
Searchable Encryption

Xaitheng Yang
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

yang3792@morris.umn.edu

ABSTRACT
This paper provides an overview of searchable encryption,
including its uses, and relevant technical knowledge sur-
rounding efficiency and security. These topics are explored
within the Dual Dictionary, Fides, and Janus searchable en-
cryption schemes in order to identify differences.

Keywords
searchable encryption, forward privacy, backward privacy

1. INTRODUCTION
As cloud services become more prevalent in the modern

world, the storage of data on off-site servers is becoming
an inevitability. This cloud storage provides an ease of ac-
cess and acts as a convenient form of disaster recovery, by
providing a way to back up data. However, these benefits
aren’t without cost. The storage of information on third
party servers opens up the potential for exposing this infor-
mation to others. Those with malicious intent could abuse
this exposed information. To avoid this, data is often en-
crypted. However, this causes difficulty for many services,
as the need to retrieve or update this data becomes more
complicated with the requirement to decrypt data before it
can be handled.

The specific demands of situations like these has created
the necessity for new methods of security. Solutions that fill
this need can be constructed with techniques such as obliv-
ious RAM, which relies on preventing information leakage
by hiding memory access patterns. However, these solutions
are, in their current forms, impractical and slow [4].

A more practical method that meets these needs is search-
able encryption. Searchable encryption is a class of struc-
tured encryption. It enables clients to perform keyword
searches on encrypted documents while preserving the pri-
vacy of the database [4]. Regardless of the implementation,
some amount of information is leaked by searchable encryp-
tion schemes, but efficiency is gained in exchange for this.
This leakage has been due to the use of deterministic encryp-
tion which enables the server to easily find matches between
encrypted tokens without expensive computation [1].

The leakage of these searchable encryption schemes can
have dangerous consequences, as even a small leakage can

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2018 Morris, MN.

be used to break the privacy of some schemes. Because of
this, an emphasis on security definitions and new searchable
encryption schemes is paramount.

2. BACKGROUND

2.1 Encryption Basics
For the purposes of this paper, encryption is the process

of encoding information in such a way that only authorized
users can access it. To all others who attempt to access the
content, it is unintelligible.

Encryption is performed through the use of an encryption
key. An encryption key is a string of bits created for en-
coding and decoding information. Depending on the type
of encryption, this key can be used for only encoding, only
decoding, or both functions. Data which is unencrypted
shall be referred to as plaintext, and data which has been
encrypted shall be referred to as ciphertext [5].

An important part of encryption is often randomness. For
this paper, any reference to randomness can be assumed
to be the result of a pseudo-random function. A pseudo
random function is a polynomial-time computable function
that is indistinguishable from a true random function by any
probabilistic polynomial-time adversary. In other words, it
is not random, but seems random to anything trying to com-
prehend its pattern within a certain amount of time [4].

2.2 Databases
A database, for the purposes of this paper, can be seen as

a structured set of data which holds documents, and indexes.
The document is the data being stored in the database, and
the index is an identifier for it. Queries are instructions that
can be sent to a server containing a database. They can
be used to add, retrieve, update, or delete data within the
database, depending on the database’s functionality. The
source of the queries is called the client and the receiver of
the queries is called the server.

2.3 Searchable Encryption
Searchable encryption is a class of structured encryption

for search structures such as indexes or trees. It allows for
the performance of queries on its encrypted data without
having to decrypt the data. This is done through the use of
keywords, which are assigned to indexes in a database. Keys
are assigned prior to any searches on the database. Search
queries are run on these keywords, which identify the docu-
ments to be operated on or retrieved. However, searchable
encryption necessarily leaks some amount of information, as



it trades security for functionality and efficiency [1].
Information leakage by searchable encryption schemes has

been shown to allow for leakage abuse attacks, and even full
plaintext recovery of encrypted databases. This has led to
the need for searchable encryption schemes which do not leak
pattern revealing query information. Such schemes, while
more robust with regards to security, are less performance
efficient than their information leaking counterparts.

