
Single Image Super-Resolution

Yujing Song
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

songx827@morris.umn.edu

ABSTRACT
Super-Resolution (SR) of a single image is a classic problem
in computer vision. The goal of image super-resolution is to
produce a high-resolution image from a low-resolution im-
age. This paper presents a popular model, super-resolution
convolutional neural network (SRCNN), to solve this prob-
lem. This paper also examines an improvement to SRCNN
using a methodology known as generative adversarial net-
work (GAN) which is better at adding texture details to the
high resolution output.

1. INTRODUCTION
Image super-resolution is a concept based on the human

visual system. David Hubel, Torsten Wisel, the winners of
1981 Nobel Prize in medicine, found that information pro-
cessing in the human visual system is hierarchical [8]. Us-
ing convolutional neural networks to deal with SR problems
mimics the processing of the human visual system. There-
fore, computer vision is a good applications of neural net-
works. Super-resolution is a classic application of computer
vision, and tends to produce images that people find either
realistic or aesthetically pleasing.

This paper looks into the working processes of super-
resolution using convolutional neural networks (SRCNN) and
the improvements that result from a modification to the
process using a generative adversarial network known as SR-
GAN. Section 2 gives the background knowledges. Section 3
introduces each step for establishing a SRCNN model. Sec-
tion 4 discusses, SRGAN, a recent popular method, that
has some improvement over SRCNN. Section 5 explains the
relationship between SRCNN and SRGAN.

2. BACKGROUND
In this section, we introduce some significant concepts re-

lated to understanding the use of convolutional neural net-
works for image problems, including classical neural net-
works, convolutional neural networks, and loss functions.
We also discuss recognizing images’ construction.

2.1 Images
Two concepts are important for understanding an image,

one is channels, the other is pixels.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2018 Morris, MN.

A color image usually is an RGB image, which means it is
composed of red, green and blue components. If an image is
split into its components, then we have three channels, one
for each color. There are other ways, than RGB, to store
color information for an image. Another common approach
is YCbCr– which also uses 3 channels, but in this encoding
Y represents luminance (brightness) while Cb and Cr are a
more complicated way to represent colors (see [1] for details).

Pixels are the smallest unit of a digital image. For the
images used by SRCNN and SRGAN these pixel values are
numbers from 0 to 255. If we have an image with size w× l,
this means that the image is divided evenly into w rows of
pixels, and each row has l pixels. Each channel has its own
pixel value in every pixel position. Every pixel position in
a channel corresponds to the same positions in the other
channels. When these pixel values are put together, a spe-
cific color shows up in specific position in the image. In
short, a pixel is a location in an image in an RGB image it
takes 3 values (one for each channel) to indicate the color
associated to that pixel.

Patches of an image means a part of an image, which
contains the specific size of pixel values of an image. For
example, the original image will be cut into as many 33×33
patches to set as inputs in the convolutional neural network.

Image upscaling is trying to express an image using more
pixels. For example, if an image is expressed by 10×10 pixels
in the beginning, after 2 times upscaling, it is expressed by
20×20 pixels. Since pixels are the smallest unit of an image,
the size of each pixel stays the same, so the upscaled image is
enlarged by the process of image upscaling. The popular two
algorithms to upscale are bicubic interpolation and sparse-
coding base method [1].

Bicubic interpolation is the most commonly used inter-
polation method in two-dimensional space. In this method,
the value of the function at a specific point can be obtained
by the weighted average of the nearest 16 sampling points
in the rectangular grid, where two polynomial interpolation
cubic functions are needed, one in each direction [4]. Sparse-
coding method is trying to represent an image as a linear
combination of patches, and to require only a few patches
to represent the image [9].

These two methods are also the two classical models for
images super-resolution. Similarly, image down-scaling is
trying to express an image using fewer pixels.

Reconstructing an original image from a down-scaled ver-
sion of that image is the goal of the convolutional neural
network. The process of reconstructing image is the pro-
cess that introduces high-frequency details, preferably ones



that are consistent with the image being upscaled. High-
frequency means the frequency changes fast. The frequency
in an image represent the difference between adjacent color
blocks. Details in images can be described using terms like
low-frequency or high-frequency. The first refers to proper-
ties that change slowly– for example in a picture of a grassy
hill and a clear blue sky, the blue pixels that are part of the
sky may have similar values that don’t change quickly from
pixel to pixel. However the pixels that make up the grass
on the hill will have edges and shadows where the values
of the pixels will change rapidly over short distances. The
first type of detail I called low-frequency, and the second is
called high-frequency. When an image is down-scaled, low-
frequency details tend to be preserved, but high-frequency
details are often lost, or blurred.

