
Application of Machine Learning Algorithms in
Cyber-Security

Shawn Saliyev
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
saliy002@morris.umn.edu

ABSTRACT
Malicious software is one of the main and continuous sources
of threat in the world of cyber-security. More innovative
ways are needed for detecting them. This paper investigates
two different machine learning approaches for detecting ma-
licious attacks. The first approach is a combination of two
types of neural networks called autoencoder and deep neu-
ral network. The second approach uses a combination of a
genetic algorithm and an isolation forest. We will be going
over these two approaches and sharing results that describe
how effectively these methods detect malicious softwares.

Keywords
Machine Learning, Isolation Forest, Deep Learning, Deep
Neural Network, Cyber Security, Cyber Threats

1. INTRODUCTION
In the modern day it, is hard to imagine our lives without a

computer or phone that is connected to the internet. We use
these devices on an everyday basis in order to communicate,
learn, and work. Because of that lifestyle we end up storing,
sending, or receiving a lot of personal or valuable data. And,
unfortunately, there are people who want access that data
and either steal it to use it against the owner. For that
they develop malicious software (malware) that if executed
on your system can damage or send your information to the
developer of that program. The issue is that it is not trivial
task to detect such malicious files. By downloading a file
from a website, you might end up receiving malware.

One of the old and traditional approaches that has been
used for detecting malware is a Signature Based Detection
System. This technique involves having an updated database
with unique byte or instruction patterns that are referred
to as signatures. Each signature is used as an identifier
for specific malicious software. When checking an unknown
downloaded file, the system simply matches it against the
database and if a match is found then the file is classified
as malicious. The problem is that this approach is really
inefficient against new malware referred to as Zero-Day at-
tacks. However there are other new methods that address
this issue.

Relatively new ways of detecting malicious software in-

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, December 2018 Morris, MN.

volve using different machine learning algorithms. Machine
learning algorithms tend to be really efficient for this pur-
pose. One of the big cyber-security companies called“Kasper-
sky Lab” applies some machine learning algorithms such as
decision tree ensembles, behavioral models, and clustering
[1]. This paper will focus on two other techniques. The
first is based on using an autoencoder for extracting the im-
portant details about the data and deep neural networks
for classifying the files into either safe or malicious. second
technique uses a genetic algorithm for determining impor-
tant features of the data and an isolation forest for detecting
malware.

This paper will define some machine learning terms such
as deep neural network, autoencoder, isolation forest and ge-
netic algorithm in the next section. Background information
about malicious software will be also provided in the next
section. In Section 3, we will introduce the deep learning
approach and look at its result. Section 4 will be dedicated
to the Isolation Forest approach. We will come up with the
conclusions in Section 5.

2. BACKGROUND
There are some key concepts that need to be elaborated

upon before the investigation of these two methods. First,
we define the concept of machine learning itself and then
go over main terms. Next we describe definitions and nota-
tions necessary to understanding the idea of the malicious
software.

2.1 Machine Learning
Machine learning (ML) is an approach that is successfully

used in many areas such as cyber security, medicine, and en-
gineering. Generally the goal is to generate a model, which
can be some math representation of some process. It is really
efficient and practical because it allows us to teach the com-
puter to do a specific task based on the data. By learning
we mean identifying patterns and features in the data.

2.1.1 Data
It is really important to understand what we mean by

data in the context of machine learning. Data, or as it is
more commonly referred to data set is an essential part of
machine learning, since it is used to teach the computer to
do a specific task. The size of the data set is one of the
parameters that affects the total performance of a machine
learning algorithm. Typically there are two types of data
sets: labeled and unlabeled. Labeled data set is where the
label for each input is already provided. Unlabeled data set

does not have labels, only input data. Data that is labeled
is actually expensive and requires more effort to get than
unlabeled data. In the context of malware detection you
can think of a labeled data as a set of executable files which
have labels that tell if the file is benign or malicious. The
labeled data set is used for Supervised Learning technique,
which will be described later.