2.3.1 Dynamic Schemes
A performance capability sought by some searchable en-

cryption schemes is being dynamic. A searchable encryption
scheme is said to be dynamic if an individual is able to add
encrypted documents efficiently (without having to decrypt
the database, then re-encrypt it) [3].

2.3.2 Forward Privacy
One notion of security sought by searchable encryption

schemes, forward privacy, considers privacy of the database
and update queries. More specifically, a searchable encryp-
tion scheme is said to be forward private if update queries
to a server don’t reveal information about the modifications
they carry out [2].

2.3.3 Backward Privacy
In contrast, backward privacy considers the privacy of the

database and updates to it during search queries. In other
words, a searchable encryption scheme is backward private
if it limits the information a server can learn about deleted
data from further search queries on the database. [2].

Backward privacy under this definition can be broken into
three types. In order of decreasing strength, depending on
how much information is leaked due to inserted and deleted
entries [2]:

I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when

they were inserted, and the total number of updates on the
keyword.

II. Backward privacy with update pattern:
leaks the documents currently matching a keyword, when

they were inserted, and when all the updates on the keyword
happened (but not their content).

III. Weak backward privacy:
leaks the documents currently matching a keyword, when

they were inserted, when all the updates on the keyword
happened, and which deletion update canceled which inser-
tion update.

To demonstrate the differences between these notions of
backward privacy, consider the following series of queries
in order of arrival (this paper shall use pizza toppings as
keywords throughout the paper):

• add to index 1, “pepperoni” and “pineapple”

• add to index 2, “pepperoni”

• delete from index 1, “pepperoni”

• add to index 3, “pineapple”

If we then consider a search query on “pepperoni” after
this series of queries (see table 1), we can observe what in-
formation is leaked depending on the type of backward pri-
vacy. In a scheme which fits the first notion of backward pri-
vacy, information about index 1 is leaked, revealing that it

Index Keyword Document
1 Pepperoni Pineapple Data 1
2 Pepperoni Data 2
3 Pineapple Data 3

Table 1: Backward Privacy Example Database

matches the given keyword and the time at which this entry
was added. In addition, it is also revealed that three updates
occurred for“pepperoni.”A scheme which fits the second no-
tion reveals everything the first did, and the time at which
the three updates on “pepperoni” occurred. The third no-
tion reveals everything the first and second did, while also
revealing that index 1 had “pepperoni” removed from it at
the time of the third query [2].

2.3.4 Adversaries
The notions of forward and backward privacy above shall

primarily be considered against what is known as a persis-
tent adversary. This type of adversary monitors the actions
on a server from the beginning. The main example of this
is the server itself, which the database is stored on. This
is why leakage prevention at all stages is crucial. However,
there are other adversaries that may be considered, specifi-
cally, a late-persistent adversary, and a snapshot adversary.

A late-persistent adversary is one which is not able to
monitor the actions of a server initially, but begins to at
some point later on. At this point, it acts in the same way
a persistent adversary would, continuously monitoring any
actions performed.

A snapshot adversary is one which is only able to monitor
the actions on a server at a specific moment or moments in
time. Unlike the previous adversaries, it doesn’t persist in
its monitoring.

Due to their inherent limitations, the latter adversaries
are considered to be weaker than a persistent adversary, as
they monitor the actions on a server less [2].

3. SEARCHABLE ENCRYPTION SCHEMES
In this section, we will consider multiple encryption schemes

with different levels of privacy. While each of these schemes
have mathematical proofs of correctness and security, these
are out of the scope of this paper.

3.1 Dual Dictionary
The dual dictionary scheme was developed by Kim, et al.

[4]. As its name suggests, it proposes a new data structure to
handle indexes, called dual dictionary. This data structure
allows for efficient updates. In addition to this, the scheme
achieves forward privacy.