2.2 Classical Neural Network
Neural networks are a mathematical model that estimates

the working process of human brains to recognize potential
relationship within a set of data. Here in our case, the neural
network is used as the most important part of a process
that produces a high-resolution image from a low-resolution
image.

Figure 1: Basic structure of a neural network with one hid-
den layer.

Figure 1 illustrates the main components of any neural
network. The circles are called nodes and represent numeric
values. The edges between nodes also have a numeric value
called a weight. The red area on the left is the input layer,
the green area on the right is the output layer, and the blue
one in the middle is the hidden layer. Input layer above
has 3 nodes, output layer has 2 nodes, hidden layer has
4. Note that when designing a neural network, the number
of nodes are usually fixed in the input layer and output
layer, but hidden layer are free. That is to say, we can set
one or more hidden layers, and two or more nodes for each
hidden layer. The topology and arrows in the structure of
neural network diagram represent the flow of values during
the calculations that transform input to output. The point
of the diagram is not the nodes, but the weights. These
weights need training to determine their values. Training
values of the weights will be mentioned in Section 2.2.4, here
we focus on understanding the structure of a neural network.
We call the network fully-connected neural network because
for each node in any layer, it is connected to every node in
the next layer.

For every pair of adjacent layers, the nodes in a previ-
ous layer, {x1, x2, ..., xn}, pass their values to the next layer
through the edges, each edge contain a weight {w}. Associ-
ated to each node is both a value and a function. The value
in each node, except for the values in the input layer, are
produced by a calculation explained below:

y = f(b+

n∑
i=1

xi · wi)

The function associated to a node, known as the activation
function, is part of the calculation that determines a nodes
value. It is the function f in the equation above. In all our
neural networks, all nodes in the same layer use the same
activation function. The bias b in each hidden layer is an
extra weight that does not connected to any previous layer.
It is added after the previous calculating process to scale a
linear output up and down.

There are three types of input and output in this paper.
The input will be an image and the output will be an image
in the convolutional neural network (see Section 3 for details
on how images are represented as the kind of numeric values
that can be represented by the nodes in Figure 1). When
the neural network is used in the generative network of GAN
(see Section 4), the input will be a set of random numbers
and the output will be an image. Whereas when the neural
network is used in the discriminator network of GAN, the
input will be an image and the output will be a probability
(see Section 4 for details).

2.2.1 Activation function
The activation function is used to introduce the non-linearity

in the neural network. Though there are a lot of activation
functions, rectified linear unit (ReLU) is the only activation
function we will use in this paper. The definition of ReLU
is:

R(z) = max(0, z)

2.2.2 Training for neural network
Before introducing the training processes of neural net-

works, we need to distinguish supervised methods and un-
supervised methods. Supervised methods are“learning algo-
rithms that learn to associate some input with some output,
given a training set of examples of inputs and outputs” [2].
Unsupervised methods are those “that experience only ‘fea-
tures’ but not a supervision signal” and try to group inputs
based on their features [2]. The neural network used in CNN
is a supervised method because we provide a training set for
input, that are the low-resolution images, and outputs that
are our original images.

In our case these will be a set of images that are down-
scaled before being used as input to the SR-process. Down-
scaling removes details from the image. The neural network
is trained to reintroduce these details as its output. The
differences between the output of the neural network and
the original image are measured using a loss function (Sec-
tion 2.2.3). After an image is generated the weights in the
neural network are adjusted in such a way that the loss func-
tion is made smaller. This process is called stochastic gradi-
ent descent with back-propagation (details in Section 2.2.4).
Multiple images are used in the training process. The goal
is not for the neural network to become good at recreating
one single image, but to do a good job adding details to any



image.

2.2.3 Loss function
The loss function is a method for evaluating how closely

the actual output of a neural network matches the desired
output. Two loss functions are used in this paper: Peak
signal-to-noise ratio (PSNR) and mean square error (MSE).

MSE calculates the deviation from the original values by
averaging the squared difference between the estimated val-

ues, X̂i and the original values Xi:

MSE =
1

n

n∑
i=1

(Xi − X̂i)
2

The lower the MSE value, the better the weights that have
been chosen.