There is also another key concept about data besides the
size of the data set. If you think of a set of executable
files, there are other parameters that describe each file in-
dividually. These parameters are referred as inputs. The
correlation between inputs or inputs themselves sometimes
can be referred to as features. For a simple example imagine
a java executable file and two features that describe it: file
size and execution time. For an example let’s say file with
the size of 1000 bytes has execution time of 2 seconds. Then
this file can be described as a vector [2 1000], where the
first entry corresponds to the execution time and the second
entry is the file size. In the real world data is described by
many features, so the size of such a vector could be much
larger.

2.1.2 Techniques
A supervised learning technique is when your machine

uses a labeled data set for learning. Since the data is la-
beled, the machine is looking for combinations of features of
each data point and tries to associate them with the corre-
sponding label.

The second technique is called unsupervised learning which
uses unlabeled data. Since there are no labels provided, the
machine can not really classify the data points. Instead it
tries to cluster them according to their features.

The learning process is usually called training. During
the training process the algorithm learns the pattern in the
data. In case of labeled data, the algorithm is looking for
the relation between input and output. If the data is not
labeled, then algorithm is trying to group inputs together,
such that inputs in the same group are similar to each other.
The data set is divided into two uneven parts. For example
2/3 of the data set is used for training and the rest (1/3) is
for testing. Testing is really important in machine learning.
After training the algorithm on the training data set, we
need to check how this algorithm will perform on the data
that it has never seen before. [7]

2.2 Malware
Malware is short for malicious software [8]: a program

that has been made for dealing damage to any kind of sys-
tems. Malicious software was intentionally made for dealing
damages such as spying, corrupting data, deleting important
files, and infecting other files or systems if reachable.

There are some common categories of malware: Trojan,
Virus, Spyware etc. Trojan is one of the most popular ma-
licious programs. It usually gets into the user’s system by
disguising itself as a safe program. Spyware is made for spy-
ing on a user. It is a really dangerous kind of malware since
it can save all of your passwords and other important cre-
dentials. Viruses are good at spreading and corrupting files
in your system, and there is also a risk that they can infect
other systems that are on the same network.

3. DEEP LEARNING EXPERIMENT

In this section we will describe an approach that uses an
autoencoder for extracting important features from the data
set and deep neural network for classification. We will also
look at the application and the result of the current method.

3.1 Neural Network
A neural network is the machine learning approach that

might remind us of a human brain. It is a system that is
efficient at learning structures and patterns of the data. Like
a human brain, neural network finds and learns patterns in
the data, and then uses this information to do a specific task.
Neural networks are really convenient for classification tasks.
So in the case of detecting malicious files, this approach
becomes really useful.

Figure 1: Example of the Neural Network1

In figure 1 you can see an example of neural network that
has an input layer, two hidden layers, and an output layer.
Technically this is a deep neural network since it has more
than one hidden layer. Each layer has a certain number of
nodes. This number is arbitrary and selected on a case by
case basis.

3.1.1 Activation
Each node in the hidden layer has a nonlinear function

called activation functions. Which defines the output of that
node by taking in the input from the previous layer. An
example of activation function might be exponential linear
unit (ELU):

F (x) =

{
x if x ≥ 0
α(ex − 1), if x < 0

Where α is some constant and ex is the exponential function.
All nodes are connected with other nodes from neighbour

layers. These connections are called edges. Each edge has
the assigned weight to it. The weight is used for amplifying
or silencing the output of the activation function.

In the figure 2, you can see a closer image of Neural Net-
work. All inputs in the input layer are labeled as Xi where
i is the index of the node in the input layer. Weights are
labeled as Wi. The activation function takes in a weighted
sum of inputs plus bias. Bias is needed for shifting the out-
put of the activation function. The input of the activation
function can also be written as:

n∑
i=1

(Xi ∗Wi) + b

Where b is the bias. The output of the activation function
is then used as an input for nodes in the next layer.
1http://neuralnetworksanddeeplearning.com/chap1.html

