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Introduction

More cloud services → storage of data on third party servers.

Storage on third party servers → potential for exposing this
information to others.

To avoid this, data is often encrypted.

Needing to decrypt makes things difficult

The specific security and performance demands of these
modern day situations has created a necessity for searchable
encryption.
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Background: Databases

A database can be seen as a structured set of data in the form of a
table, with each row containing an entry.

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza

3 Sausage Pizza

4 Ham Pineapple Pizza
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Background: Databases

Queries are instructions that can be sent to a server
containing a database.

They can be used to add, retrieve (search), update, or delete
data within the database, depending on the database’s
functionality.

The source of the queries is called the client.

The receiver of the queries is called the server.
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Background: Encryption
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Background: Encryption

Encryption is the process of encoding information so that only
authorized users can access it.

Encryption key - a string of bits created for encoding and/or
decoding information

Plaintext - non-encrypted data

Ciphertext - encrypted data

Index Document

1 Pizza Box 1

2 Pizza Box 2

3 Pizza Box 3

4 Pizza Box 4

15 / 144



Background: Encryption

Encryption is the process of encoding information so that only
authorized users can access it.

Encryption key - a string of bits created for encoding and/or
decoding information

Plaintext - non-encrypted data

Ciphertext - encrypted data

Index Document

1 Pizza Box 1

2 Pizza Box 2

3 Pizza Box 3

4 Pizza Box 4

16 / 144



Background: Encryption

Encryption is the process of encoding information so that only
authorized users can access it.

Encryption key - a string of bits created for encoding and/or
decoding information

Plaintext - non-encrypted data

Ciphertext - encrypted data

Index Document

1 Pizza Box 1

2 Pizza Box 2

3 Pizza Box 3

4 Pizza Box 4

17 / 144



Background: Searchable Encryption

Searchable Encryption
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Background: Searchable Encryption

Searchable encryption is a class of structured encryption.

It allows for the performance of queries on its encrypted data
without having to decrypt the data.
Queries are run on the keywords in order to identify what data to
operate on.
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Background: Searchable Encryption

So, the database might look something like this:

Keyword Indexes

pepperoni 1, 2

pineapple 2, 4

sausage 3

ham 4

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
or

Index Keyword Document

1 Pepperoni Pizza Box

2 Pepperoni Pineapple Pizza Box

3 Sausage Pizza Box

4 Ham Pineapple Pizza Box
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Background: Searchable encryption

Searchable encryption necessarily leaks some amount of
information.

This leakage has been shown to allow:

leakage-abuse attacks

full plaintext recovery of encrypted databases
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Background: Forward Privacy

Forward Privacy:

A searchable encryption scheme is said to be forward private if
queries to the server don’t reveal which keywords are involved in
the keyword/document pairs.
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Background: Backward Privacy

Backward Privacy:

A searchable encryption scheme is backward private if search
queries on the database don’t reveal information about documents
that were deleted.
This can be classified in 3 different levels
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Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni
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(T3) remove from index 1, pepperoni topping
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Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
III. Weak backward privacy:
which deletion update canceled which insertion update.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni and the time

the time the three updates for pepperoni occurred

the time index 1 had pepperoni removed from it
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Searchable Encryption Schemes

Dual Dictionary
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Dual Dictionary

The dual dictionary scheme, proposes a new data structure to
handle indexes, called dual dictionary.

The dual dictionary data structure consists of linked dictionaries
for inverted and forward indexes

Inverted index: maintains lists of documents per keyword

Forward index: maintains lists of keywords per document
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Dual Dictionary

How it works:

The client uses encryption keys to create labels for the data stored
in the database.

Delete Label - DL

Search Label - SL
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Dual Dictionary

Delete Label - DL

created for every keyword matching a document

generated using a key corresponding to the document

client keeps a count of how many there are per document

For a pepperoni pineapple pizza being added to an empty database:
We would generate 2 DL’s
pizza− 1− DL1

generated using the key for index 1 and the number 1,
because it is the first keyword of the first pizza

pizza− 1− DL2

generated using the key for index 1 and the number 2,
because it is the second keyword of the first pizza
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Dual Dictionary

Search Label - SL

created for every document matching a given keyword

generated using a key corresponding to the keyword

client keeps a count of how many there are per keyword

For the pepperoni pineapple pizza:
We would then generate 2 SL’s
pepperoni − SL1

generated using the key for pepperoni and the number 1

pineapple − SL1

generated using the key for pineapple and the number 1
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Dual Dictionary

These labels are stored in two dictionaries. As a pair, (DLi ,SLi ), in
Dic1
As a triplet with a document index, (SLi ,(DLi , index)), in Dic2

Dic1

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 1− DL2 pineapple − SL1

Dic2

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pineapple − SL1 (pizza− 1− DL2, 1)
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Dual Dictionary

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 2− DL1 pepperoni − SL2

pizza− 2− DL2 pineapple − SL1

pizza− 3− DL1 sausage − SL1

pizza− 4− DL1 ham − SL1

pizza− 4− DL2 pineapple − SL2

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)
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Dual Dictionary

Deleting a document (pizza) with index 2:

calculate DL’s for however many keywords the document has
(in this case: 2)

search Dic1 for the DL’s (in this case: pizza− 2− DL1,
pizza− 2− DL2)

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 2− DL1 pepperoni − SL2

pizza− 2− DL2 pineapple − SL1

pizza− 3− DL1 sausage − SL1

pizza− 4− DL1 ham − SL1
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Dual Dictionary

Deleting a document (pizza) with index 2:
We would then use the result to identify which SL’s to look for in
Dic2.