If we say MSE is used to judge the quality of a specific
technique, PSNR is used to evaluate the quality of recon-
struction of these techniques. It is an engineering term for
the “ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of
its representation” [6]. The formula expression is the follow-
ing:

PSNR = 10 log10

(
maxI

2

MSE

)
where maxI is the maximum possible pixel value of the im-
age. When the pixels are represented by 8-bits per sample,
its value is 255 [6]. Different with MSE, the higher value of
PSNR get, the better super-resolution results a method will
get.

2.2.4 Stochastic gradient descent
Since MSE evaluates the difference between the true image

values and our neural networks predicted values, we want
this difference as little as possible, which means we need to
minimize the error. Stochastic gradient descent with back-
propagation is a technique for modifying the weights in the
neural network to realize this goal. These gradients will lead
us to a minimum in our loss function.

In the classic neural network, the values are calculated
from left to right, from input layer to output layer. But
we want to minimize the mean square error by adjusting
the values of weights, we need to update weights layer by
layer from the output layer back to the input layer. This
backward process is called back-propagation. The method
that we used in back-propagation process is called stochastic
gradient descent. It is called stochastic is because the sample
weight value that will be updated is chosen randomly. The
formula is expressed as following:

Wj+1 = Wj + η · ∂L
∂Wj

where L is a loss function, and it is MSE in our case. j
represents the iteration times. Wj+1 and Wj are the sets of
all weights at iteration j. Wj+1 is the new weight vector, it
is set to the original weight vector Wj plus the learning rate
η times a partial derivative ∂L

∂Wj
.

Learning rate, is a parameter that influences how the
training occurs. The value of η controls how much ∂L

∂Wj

changes the weight. The partial derivative is the fraction in
the equation that displays how much the loss function will

change for every unit of original weight has changed. Note
that if a weight is near its optimal value then changing the
weight does not have much influence on the loss function so
∂L
∂Wj

is near 0.

2.3 Convolutional Neural Network
The architecture of a neural network refers to the way in

which the different layers are connected to each other. Two
common ways to connect layers produce convolutional layers
and fully connected layers.

2.3.1 Convolutional layer
The core of a convolutional neural network is its convolu-

tional layer. To understand the details, three important con-
cepts are defined: kernel, feature maps, and convolutional
calculation.

Features represent some specific characteristics in an im-
age. Extracting features, for example, can extract edges of
an image. Kernels in convolutional network represent a fea-
ture extracting method, which constrains a set of weight.
A set of kernels form a filter. The number of filters in a
convolutional layer is called the depth of this layer. Like
each node has its own weight in neural network, each chan-
nel has its own kernel in each filter. The kernel is a small
array of values (in our example in Figure 2 it is 3x3). These
values are treated like a sliding window and moved over the
surface of the image. A sliding window is used in each chan-
nels. A sliding window usually starts from the left top of
the original channel, then doing convolutional calculation
with its kernel. The convolutional calculation will be ex-
plained in next paragraph. After the convolutions, we slide
our window right-side with one pixel length. Repeat the
convolutional process and slide the window again, until the
end of this line. Then we move to the second row and con-
tinue to do so until the window scans all the pixels in the
original channels. The three sliding windows associated to a
filter move across each channel at the same time and in the
same fashion. At each different location a new convolutional
calculation is performed.

The convolutional results are stored in the feature map.
That is to say, feature map is the collection of outputs for
a given filter. In our description above the sliding window
was moved one pixel at a time, but often the window is
moved more than one pixel– the number of pixels by which
the window is moved is called the stride. In our example
the stride is one, but it could be any reasonable number, it
depends on the question.

When it comes to the convolutional process, we start with
one channel situation. Fig.2 shows an example of convolut-
ing with a single channel. From the left to the right, we
see the original channel, the kernel, and the feature map.
Each location of the kernel K over the image I results in a
single value in the feature map. We denote the feature map
as I ∗K where ∗ for the convolution. In Figure 2 the value
of 4 (highlighted in green) is the result of multiplying the
values in red from image I with the corresponding values of
the kernel K and adding the results. Still start with top left
of the sliding window, pixel value in that position is 1. The
weight in the corresponding position in the kernel is also 1,
we calculate their product which is 1. Then we look at 0
in the second column first row in the sliding window, mul-
tiplying this with the corresponding value in kernel, got 0.
Continuously to do so until we get all the production results



for each position. Summing up all these results, we got 4.
Notice the similarity to the process of calculating the value
of a node in the neural network process outlined in Section
2.2 This occurs for each position of K as it is slid across the
image I.