3.1.1 Dual Dictionary Data Structure
The dual dictionary data structure consists of linked dic-

tionaries to represent both inverted and forward indexes.
An inverted index maintains lists of document identifiers
per keyword. A forward index, maintains keyword lists per
document. By incorporating both in the dual dictionary
data structure, the benefits of both are gained - the ability
to search efficiently, and the ability to update efficiently [4].

3.1.2 Dual Dictionary Construction



Dic1 - Forward Index
DL SL
document 1 DL1 pepperoni SL1

document 1 DL2 pineapple SL1

Dic2 - Inverted Index
SL (DL, Index)
pepperoni SL1 (document 1 DL1, 1)
pineapple SL1 (document 1 DL2, 1)

Table 2: Example dictionaries

In order to see how the dual dictionary data structure
works, consider a document containing keywords w1...wt. A
t number of labels are generated for each keyword, which
shall be referred to as delete labels. These generated labels
shall be represented as DLi, where i is the current keyword
number. Each of these labels are generated with a secret key
corresponding to the document index. The document index
is known because the client keeps a count of the number of
documents added to the database. Each document added to
the database has its own key that is kept by the client.

For example, if a document was added to an empty database
with the keywords pepperoni and pineapple, two delete labels
would be generated for this document, DL1 and DL2. This
would be done using a secret key specific to index 1 because
it is the first document to be added. This separation by key
allows for a document added to index 2 to have its own DL1

and DL2 for the same two keywords, which differ from the
document in index 1.

A second set of labels are generated using a secret key
corresponding to a specific keyword, and the number of
documents matching that keyword in the database. Each
keyword has its own key, kept by the client, and a count
of the number of documents matching a keyword is kept.
These labels shall be referred to as search labels, and repre-
sented as SLj where j is the current document. So, with the
same document in the previous example, we would generate
pepperoni SL1 for pepperoni, and pineapple SL1 for pineap-
ple, which differ because they are generated with their own
keys, but are both the first search label for each keyword.

Both of these labels are stored as a pair, (DLi,SLj) in
a dictionary - Dic1. This acts as a forward index. In the
second dictionary, Dic2, the labels are stored with the doc-
ument index (SLj ,(DLi, index)). This acts as an inverted
index.

In order to retrieve documents containing a keyword, the
search label is calculated for every document matching the
keyword (from 1 to the number of documents), and Dic2 is
searched for these labels. So, in our example table, if we
searched for pineapple, we would generate the search label
for pineapple (pineapple SL1). We would only generate one
because there is only one document in the database with
the keyword pineapple. We would then search Dic2 for this
label. The result of this would be the pair of delete label
and index. The delete label isn’t used, and the index is used
to identify which document to retrieve.

To delete a document with a given index, DLi is calcu-
lated for the index, and then Dic1 is searched, then using
the result, SLj is used to search Dic2, and the results are
deleted from the database and dictionaries. So, in our ex-
ample table, if we wished to delete the document at index

Figure 1: Dual Dictionary key usage before and after search

1, we would generate the delete labels for index 1. In this
case there would be two because the document matches two
keywords (document 1 DL1, document 1 DL2). We would
then search Dic1 for this delete label. The result of this
would be two search labels corresponding to the keywords
that match the document (pepperoni SL1, pineapple SL1).
These would then be used to search Dic2 for the correspond-
ing delete labels and indexes. The results of each of these
searches would then be deleted from Dic1, Dic2, and the
document matching the index would also be deleted.

This set up is necessary for forward privacy because it
hides which keywords correspond to which keyword docu-
ment pairs. More specifically, the labels for a specific doc-
ument can’t be identified as being related because they are
generated on the client side. However, after a search, the
server does know which labels correlate with another. In
order to achieve forward privacy, a fresh key replaces the
current key after each query. The key which is replaced is
based on what is used for a search. This new key is used gen-
erate the labels for newly added documents after the query,
which makes old searches unusable.

