FI} + Y_{ji}^{FI}) + (1 - P_j)$$
$$\cdot \left[[1 - \phi(x)] \cdot [X_{jj'}^{FF} + Y_{jj'}^{FF} + L_{ij'}(x+1)] + \phi(x) \cdot [X_{jk}^{FC} + Y_{jk}^{FC} + \overline{H}_k + X_{ki}^{CI} + Y_{ki}^{CI}] \right]$$

Outline

- Background
- Task Offloading
- Simulation and Results
- 4 Conclusion

Simulation Setup

- To test this model, researchers simulate processing power of nodes
- Processing power of Arduino Uno R3 microcontroller for IoT nodes, dual core i7 processor for fog nodes
- Operates in three different modes, NFP, LFP, AFP
- Key settings include probabilities of sending request to each layer, waiting threshold, and offload limit

Results

- AFP mode performed best on average
- LFP and AFP modes performed better as the probability of sending tasks to the fog layer increased

Results cont.

- Optimal offload limit for this simulation found to be 1
- All fog nodes were overwhelmed with tasks in their queues

Outline

- Background
- Task Offloading
- Simulation and Results
- 4 Conclusion

Conclusion

- Edge computing significantly decreases task completion times
- Task offloading, with the proper optimizations, is one technique that enables this to happen
- May speed up the development of new products and technology

Acknowledgements

I would like to give a special thanks to KK and Elena Machkasova for their helpful feedback incorporated in this talk

Questions

Questions?

References

- A. Yousefpour, G. Ishigaki, R. Gour and J. P. Jue On Reducing IoT Service Delay via Fog Offloading. In IEEE Internet of Things Journal, vol. 5, no. 2, pp. 998-1010, April 2018.
- W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu Edge Computing: Vision and Challenges. In IEEE Internet of Things Journal vol. 3, no. 5, pp. 637-646, Oct. 2016.
- Wikipedia. Transmission delay. Wikipedia, The Free Encyclopedia, 2018.
 - [Online: accessed November-2018].
 - Propagation delay. Wikipedia, The Free Encyclopedia, 2018. [Online: accessed November-2018].

Wikipedia.

References cont.

Open Automation Software.

Image url: https://openautomationsoftware.com/blog/iiot-edge-computing-vs-cloud-computing/ [Online; accessed November-2018].