Figure 2: The convolutional process example. Left is the
original input channel I, the middle part is a convolutional
kernel K, and right side I ∗K is the feature map.

When calculating convolution in multi-channel input, say
we have three channels C1, C2, C3, for an RGB image, and
we know the convolutional kernels corresponding to each
channel. Suppose two filters (F1 and F2) and their biases (b1
and b2) are set. Let’s call the kernels Kmn, where m stands
for the index of the filter and n stands for the index of the
channel. For example, K21 means it is the kernel for C1 in
F2. So the outcome will have two feature maps. The first
feature map is obtained by C1∗K11+C2∗K12+C3∗K13+b1.
The second feature map is then C1 ∗K21 +C2 ∗K22 +C3 ∗
K23 + b2, where ∗ represents the convolutional operation.

2.3.2 Fully connected layer
Fully connected layer acts like a generator in our case, it is

trying to collect all the features in the previous layers. The
fully connected layer in this case will be used in solving SR
problem by CNN (details in Section 3.2), and used in the
generator network of GAN (details in Section 4).

3. SRCNN
This section discusses how convolutional neural networks

are applied to the SR problem, the proposed model is called
SRCNN. Given a single low-resolution image, the final high-
resolution image is the output resulting from three stages
of operation: patch extraction and representation (section
3.1), non-linear mapping (section 3.2), and reconstruction
(section 3.3). An overview of the procedure can be seen in
Figure 3.

Before we get started there is some pre-processing that
must occur. To the single low-resolution image, we upscale
it to the desired output resolution by first using a conven-
tional technique such as bicubic interpolation. This upscaled
image will be used as an input for our SRCNN. Denote the
upscaled low-resolution image as input Y . We are trying
to find F (Y ) that is as similar as possible to the true high-
resolution image X. So F (Y ) is what we obtain through
SRCNN from Y , X is the original image that set as a label
for adjusting weights in CNN.

3.1 Patch extraction and representation
Suppose our input image Y has size A × B, where A,B

represent the length and width respectively. Y is convolved

with kernels with size f1× f1. The depth of this layer is n1,
that is to say, n1 filters are set in this layer. The structure
of this layer looks like what we showed in Figure 1, input
layer contain the input image, the n1 hidden layers are n1 fil-
ters, and the output layer contains the feature maps. ReLU
is applied on the filter response, so we have the following
equation:

F1(Y ) = max(0,W1 ∗ Y +B1),

whereW1 and B1 stand for the kernels in filters and the bi-
ases respectively, and ∗ is the convolutional operation. The
value in Wi, as a kernel, represents a large number of edges.
All of which share the same weights, and training occurs on
this small, shared, set of weights, so it’s much more efficient
to train the weights in the kernel then to train a large col-
lection of independent weights. After this step, we have n1

feature maps with size (A− f1 + 1)× (B− f1 + 1), and have
removed all the negative values. [1]

The feature maps that are produced by this layer are what
we mean by patch extraction and representation. The input
image is the patch because it is not the original whole image
but a firstly down-scaled then up-scaled sub-image, which we
will introduce in Section 3.4. It is extracted by n1 kernels,
and the representations of these extractions form the feature
maps.

3.2 Non-linear mapping
The second step converts the n1-dimensional features into

n2 dimensions by setting n2 filters and kernels with size
f2 × f2 in this layer. The operation of the second layer is:

F2(Y ) = max(0,W2 ∗ F1(Y ) +B2)

W2 and B2 are the kernels and biases in the second layer,
F1(Y ) is the feature maps from the last layer. Again, the
size of feature maps in F1(Y ) is (A − f1 + 1) × (B − f1 +
1). In order to express easily, we set A1 = (A − f1 + 1)
and B1 = (B − f1 + 1). W2 has n2 filters and B2 is n2-
dimensional. The output we get are n2 feature maps with
size (A1−f2+1)×(B1−f2+1). Similarly, we set (A1−f2+1)
as A2, (B1 − f2 + 1) as B2.

Researchers in Image Super-Resolution Using Deep Con-
volutional Networks [1] set f2 = 1 in this layer. So we have
A2 = A1, B2 = B1. It is equal to fully connected layer but
utilized 1× 1 filters, which makes every position of the last
layer’s feature maps share their parameters.