To demonstrate this, consider a database which contains a
set, A, of identifiers which match the keyword pepperoni, and
are encrypted with key1. After a search that includes pep-
peroni, a set, B, of new documents are added to the database
that match the keyword pepperoni. The new identifiers for
these documents are encrypted with a fresh key, key2. Af-
ter a search for pepperoni, both key1 and key2 are used to
retrieve the documents, and then both sets A and B are
encrypted with a new fresh key, key3. At this point, the
combined set of A and B can be treated as A was in the
beginning of the scenario, as they are the set of previously
searched entities. Any new additions to the database can
then be treated as B was in the beginning of the scenario,
and so on. As a result of this, key1 and key2 can’t be used to
search for results inserted after they are revealed, and may
be discarded by the client (see figure 1) [4].

3.1.3 Dual Dictionary Considerations
While this construction allows for efficient search and up-

dates, and explicit deletion, there is a cost. Specifically,
the data structure requires about twice the amount of stor-
age as a scheme that didn’t implement both. Furthermore,
the Dual Dictionary scheme isn’t backward private because
when a document is deleted from the database, it is actually
deleted, as opposed to marked as deleted or inaccessible. It
also performs deletions in the same query that requests dele-



tions. This causes the scheme to leak information on deleted
documents after they are deleted, including that they were
deleted, when, and what query was used to delete them.

3.2 Fides
Fides is a forward and backward private dynamic search-

able encryption scheme developed by Bost et al. [2]. It
is a combination of a forward private scheme, Σoψoζ (pro-
nounced sohpos), and a technique for backward privacy, two-
roundtrip.

3.2.1 Σoψoζ

Σoψoζ is a dynamic searchable encryption scheme which
ensures forward privacy developed by Bost et al. [1]. Its
security is achieved through the use of tokens, called update
and search tokens. For the purposes of this paper, a token
can be seen as a unique identifier.

Σoψoζ operates by requiring client side storage of the key-
words used and related search tokens. These search tokens
are generated by using the number of documents already
in the database that match the keyword, and a secret key.
The number of documents for each keyword is kept track of
by the client. Importantly, the tokens are generated using
a one-way trapdoor permutation, which is a mathematical
function that is easy to compute in one direction, but dif-
ficult to compute in the opposite direction without special
information.

This one-way trapdoor permutation allows the server to
compute all previous search tokens, given a search token for
a specific keyword, but not compute any future search to-
kens. So, if there are three documents matching pineapple,
then there are three relevant search tokens. If the server is
given the most recent token, it can calculate the previous
two, but it cannot calculate a fourth. In contrast, if the
client was adding another document to the database match-
ing pineapple, then the client would calculate the fourth to-
ken to keep as the most recent, and discard the third. If
there are no documents in the database matching a key-
word, a search token is randomly generated and paired with
a keyword.

When a document is added to the database, its index is
computed based on the keyword it matches, and the number
of documents already in the database that match given the
keyword. Then this index is paired with an update token
generated using the current search token of the keyword.
The document, and the pair are what is sent to the server.

Whenever a search query is performed, a search token cor-
responding with the keyword being searched for is sent to
the server. This then allows the server to recompute all pre-
vious search tokens for the keyword. These search tokens
are then used to find their paired update tokens. These
update tokens are used to identify the document indexes,
which then identify the documents to be retrieved [1]. So,
returning to our previous example, if there were three docu-
ments matching the keyword pineapple, and a search query
was sent for pineapple, the query would contain the most
recent search token for pineapple. The server would then
compute the previous two search tokens for pineapple. Now,
with all three, the server would find the three update to-
kens that correspond to the search tokens. The document
indexes, which are paired with these update tokens, are then
used to identify which documents to retrieve.

This scheme achieves forward privacy through its use of

tokens. This prevents the server from learning which key-
words correspond to which keyword document pairs.

3.2.2 Two-Roundtrip
In a generic two-roundtrip scheme, what is stored on the

server isn’t a document index. Instead a ciphertext which
includes an index and an operation (specifically addition, or
deletion) is stored. This ciphertext is plaintext encrypted
with a key specific to a given keyword. The server only sees
the resulting ciphertexts as the keys are never revealed to it.