Figure 2: Closer look at the Neural Network

3.1.2 Loss Function
Initially each weight and bias is set to some random num-

ber. Therefore at first the performance of your neural net-
work is really poor. In order to increase the performance,
the weights and biases need to be adjusted in a right way.
In order to understand how to adjust them a loss function
is used. You can think of a loss function as the gap between
the label and the output that has been produced by your
network. So the main goal here is to find minima of the loss
function or in the other words, to reduce the gap between
the expected output and the output given by your network.
If you are making the neural network that has to classify
the data between two classes as in our case, malicious or be-
nign, then it would make sense to use the loss function that
fits the binary output. An example of such loss function is
Binary Cross-Entropy Loss Function. This loss function can
be computed as

L =
1

n

n∑
i=1

yi log

(
1

p(xi)

)
+ (1 − yi) log

(
1

(1 − p(xi))

)
(1)

The yi represents the actual output, for example if the file xi
is malicious then yi is 1 and 0 if otherwise. The p(xi) repre-
sents the output that has been predicted by the network, it
is presented as a function of p() because the output layer of
the neural network does not really give 0 or 1 as the output.
The output is given as certainty or probability. For an exam-
ple if the output of the network is 0.8, that would mean the
80% of chance that current file is malicious. The yi log(1

p(xi)
)

part represents the loss or the gap between expected output
yi and predicted by the network model p(xi). By looking at
this formula you can see that closer yi is to p(xi) then the
total of yi log(1

p(xi)
) becomes less. In the case when yi is 0

(benign program) the yi log(1
p(xi)

) becomes 0 as well, that is

why there is a second term in the sum (1 − yi) log(1
1−p(xi)

).

So the equation 1 represents the combined gap between all
yi and p(xi).

3.1.3 Optimization
Optimization is an essential part of training a neural net-

work. The goal is to minimize the loss function. Gradi-
ent Descent is the optimization algorithm that is used for
finding such local minima of the loss function. The algo-
rithm is based on calculating the gradient of the function.
Where gradient is the vector-valued function which shows
the direction of the greatest increase of a multivariate func-
tion. Hereby the algorithm moves in the direction of steep-
est descent by taking the negative of the gradient. Figure 3

shows how gradient descent algorithm moves downhill, until
it reaches the local minima. You can think of a gradient as
a general form of derivative of an function, where derivative
is a scalar-valued function because it is used when there is
only one variable.

Figure 3: Multi-variable function 2

For the simplicity, let the loss function be L and weight
be w. So the goal is to find w∗ such that L(w∗) is less than
L(w) for all other w. In order to understand the direction
to the optimal w∗, the gradient function is computed.[2]

The process of finding such minima is iterative and can
be shown as

wi+1 = wi − aiGL(wi)

Where i is the number of the iteration, wi is the current
weight, and GL(wi) is the gradient of the loss function with
respect to that weight. The learning rate ai is a positive
scalar that determines the step size of the gradient descent
algorithm. The ai depending on the optimization algorithm
can be same through all iterations, or it can get smaller with
each iteration.

3.1.4 Regularization
There is always a risk that the model that we are train-

ing with the training data set, can become too specific for
that data. This condition is called overfitting. The network
learns the relationships in training data set so well, that
when we test it with the testing data, it performs poorly.
One of the reasons is that only portion of weights have been
modified during the training process. That way the other
portion of weights is left unchanged.

Regularization is used to prevent overfitting of the neural
network. There are a lot of different regularization tech-
niques that are being used. An example of an regularization
could be dropout. Dropout is a technique that turns off cer-
tain percentage of random nodes during the training process.
That way it makes all weights to be changed during training
and decrease the chances of overfitting.