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

Then all the results from Dic1, Dic2, and the document would be
deleted.
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Dual Dictionary

Retrieving documents (pizzas) with keyword (topping) pineapple:

the client calculates SLi for however many documents match
pineapple (in this case: 2)

search Dic2 for the SL’s (in this case: pineapple − SL1,
pineapple − SL2)

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)
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pineapple (in this case: 2)

search Dic2 for the SL’s (in this case: pineapple − SL1,
pineapple − SL2)

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)
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Dual Dictionary

Retrieving documents (pizzas) with keyword (topping) pineapple:
We would then use the result to identify which documents (pizzas)
to retrieve.

Index Document

1 Pizza Box

2 Pizza Box
3 Pizza Box

4 Pizza Box

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza

3 Sausage Pizza

4 Ham Pineapple Pizza
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Dual Dictionary

Privacy After Searches

Recall: Forward private if queries to the server don’t reveal which
keywords are involved in the keyword/document pairs.

Dual Dictionary switches keys after every search

(a) Key 1 and Key 2 before search (b) Key 3 and Key 4 after search
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Dual Dictionary

Privacy

Recall: Backward private if search queries on the database don’t
reveal information about documents that were deleted.

The Dual Dictionary scheme isn’t backward private. This is
because further search queries would reveal the documents that
were deleted.
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Searchable Encryption Schemes

Fides

84 / 144



Fides

Fides is a forward and backward private searchable encryption
scheme.
It is a combination of:

Σoψoζ - a forward private scheme

Two-roundtrip - a technique for backward privacy
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Fides

Key features of Σoψoζ:
Forward privacy through tokens

Search token - generated by the number of documents
matching a given keyword with a one-way trapdoor
permutation

The client keeps the most recent search token (STn)
The client can generate a new search token (STn+1) based on
an old one (STn)
The server given STn, can derive STn−1 to ST0 but not STn+1

Update token - generated to correspond to 1 search token and
are paired with a document index
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Fides

Key features of Two-Roundtrip:

documents aren’t returned in a query

ciphertext containing the document index and operation is
returned

ciphertext encrypted by the client with a key
key is unique for each keyword
operation is addition or deletion
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Fides

How Fides Functions Differently from Σoψoζ:

Σoψoζ Scheme
Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Indexes with Correspond-
ing Update Tokens

3 ← Documents

Fides First Trip

Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Ciphertext with Corre-
sponding Update Tokens

3 Decrypt Cipher-
text

← Ciphertext
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Fides

How Fides works:

First Trip
Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Ciphertext with Corre-
sponding Update Tokens

3 Decrypt Cipher-
text

← Ciphertext

Second Trip

Step Client Server

4 Indexes and New
Ciphertext

→ Update Ciphertext

5 ← Documents
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Fides

How Fides works:
Update Token Ciphertext

pepperoni 1 e(1,ADD)

pepperoni 2 e(2,ADD)

pineapple 1 e(2,ADD)

pineapple 2 e(4,ADD)

sausage 1 e(3,ADD)

ham 1 e(4,ADD)

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
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Fides

How Fides works:
If we searched for pineapple

Update Token Ciphertext

pepperoni 1 e(1,ADD)

pepperoni 2 e(2,ADD)

pineapple 1 e(2, ADD)
pineapple 2 e(4, ADD)
sausage 1 e(3,ADD)

ham 1 e(4,ADD)

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
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Fides

How Fides works:
If we searched for pineapple

Index Document

1 Pizza Box

2 Pizza Box
3 Pizza Box

4 Pizza Box

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza
3 Sausage Pizza

4 Ham Pineapple Pizza

100 / 144



Fides

Privacy

Forward Private:

the server doesn’t know what keyword can be used for specific
documents

token system

Backward Private with Update Pattern:

The server knows when updates occur, but not their content

two-roundtrip ciphertext
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Fides

Privacy

Forward Private:

the server doesn’t know what keyword can be used for specific
documents

token system

Backward Private with Update Pattern:

The server knows when updates occur, but not their content

two-roundtrip ciphertext
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Searchable Encryption Schemes

Janus
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Janus

Janus is a scheme that uses:

Any forward private scheme

Puncturable Encryption

Incremental Puncture
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Janus is a scheme that uses:

Any forward private scheme

Puncturable Encryption

Incremental Puncture
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Puncturable Encryption and Incremental Puncture:

Imagine having a key ring with all the keys to a building

These keys can be taken off of the ring

Security at the entrance can make you take off certain keys

We will call the instructions to take off keys a key part
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Janus

How Janus is set up:

Uses 2 instances of the forward private scheme

Used for additions - stores a pair of keyword and encrypted
index
Used for deletion - stores a pair of keyword and key part
(which key to take off the ring)

Each keyword has its own puncturable key (key ring)

the client stores the full key ring for each of these keys
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How Janus is set up:

Uses 2 instances of the forward private scheme
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index
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Janus

An example of what our database would look like:

Keyword Encrypted Indexes

pepperoni e(1)

pepperoni e(2)

pineapple e(2)

pineapple e(4)

sausage e(3)

ham e(4)

Keyword Key Part

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
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Janus

How Janus inserts new documents:

For example: a ham pizza

Client encrypts the new document’s index with the key
corresponding to its keyword

Document is then sent to the database

Keyword and encrypted-index pair is inserted in the addition
instance
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Janus

How Janus inserts new documents:
For example: a ham pizza

Client encrypts the new document’s index with the key
corresponding to its keyword

Document is then sent to the database

Keyword and encrypted-index pair is inserted in the addition
instance
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Janus

How Janus inserts new documents:
For example: a ham pizza

Client encrypts the new document’s index with the key
corresponding to its keyword

Document is then sent to the database

Keyword and encrypted-index pair is inserted in the addition
instance
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Janus

How Janus inserts new documents:

Keyword Encrypted Indexes

pepperoni e(1)

pepperoni e(2)

pineapple e(2)

pineapple e(4)

sausage e(3)

ham e(4)

ham e(5)

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box

5 Pizza Box
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Janus

How Janus deletes documents:

For example, the ham pizza we just added:

The client calculates its key part (the instructions to remove a
key from the ring)

The client then inserts the key part to the deletion instance

Keyword Key Part

Ham skham
1
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How Janus deletes documents:
For example, the ham pizza we just added:
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Janus

How Janus deletes documents:
For example, the ham pizza we just added:

The client calculates its key part (the instructions to remove a
key from the ring)

The client then inserts the key part to the deletion instance

Keyword Key Part

Ham skham
1
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Janus

How Janus searches documents:

For example, ham pizzas:

The client sends a search query with keyword (ham) and the
corresponding key ring (skham

0 )

Both instances are searched for the keyword

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1
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How Janus searches documents:
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How Janus searches documents:
For example, ham pizzas:
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How Janus searches documents:
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Janus

How Janus searches documents:

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1

The server:
obtains the encrypted indexes from the addition instance
obtains the corresponding key parts from the deletion instance

can then remove the required keys from the key ring and
decrypt the indexes that it still has keys for
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Janus

How Janus searches documents:

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)
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Janus

How Janus searches documents:

Keyword Encrypted Indexes

pepperoni e(1)

pepperoni e(2)

pineapple e(2)

pineapple e(4)

sausage e(3)

ham e(4)
ham e(5)

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
5 Pizza Box

With this, the server can retrieve one document
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Janus

How Janus searches documents:

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
5 Pizza Box

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza

3 Sausage Pizza

4 Ham Pineapple Pizza
5 Ham Pizza
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Janus

After Janus searches documents:
The server has now learned the indexes matching a keyword and its
secret key.

For security any future insertions of that keyword will be
encrypted with a new key

key ring (skham) replaced by a new key ring(sknew−ham)
necessary because the server would be able to use an old key
ring to decrypt new entries and deletions

Previous searches will be cached

cached results are no longer encrypted

Keyword Indexes

ham 4
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Janus

After Janus searches documents:
The server has now learned the indexes matching a keyword and its
secret key.

For security any future insertions of that keyword will be
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Janus

Privacy

Forward Privacy:
The scheme is forward private because it requires the use of a
forward private scheme
Backward Privacy:
The scheme has weak backward privacy, because:

The server only has access to the key ring during a search
query

The key ring used for a keyword changes after every search

So, deleted indexes remain hidden. However, the server is able to
tell which inserted entries were later deleted.
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Janus

Janus’ Other Privacy Considerations

Janus is vulnerable to weaker adversaries.

Persistent - constantly monitors from the beginning

Late Persistent - constantly monitors from a given point in
time

Snapshot - only gets to view the database at one given point
in time

139 / 144



Janus

Janus’ Other Privacy Considerations

Janus is vulnerable to weaker adversaries.

Persistent - constantly monitors from the beginning

Late Persistent - constantly monitors from a given point in
time

Snapshot - only gets to view the database at one given point
in time

140 / 144



Conclusions

SE Scheme FP BP Other Considerations

Dual Dict. X
X

Two dictionaries takes twice
the space

Fides X With update
pattern

Two roundtrips increases com-
munication cost

Janus X Weak Vulnerable to weak adversaries
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Discussion

Questions?
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