3.3 Reconstruction
The operation applied by the third layer produces the final

high-resolution image:

F (Y ) = W3 ∗ F2(Y ) +B3

W3 responds to a filter that has n3 kernels of size f3× f3.
B3 is the bias for this reconstruction layer. This layer is from
the n2×1 vector produced by the previous layer. To rebuild
f3 × f3 image, the final high-resolution image is realized by
taking the averages of these overlapped image patches.

3.4 Training
The images used in training are not the original whole

pictures. Instead, 33×33 sub-images are extracted from the
original images with stride 14. The original 395, 909 images
are from the “ILSVRC 2013 ImageNet detection training
partition” [1]. So over 5 million of sub-images are down-
scaled as input in the training set. These original images



Figure 3: “Given a low resolution image Y , the first convolutional layer of the SRCNN extracts a set of feature maps. The
second layer maps these feature maps non-linearly to high-resolution patch representations. The last layer combines the
predictions within a spatial neighbourhood to produce the final high-resolution image F (Y )”[1]

X are down-scaled to low-resolution samples first, and then
upscaled to the target resolution using bicubic interpolation.

Settings used by the researchers [1] were f1 = 9, f2 =
1, f3 = 5, n1 = 64, n2 = 32. These values were determined
by experiments and chosen to be a good balance between
high-resolution quality and efficiency. MSE is used as loss
function L(Θ), Θ = {W1,W2,W3, B1, B2, B3}.:

L(Θ) =
1

n

n∑
i=1

(F (Yi; Θ)−Xi)
2

where n is the number of training samples, and X is the orig-
inal image. The high-resolution images F (Yi; Θ) are created
by taking low-resolution images Y as input and go through
mapping function F (Θ).

Stochastic gradient descent with back-propagation is used
to minimize the loss function:

∆i+1 = 0.9 ·∆i + η · ∂L

∂Wi
l
,

Wi+1
l = Wi

l + ∆i+1

where l ∈ {1, 2, 3} is the index of the channels, i is the
iterations, η is the learning rate. ∆ is a parameter that its
initial number is ∆0 = 0.

The weights in filters are initialized by random selection.
The weights will be updated by hundred of millions times
via back-propagation. The learning rate is 10−4 for the first
two layers but is 10−5 for the third layer.

3.5 Advantages
When the neural network is sufficiently trained, the qual-

ity of the SR image is measured using the Peak Signal-To-
Noise Ratio (PSNR) discussed in Section 2.2.3. The higher
of PSNR, the closer the SR image is to the original. The fol-
lowing table shows SRCNN is achieving better results than
traditional methods in different magnifications [1]:

Eval. Mat Scale Bicubic SC SRCNN

PSNR
2 33.66 - 36.66
3 30.39 31.42 32.75
4 28.42 - 30.49

Here“Bicubic”stands for bicubic interpolation,“SC”stands
for sparse-coding base method. “Scale” means the factor of

upscaling.
The table implies when upscaled two to four times of

low-resolution images, SRCNN had the best PSNR values
in comparison to bicubic interpolation and sparse coding
base methods. That is to say, in mathematical perspective,
the high-resolution images through SRCNN are closer to the
original images.

4. GAN
Study [5], uses generative adversarial network (GAN) to

address the SR problem, the method is abbreviated as SR-
GAN. Based on the article, although the results of the SR-
CNN process can have high PSNR values when MSE is used
as the loss function, the resulting super-resolution images
usually lose high-frequency details.

SRGAN is a neural network architecture composed of two
competing networks, generator network and discriminator
network.

The generator network creates an image by taking a set
of random numbers Z. Therefore, we have two datasets in
GAN, one is the true data set and the other is the fake
dataset. The true data set contains original images while
the fake dataset is created by the generator network.

The discriminator network is a classifier that determines
if a given image is a real image from the dataset or an im-
age made by generator network. Discriminator network is a
binary classifier in the form of a CNN where the input is an
image and the output is a probability. If the probability is
greater than 0.5, the input is classified as belonging to the
true dataset while a probability less than 0.5 classifies the
input as belonging to the fake dataset.

The aim for the generator is to create a high-resolution
image that will trick the discriminator network into classify-
ing it as true. When the output of the discriminator network
is close to 0.5, it means that the discriminator cannot distin-
guish the difference. At this point the high-resolution image
is considered to be good enough.