3.2 Data Gathering
The dataset for this experiment was collected from two

different sources. Malicious binary files were extracted from
Malicia project, and benign programs were collected from
different Windows systems. The total size of the dataset was
about 14,000 files where almost 80% were malicious files and
the rest were benign programs. Because of that big imbal-
ance, the Adaptive Synthetic Oversampling technique was
applied. This technique generates more synthetic samples
of benign files and keep the distribution uniform. After that

2https://academo.org/demos/3d-surface-plotter/

each of the files was used to generate their assembly code
files.[6]

In order to prepare data for the neural network and have
a list of features as representation of each assembly file, the
opcode frequencies were used. [5] The opcode is a single
instruction that machine can understand and execute. An
example of opcode can be “ADD CX,BX” where ADD is
the instruction, CX and BX are operands. First the set of
unique opcodes was extracted from the assembly files. In
total there were about 1600 unique opcodes. Then the set
was numbered so that it could be used as table where their
frequencies can be recorded. Then each file was checked,
and the table corresponding to that file was filled with fre-
quencies of each opcode. These frequencies were scaled from
0 to 1. These were used as inputs.

3.3 Feature Extraction and Dimensionality Re-
duction

Having about 1600 features for each data point would
mean that network will have to work with 1600 dimensional
data. The complexity of data significantly increases with
the number of dimensions. However we can reduce the num-
ber of dimensions by finding features that are correlated or
overlapped. Therefore some can be removed since they will
not provide extra information about the data. For that au-
toencoder was used. Autoencoder is the type of neural net-
work that can be used for extracting important features and
reducing the dimensions of the data. For this experiment
single-layer and 3-layer Autoencoders were used. [6]

Figure 4: Structure of the Autoencoder

The structure of the single-layer Autoencoder (1L-AE)
consists of input layer, bottleneck layer, and output layer.
The 3-layer Autoencoder (3L-AE) has two extra layers be-
fore and after the bottleneck layer. The bottleneck layer
of this autoencoder consisted of 32 nodes. Hereby there
are two main components: encoder and decoder. Where
encoder consists of layers before the bottleneck layer and
decoder consists of layers after the bottleneck layer.The en-
coder compresses the input layer into the bottleneck layer
by combining the common features into one element. Then
the decoder finds the relations between the features that
describe the expected output.

3.4 Deep Neural Network models
For the classification part, three different deep neural net-

works were used: 2-hidden layer (2L-DNN), 4-hidden layer
(4L-DNN) and 7-hidden layer (7L-DNN). The classification

model takes in the features from the bottleneck layer that
was made by autoencoder as an input.

All three of these networks use ELU as the activation func-
tion except the output layer. The output layer consists only
of one node and uses Sigmoid as the activation function.
The sigmoid function is often used for the output layer of
networks that do classification between two categories.

For the regularization the 0.1 dropout technique was used,
where 0.1 means that random 10% nodes will be turned off
during the training process in every iteration. The binary
cross entropy loss function was used as loss function. Adam
optimizer was used for the optimization of the neural net-
work. Adam is another type of optimization algorithm that
has adaptive learning rate. Which means that the learning
rate is being change during training process. This optimizer
is really popular and efficient, that is why it is commonly
used for neural networks. [4]

3.5 Results
The overall results of this experiment are quite impressive.

The chart below demonstrates the performance of different
combinations of Autoencoders with Deep Neural Networks.

The combination of 3-layer autoencoder and 4-layer deep
neural network turned out to be the most accurate (99.21%).
The combination of 3-layer autoencoder and 7-layer deep
neural network showed the lowest accuracy (93.60%). One
of the reasons why the combination of 3-layer autoencoder
and 7-layer deep neural network showed worst performance,
is that the complexity of the model that is being generated
by the network is high, because the big number of hidden
layers. This issue is called overfitting. Table 1 shows the
results with different combinations of autoencoder and deep
neural network.

• TP - true positive, malicious file identified as malicious.

• FP - false positive, benign file identified as malicious.

• TN - true negative, benign file identified as benign.

• FN - false negative, malicious file identified as benign.

AE DNN TP FP TN FN Acc.

1L-AE 2L-DNN 3481 23 3612 200 96.95
1L-AE 4L-DNN 3451 44 3591 230 96.25
1L-AE 7L-DNN 3618 11 3624 63 98.99
3L-AE 2L-DNN 3630 157 3478 51 97.16
3L-AE 4L-DNN 3630 7 3628 51 99.21
3L-AE 7L-DNN 3238 25 3610 443 93.60

Table 1: Results with different combinations of AE
and DNN [6]

4. ISOLATION FOREST
This section addresses the second experiment where Ge-

netic and Isolation Forest algorithms were applied for de-
tecting malicious files.