In this scheme, whenever a search query on a keyword is
performed, a set of matching encrypted document indexes
is returned. The client then needs to decrypt this set, and
remove deleted indexes, in order to be left with the final
set of indexes matching the keyword. If the client wished
to delete a document, it would mark it as deleted at this
point, but would not remove it from the set. The ciphertext
and indexes can then be used for retrieval of documents and
insertion of updated documents in a second roundtrip to
the server - hence the name two-roundtrip. Next, the client
sends a ciphertext of the same indexes encrypted with a
new key. The server replaces its previous ciphertext with
this new one.

As described above, backward privacy with update pat-
tern is achieved by the generic two-roundtrip scheme. This is
because documents matching a keyword are leaked, as they
correspond with the ciphertexts, and the time of insertions
and updates are leaked. However, because operations are
contained within the ciphertexts, and document indexes are
re-encrypted after each search, the content of updates are
not leaked [2].

3.2.3 Fides Construction
When Σoψoζ and two-roundtrip are put together, they

function similarly to Σoψoζ in its first trip. The client sends
the most recent search token. The server calculates all previ-
ous search tokens and uses them to find their corresponding
update tokens. The difference occurs at this point. Instead
of the server finding indexes, it finds ciphertext. Because
it lacks the key, it must return the ciphertext to the client.
The client will then need to decrypt the ciphertext for the
relevant indexes and operations. The client would then en-
crypt the ciphertext with a new key. It would then send the
new ciphertext and the indexes to the server for it to re-
place its old ciphertext and retrieve the relevant documents,
as the two-roundtrip method specifies (see table 3) [2].

By combining the methods above, Fides achieves forward
privacy, and backward privacy with update pattern. Its
forward privacy is achieved through Σoψoζ’s token system.
Its backward privacy is achieved through the two-roundtrip
methodology, which keeps the content of updates hidden
within ciphertext.

3.2.4 Fides Considerations
Fides has two main drawbacks. The first is that it requires

the second round trip. In contrast it is common for search-
able encryption schemes to return actual documents. The
second drawback is that deleted elements are never actually
deleted on the server side, only marked as deleted. This
causes the communication cost, and the client side work to
remain large even when documents are deleted. In order
to mitigate the second drawback, a cleanup procedure can
be sent along with the second trip. Specifically, when the



First Trip
Step Client Server
1 Search Token → Calculate Search To-

kens
2 Find Ciphertext

with Corresponding
Update Tokens

3 Decrypt Ciphertext ← Ciphertext
Second Trip

Step Client Server
4 Indexes and New

Ciphertext
→ Update Ciphertext

5 ← Documents

Table 3: Fides Illustration

second trip is made, the indexes marked as deleted can be
removed from the database. Also, the new ciphertext sent
to the server is made only for the non-deleted indexes [2].

3.3 Janus
Janus is a searchable encryption scheme developed by

Bost et al. [2]. It uses puncturable encryption with in-
cremental punctures to achieve weak backward privacy. In
exchange for only having weak backward privacy, it has the
benefit of not requiring client storage or multiple roundtrips.

3.3.1 Puncturable Encryption
A puncturable encryption scheme allows one to puncture

the secret key to prevent the decryption of some messages.
More specifically, the plaintexts are encrypted and attached
to a tag. When the secret key is punctured, it is punctured
on a set of tags, making decryption of those specific tags is
impossible. This is done through the use of a puncture func-
tion, Puncture(SK, tag) [2]. So, if a key SK0 could decrypt
ciphertext with the tags 1234 and 5678, one could puncture
it so that it could no longer decrypt entities tagged 1234.
To do this, the key would be modified to be SK1 through
the use of the puncture function, Puncture(SK0, 1234).