4.1 Training for SRGAN
True images from the original set are labeled as 1, and

generated images created by the generator of SRGAN are
labeled as 0. The job for the discriminator network is to
classify the input image as having a label 0 or 1. The training



processes is similar to what we have introduced in CNN
(Section 2.3).

Training a generator network also requires a discriminator
network. This discriminator network is put after the gener-
ator network so that we can have errors to calculate the loss
function. Here the labels are not important but the errors
are important. The significant operation is when training
the generator network, the parameters of the discriminator
network should remain unchanged so that in the training
process only the weights of generator network are updated.
[5]

In contrast to the training process used by the generator
network, which must have a discriminator network in order
to calculate the error, the training discriminator network
only need the discriminator network itself.
Z is a set of random numbers, and D(X) represents the

probability thatX came from the data. We train the weights
of D, WD, to maximize the probability of assigning the cor-
rect label to both training examples and samples from G.
We simultaneously train the weight of G, WG, to minimize
log(1−D(G(Z))). [3]

The value function is:

min
WG

max
WD

([logD(X)] + [log(1−D(G(Z)))])

The aim function above can be divided into two parts,
one is for discriminator network and the other is for the
generator network.

Optimizing the discriminator does not directly involve
the generator network, so we only care about maximum
logD(X). X is the images in the true data set, for all the
images from the true dataset, the result of discriminator net-
work D(X) should as close to 1 as possible. So we want to
find the weights of discriminator network when the result of
D(X) is maximum.

When training the generator network, minimum log(1 −
D(G(Z))) is the goal. G(Z) is equivalent to the existed fake
samples. Since the samples created by G(Z) are not the real
ones, we want D(G(Z)) closer to 0.

4.2 Relationship with conventional neural net-
work

The PSNR for SRGAN is less than SRCNN, but the high-
resolution image from SRGAN is visually closer to the orig-
inal image, as showed in Fig.4. The car and tree in SRGAN
looks more clear than that in SRCNN, though the left has
PSNR 24.83db and right side SRGAN has 23.36db [7].

Figure 4: The results of high-resolution image from SRCNN
and SRGAN

SRCNN used MSE as loss function, which ensured a high
value for the PSNR, but a lack of high-frequency information
in the image, so it over-smooths the image in a way that is
obvious to people. However, SRGAN insists that the created
high-resolution images should be closer to the true original
images not only in the pixel values but also in the abstract
characteristics. Therefore, it uses a discriminator network
to judge the created images. If the discriminator network
cannot distinguish if a high-resolution image is one of the
true original ones, people visually cannot distinguish as well.

5. CONCLUSION
This paper has introduced two methods to solve SR prob-

lems. SRCNN is a forerunner of deep learning used in SR
reconstruction. SRCNN’s network structure is very simple,
using only three convolutional layers, but it improves the
efficiency of the SR process and produces better PSNR than
traditional methods. However, SRCNN is not perfect, it in-
spired many of other methods to improve that. Every work
is a great step forward but we chose SRGAN in Section 4
in this paper because it not only focus on increase the value
of PSNR, but try to enhance more details in the images to
improve human visual perception.

6. REFERENCES
[1] C. Dong, K. He, C. Change Loy, and X. Tang. Image

super-resolution using deep convolutional networks.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38:30–52, February 2016.

[2] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press., Cambridge, MA, USA, 2016.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. NIPS’14 Proceedings of the
27th International Conference on Neural Information
Processing Systems, 2:2672–2680.

[4] R. Keys. Cubic convolution interpolation for digital
image processing. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 29:1153 – 1160,
December 1981.

[5] C. Ledig, L. Theis, F. Huszar, J. Caballero,
A. Cunningham, A. Acosta, A. Aitken, A. Tejani,
J. Totz, Z. Wang, and W. Shi. Photo-realistic single
image super-resolution using a generative adversarial
network. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), November 2017.

[6] A. T. Nasrabadi, M. A. Shirsavar, A. Ebrahimi, and
M. Ghanbari. Investigating the PSNR calculation
methods for video sequences with source and channel
distortions. 2014 IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting,
August 2014.

[7] X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering
realistic texture in image super-resolution by deep
spatial feature transform.

[8] T. Wiesel. The neural basis of visual perception.

[9] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image
super-resolution via sparse representation. IEEE
Transactions on Image Processing, 19:2861 – 2873,
November 2010.