4.1 Isolation Forest
An isolation forest (IForest) is another type of machine

learning algorithm which is convenient for identifying anoma-
lies in data. Where by anomaly we mean the data point that

is not similar to the majority of the data. As an example,
imagine a set of 10 benign executable files and couple of
malicious files. Malicious files will have different features in
this set, thus can be identified as anomalies. There are two
main parameters for this algorithm: the number of isolation
trees and the sub-sample size.

Sub-sample size determines the number of data points
that will be randomly chosen for generating each isolation
tree.

An Isolation tree is what is used to create the isolation
forest. It is structured as binary search tree where values
less than some specified value end up on the left side of the
tree and other values build the right side of the tree. In
order to build such a tree, the algorithm randomly chooses
the dimension and a random value x of that dimension from
a given data set. Then all data points that have smaller
value than x in that dimension build the left side of the
tree. Data points that have greater or equal value than x in
that dimension build the right side of the tree. That process
will be repeated until every data point is separated. Figure
5 shows the process of generating the isolation tree.

Figure 5 shows that the anomaly point is closer to the root
of the tree compared to the majority of other data points.
That happens because it takes less splits to separate such
outlier. Since the building of the tree involves randomly
choosing values, it would not make sense to build just one
such a tree. That is why the IForest algorithm builds a set
of trees.

After all trees are generated, the average path length from
the root to each node is calculated. The node which has
short average path to the root among all trees is identified
as an anomaly.

In this experiment the number of isolation trees and sub-
sample size were selected by trial and error. Initially the
number of isolation trees was 100 and sub-sample size per
tree was 256. But after trying different parameters,the au-
thors ended up using 200 isolation trees and sub-sample size
was 8192. [3]

4.2 Genetic Programming
Genetic programming is one of a kind of evolutionary al-

gorithms. The main goal is to evolve the computer program
so that it solves the given problem. This algorithm is based
on Darwin’s theorem of evolution which says that the fittest
individual will survive in the given environment. The pro-
cess of evolving the programs is called an evolutionary run.
At the beginning of each run there is a set of randomly
generated individuals that can potentially solve the given
problem. All individuals are tested against a given test and
receive the score that describes how fit are they for solving
a problem. Better individuals are selected to be parents of
the next generation. The next generating can be produced
by two main ways: crossover and mutation. Crossover is
similar to sexual reproduction where child program inher-
its parts of the program from both parents. The mutation
happens when parts of the parent’s program are randomly
changed and used for making the child program. The pro-
cess of producing new generations will continue until the
solution is found or a specific score is reached.

4.3 Data Gathering
For this experiment malicious files were created based on

the examples from “ContagioDump” and “Malware Domain

List” websites. Benign files were made using Sqrrl’s attack
lab enterprise. This enterprise is mid-sized and hosted by the
company called Simspace. It is a simulation system which
has network hardware and endpoint machines for simulat-
ing normal business activity. Then this network activity has
been recorded and used as benign files. Both data sets con-
sisted of Packet Capture (PCAP) data. This data has been
decoded into Bro HTTP log files with the use of “Bro” soft-
ware. At the end there were 37,978 malicious and 271,129
benign HTTP log files.

HTTP log files have multiple fields that describe the HTTP
request. An example of such fields could be field called host,
which tells the domain’s name. The problem is that most of
these fields such as host have string values, therefore they
need to be represented as numbers so that IForest algorithm
can use them as dimensions. Couple of techniques such as
bag of words and N-grams were used to address this problem.
N-gram features were produced by extracting n-consecutive
character sequences and and group them. Each of these
groups will represent its own dimension, but with only two
possible values 0 and 1. Then if the current log file contains
such character sequence it gets value of 1 in this dimension.
The bag of words operates in the same way except instead
of character sequences it just groups single words. [3]

4.4 Feature Extraction
Bro log files from initial data set have 22 fields. That

means there are already 22 dimensions, but since most of
the field have string values, the fields have multiple dimen-
sions as well. Because of the time constraints, it was decided
to reduce the number of fields by choosing more important
ones. The check of each combination of fields just to find
more important ones would require a lot of time. Thus ge-
netic programming algorithm was applied in this situation.
Because the genetic algorithm focuses on finding the fittest
individual for a specific problem, it became useful in finding
a subset of fields that would provide best performance for
IForest algorithm.