3.3.2 Incremental Puncture
A straightforward implementation of puncturable encryp-

tion cause punctured keys to grow with the number of punc-
tures. To avoid this unlimited key growth, a method called
incremental puncture can be used. To show how it works,
one can imagine a secret key, SK, after n punctures as

SKn = (sk0, sk1, ..., skn)

In other words, a key is a set of key parts. The incremental
puncture method requires a puncture algorithm such that

Puncture(SKn, tag) = (sk0, sk1, ..., skn, skn+1)
where IncPuncture(sk0, tag) = (sk0, skn+1).

If a puncturable encryption scheme fits this definition, the
client will only need to store the initial keypart, sk0, of the
key. This is because only sk0 is needed to generate any fu-
ture keypart using the IncPuncture() function. This allows
the server to store all but sk0 safely, because without sk0
the server cannot construct the full key. This is important
to Janus’ security because it ensures the server can’t decrypt
anything in the database until Janus allows it. Furthermore,

Addition Instance
Keyword Encrypted Indexes
pepperoni epepperoni(1)
pepperoni epepperoni(2)
pineapple epineapple(2)
sausage esausage(3)

Deletion Instance
Keyword Key Part

pepperoni skpepperoni
1

Table 4:
Janus Database Example

puncturable encryption is how Janus deletes things from the
database, as a document with a punctured tag will be ren-
dered inaccessible [2].

3.3.3 Janus Construction
Janus can be constructed using any forward secure search-

able encryption (e.g. Σoψoζ, Dual Dictionary, etc.). It
is constructed using two instances of the forward secure
searchable encryption scheme. The first instance is used for
additions, to store newly inserted indexes, encrypted with
the puncturable encryption scheme. The second instance is
used for deletion, storing the punctured key elements. A
representation of the two instances can be seen in table 4
(ekeyword(n) represents an encrypted index n with the key
corresponding to keyword).

When inserting new entries, the client encrypts them with
the puncturable encryption scheme. Each keyword has its
own encryption key, and the client stores the initial key part
of each key, sk0, matched with the keyword. So, the client
uses the key corresponding to the keyword used for the entry.
This entry also receives a tag generated by a pseudo-random
function based on the keyword and the index. This cipher-
text is then inserted as a new entry matching the keyword
into the addition instance. So, if an individual wanted to
insert a document matching the keyword chicken, the plain-
text index in the database would be encrypted with a key
corresponding to chicken, and be tagged using the document
index. The keyword, chicken, and the ciphertext would then
be added to the insertion instance.

To delete an entry, the client computes the tag for the en-
try using the same pseudo-random function, and incremen-
tally punctures the key corresponding to the relevant key-
word. This is done using the IncPuncture() function. The
client then pushes the new keypart to the deletion instance.
So, to delete the chicken entry in the previous example, the
tag for the entry would be calculated. This would then be
put through the function, IncPuncture(skchicken0 , tag), to
generate the key part skchicken1 . This key part is then added
to the deletion instance along with the keyword.

When the client sends a search query, the associated sk0
for the relevant keyword is included. Both instances are
searched for the keyword, and as a result, the server obtains
the encrypted indexes from the insertion instance, and all
the corresponding keyparts from the deletion instance. The
server will then be able to decrypt all the indexes that aren’t
punctured (i.e. not deleted). In other words, deleted docu-
ments aren’t actually deleted from the server, just rendered
inaccessable by puncturing the key.

As a consequence of this scheme, the server learns the
indexes of a given keyword, and its secret key. Therefore,



future insertions of a keyword after a search must be en-
crypted with a new key. However, as the server has already
learned the indexes of a given keyword, there is no reason
to re-encrypt them. So, to boost performance with no loss
to security, Janus caches these indexes in order to increase
storage locality.

Janus, by virtue of requiring forward private searchable
encryption schemes, is forward private. Weak backward pri-
vacy is achieved because the server only has access to the
decryption keys of a keyword during the search query for
the keyword. Furthermore, the key only allows the server
to decrypt the entries that have been added since the last
search for the keyword, because the key is changed after ev-
ery search. For instance, after a search for chicken, anything
new added to the database with the keyword chicken would
have its index encrypted with a new key. The old key can
be discarded, as its results are already cached. Because the
keys are switched the deleted indexes remain hidden. How-
ever, the server is able to determine which inserted entries
were later deleted, which is why weak backward privacy is
the strongest level that can be achieved [2].

