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What makes an image?
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Image Upscaling

Bicubic interpolation

Sparse-coding base method (SC)
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Activation function

Rectified linear unit (ReLU):

R(z) = max(0, z)

To introduced the non-linearity in
neural networks
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Loss function

Loss function is used to measure the degree of inconsistency
between the predicted value and the true value:

Peak signal-to-noise ratio (PSNR)

PSNR = 10log10
MAXI

2

MSE

Mean squared error (MSE)
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Mean squared error

n: number of pixels

X : pixels of original image

X̂ : pixels of high-resolution image

MSE =
1

n

n∑
i=1

(Xi − X̂i )
2
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Stochastic gradient descent

Wj+1: new weight

Wj : the weight from last iteration Wj

η: learning rate

Wj+1 = Wj + η · ∂L

∂Wj
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RGB and Kernel
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Patch extraction and representation

Y : upscaled low-resolution image

W1: filters in the first layer

B1: biases in the first layer

F1(Y ): feature maps in the first layer

F1(Y ) = max(0,W1 ∗ Y + B1)
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Patch extraction and representation

Suppose the input image Y:

Size: A× B

n1 filters

Kernel size: f1 × f1

After the first step operation:

n1 feature maps

Without negative pixels

22 / 34



Background
Convolutional neural network for super-resolution
Improvement by Generative Adversarial Network

Conclusion

Patch extraction and representation
Non-linear mapping
Reconstruction
Training and result comparison

Non-linear mapping

W2: filters in second layer

B2: biases in second layer

F2(Y ): feature maps in second layer

F2(F1(Y )) = max(0,W2 ∗ F1(Y ) + B2)

23 / 34



Background
Convolutional neural network for super-resolution
Improvement by Generative Adversarial Network

Conclusion

Patch extraction and representation
Non-linear mapping
Reconstruction
Training and result comparison

Non-linear mapping

In the second operation step:

n2 filters

Kernel size: 1 × 1

Notice:

Kernel size is 1 × 1

Same with fully connected
layer
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Reconstruction

W3: filters in third layer

B3: biases in third layer

F (Y ): high-resolution output

F (F2(F1(Y ))) = W3 ∗ F2(Y ) + B3
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Reconstruction

n2 kernels

Kernel size: f3 × f3

Filters act like an averaging filters
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Training

Training set:

395, 909 images from ImageNet

5 million of 33 × 33 sub-images

Training kernels:

MSE as loss function

Stochastic gradient descent
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Super-resolution by generative adversarial network

Generative adversarial network:

Generator network: creator

Discriminator network: classifier
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Conclusion

Neural network

Convolutional neural network

Solving super-resolution problem
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