The population size for each generation was set to be 25
individuals. Each individual has 20 booleans that represent
the log file. Each of these booleans would correspond to a
field from the log file, then if this individual had this field
the boolean value will be set to true otherwise it will be
false. That is each individual would represent the subset of
fields which will be used by IForest algorithm. Once IForest
is done at identifying the anomaly points in the same data
set considering only current individual’s subset of fields, the
score of overall performance is attached to that individual.
Then that score is used by genetic algorithm to identify most
successful individuals so that they can be selected as parents
for next generation.

The score in this experiment was evaluated in terms of
area under receiving operating characteristic curve(AUROC).
The receiving operating characteristic curve is the plot of
true positive rate (TPR) against false positive rate (FPR)
at different threshold values. The TPR is calculated by di-
viding the positive correctly classified by total positives (P)
and FPR was calculated by dividing negative incorrectly
classified by total negatives (N).

TPR = TP
P

FPR = FP
N

The Figure 6 demonstrates an example of the ROC curve.

Figure 5: The process of generating the isolation tree

The area under that curve in the specific range is called
AUC. That value determines the success of the IForest algo-
rithm, the goal in this experiment was to increase the area
under the ROC in between 0.1% and 1% false positive range.
The reason for that limit is that it would be harder to tol-
erate the false positive range higher than 1%. The greater
the area under the red curve, means better performance of
the algorithm.

The genetic programming algorithm was running for 20
generations, then the top 5 individuals who had the greatest
AUROC score were selected. The fields which were in all or
most of these 5 individuals were selected as features for the
IForest algorithm.

4.5 Results
After identifying the most important features and test-

ing different number of isolation trees and different sub-
sample sizes, authors got significantly good results. The
6 demonstrates the ROC, the area under red curve is equal
to 0.00828.

Figure 6: The ROC curve that represents the per-
formance of the Isolation Forest algorithm

5. CONCLUSION
This paper investigated to different approaches of identi-

fying malicious softwares. The first approach is the combi-
nation of two different neural networks. Another approach
is the combination of isolation forest and genetic algorithm.
Results demonstrated that with adjusted parameters these

machine learning algorithms are very effective against mal-
wares. This investigation shows that there is still plenty of
room for exploration, different combinations provide differ-
ent results, some of them are very promising.

6. ACKNOWLEDGEMENT
Thank you to KK Lamberty, Elena Machkasova, and Syd-

ney Richards for advising and feedback

7. REFERENCES
[1] Kaspersky lab, 2017.

https://media.kaspersky.com/en/enterprise-
security/Kaspersky-Lab-Whitepaper-Machine-
Learning.pdf.

[2] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[3] D. Karev, C. McCubbin, and R. Vaulin. Cyber threat
hunting through the use of an isolation forest. In
Proceedings of the 18th International Conference on
Computer Systems and Technologies, CompSysTech’17,
pages 163–170, New York, NY, USA, 2017. ACM.

[4] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

[5] I. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G.
Bringas. Using opcode sequences in single-class learning
to detect unknown malware. IET Information Security,
5(4):220–227, December 2011.

[6] M. Sewak, S. K. Sahay, and H. Rathore. An
investigation of a deep learning based malware
detection system. In Proceedings of the 13th
International Conference on Availability, Reliability
and Security, ARES 2018, pages 26:1–26:5, New York,
NY, USA, 2018. ACM.

[7] Wikipedia contributors. Machine learning —
Wikipedia, the free encyclopedia, 2018. [Online;
accessed 30-October-2018].

[8] Wikipedia contributors. Malware — Wikipedia, the free
encyclopedia, 2018. [Online; accessed 11-October-2018].