3.3.4 Janus Considerations
The previous considerations of forward and backward pri-

vacy focused on a persistent adversary. However, the Janus
scheme is vulnerable in ways the other schemes are not. This
is due to the scheme’s caching of search results. Because
of this, information can be leaked to a snapshot or late-
persistent adversary, as it would be able to see the cached
results. In other words, without needing to monitor the
databases activities from the beginning, these adversaries
can acquire the same information that a persistent adversary
would have. The result of this is that an adversary consid-
ered weaker than a persistent adversary could still lead to
leakage-abuse attacks. In contrast a scheme like Fides would
have stronger security against a snapshot or late-persistent
adversary than it would against a persistent adversary. This
is because these adversaries acquire less information than a
persistent adversary would have [2].

This issue with Janus can be solved by encrypting the
cache and storing it using history-independent data struc-
tures. Specifically, the cache would be encrypted with a key
not maintained at the server, which is sent by the client.
This would occur whenever the client sends a search query.
The server would then decrypt the cache, and discard the re-
sult and key after the query was processed. History-independent
data structures would be used to hide information regarding
the size of current or discarded values, and the time of in-
sertion/modification of data. This would prevent the cache
from exposing information to late-persistent and snapshot
adversaries [2].

4. RESULTS
While all the schemes are forward private and dynamic,

Dual Dictionary isn’t backward private. In contrast, it is the
only scheme which easily supports explicit deletion. Fides
requires a seperate clean up procedure to achieve this, and
Janus doesn’t support this at all.

When comparing levels of backward privacy, Fides reaches
a high level, backward privacy with update pattern. How-
ever, in order to achieve this it requires two roundtrips,
which significantly increases communication cost. In ad-
dition to this, the two-roundtrip method breaks with con-

SE Scheme FP BP Other Considerations
Dual Dict. X

X
Two dictionaries
takes twice the space

Fides X With update
pattern

Two roundtrips in-
creases communica-
tion cost

Janus X Weak Vulnerable to weak
adversaries

Table 5:
Summary of Schemes

ventional expectations of a database, which normally return
documents after a single search query. In contrast, Janus
doesn’t require two roundtrips, and performs conventionally,
but is only weakly backward private. In addition to this, it
requires additional fixes to be protected against weaker ad-
versaries (see table 5).

5. CONCLUSIONS
There is still a lot of room for improvement in the secu-

rity of searchable encryption schemes. Although there are
schemes which achieve ideal levels of security, the perfor-
mance costs are higher than ideal, as demonstrated by Fides.
In contrast, schemes which attain ideal performance are of-
ten less than ideal with regards to security, as demonstrated
by Janus. No perfect solution exists yet.

Acknowledgments
Thank you to Elena Machkasova, my advisor and senior sem-
inar professor, for her expertise, advice, and feedback. I
would also like to thank Shawn Seymour for providing feed-
back.

6. REFERENCES
[1] R. Bost. Σoψoζ: Forward secure searchable encryption.

In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
pages 1143–1154, New York, NY, USA, 2016. ACM.

[2] R. Bost, B. Minaud, and O. Ohrimenko. Forward and
backward private searchable encryption from
constrained cryptographic primitives. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, pages
1465–1482, New York, NY, USA, 2017. ACM.

[3] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart.
Leakage-abuse attacks against searchable encryption. In
Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15,
pages 668–679. ACM, 2015.

[4] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H.
Kim. Forward secure dynamic searchable symmetric
encryption with efficient updates. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 1449–1463,
New York, NY, USA, 2017. ACM.

[5] H. D. . H. Knebl. Introduction to cryptography:
Principles and applications. Springer Berlin Heidelberg,
Heidelberg, Germany, 2007.


