
Searchable Encryption

Xaitheng Yang

University of Minnesota, Morris

Nov 2018

1 / 144



Introduction

More cloud services → storage of data on third party servers.

Storage on third party servers → potential for exposing this
information to others.

To avoid this, data is often encrypted.

Needing to decrypt makes things difficult

The specific security and performance demands of these
modern day situations has created a necessity for searchable
encryption.

2 / 144



Introduction

More cloud services → storage of data on third party servers.

Storage on third party servers → potential for exposing this
information to others.

To avoid this, data is often encrypted.

Needing to decrypt makes things difficult

The specific security and performance demands of these
modern day situations has created a necessity for searchable
encryption.

3 / 144



Introduction

More cloud services → storage of data on third party servers.

Storage on third party servers → potential for exposing this
information to others.

To avoid this, data is often encrypted.

Needing to decrypt makes things difficult

The specific security and performance demands of these
modern day situations has created a necessity for searchable
encryption.

4 / 144



Introduction

More cloud services → storage of data on third party servers.

Storage on third party servers → potential for exposing this
information to others.

To avoid this, data is often encrypted.

Needing to decrypt makes things difficult

The specific security and performance demands of these
modern day situations has created a necessity for searchable
encryption.

5 / 144



Introduction

More cloud services → storage of data on third party servers.

Storage on third party servers → potential for exposing this
information to others.

To avoid this, data is often encrypted.

Needing to decrypt makes things difficult

The specific security and performance demands of these
modern day situations has created a necessity for searchable
encryption.

6 / 144



Outline

1 Introduction

2 Background
Databases and Encryption
Searchable Encryption

3 Searchable Encryption Schemes
Dual Dictionary
Fides
Janus

4 Conclusions

7 / 144



Background: Databases

Databases

8 / 144



Background: Databases

A database can be seen as a structured set of data in the form of a
table, with each row containing an entry.

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza

3 Sausage Pizza

4 Ham Pineapple Pizza

9 / 144



Background: Databases

Queries are instructions that can be sent to a server
containing a database.

They can be used to add, retrieve (search), update, or delete
data within the database, depending on the database’s
functionality.

The source of the queries is called the client.

The receiver of the queries is called the server.

10 / 144



Background: Databases

Queries are instructions that can be sent to a server
containing a database.

They can be used to add, retrieve (search), update, or delete
data within the database, depending on the database’s
functionality.

The source of the queries is called the client.

The receiver of the queries is called the server.

11 / 144



Background: Databases

Queries are instructions that can be sent to a server
containing a database.

They can be used to add, retrieve (search), update, or delete
data within the database, depending on the database’s
functionality.

The source of the queries is called the client.

The receiver of the queries is called the server.

12 / 144



Background: Databases

Queries are instructions that can be sent to a server
containing a database.

They can be used to add, retrieve (search), update, or delete
data within the database, depending on the database’s
functionality.

The source of the queries is called the client.

The receiver of the queries is called the server.

13 / 144



Background: Encryption

Encryption

14 / 144



Background: Encryption

Encryption is the process of encoding information so that only
authorized users can access it.

Encryption key - a string of bits created for encoding and/or
decoding information

Plaintext - non-encrypted data

Ciphertext - encrypted data

Index Document

1 Pizza Box 1

2 Pizza Box 2

3 Pizza Box 3

4 Pizza Box 4

15 / 144



Background: Encryption

Encryption is the process of encoding information so that only
authorized users can access it.

Encryption key - a string of bits created for encoding and/or
decoding information

Plaintext - non-encrypted data

Ciphertext - encrypted data

Index Document

1 Pizza Box 1

2 Pizza Box 2

3 Pizza Box 3

4 Pizza Box 4

16 / 144



Background: Encryption

Encryption is the process of encoding information so that only
authorized users can access it.

Encryption key - a string of bits created for encoding and/or
decoding information

Plaintext - non-encrypted data

Ciphertext - encrypted data

Index Document

1 Pizza Box 1

2 Pizza Box 2

3 Pizza Box 3

4 Pizza Box 4

17 / 144



Background: Searchable Encryption

Searchable Encryption

18 / 144



Background: Searchable Encryption

Searchable encryption is a class of structured encryption.

It allows for the performance of queries on its encrypted data
without having to decrypt the data.
Queries are run on the keywords in order to identify what data to
operate on.

19 / 144



Background: Searchable Encryption

Searchable encryption is a class of structured encryption.
It allows for the performance of queries on its encrypted data
without having to decrypt the data.

Queries are run on the keywords in order to identify what data to
operate on.

20 / 144



Background: Searchable Encryption

Searchable encryption is a class of structured encryption.
It allows for the performance of queries on its encrypted data
without having to decrypt the data.
Queries are run on the keywords in order to identify what data to
operate on.

21 / 144



Background: Searchable Encryption

So, the database might look something like this:

Keyword Indexes

pepperoni 1, 2

pineapple 2, 4

sausage 3

ham 4

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
or

Index Keyword Document

1 Pepperoni Pizza Box

2 Pepperoni Pineapple Pizza Box

3 Sausage Pizza Box

4 Ham Pineapple Pizza Box

22 / 144



Background: Searchable Encryption

So, the database might look something like this:

Keyword Indexes

pepperoni 1, 2

pineapple 2, 4

sausage 3

ham 4

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box

or
Index Keyword Document

1 Pepperoni Pizza Box

2 Pepperoni Pineapple Pizza Box

3 Sausage Pizza Box

4 Ham Pineapple Pizza Box

23 / 144



Background: Searchable Encryption

So, the database might look something like this:

Keyword Indexes

pepperoni 1, 2

pineapple 2, 4

sausage 3

ham 4

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
or

Index Keyword Document

1 Pepperoni Pizza Box

2 Pepperoni Pineapple Pizza Box

3 Sausage Pizza Box

4 Ham Pineapple Pizza Box

24 / 144



Background: Searchable encryption

Searchable encryption necessarily leaks some amount of
information.

This leakage has been shown to allow:

leakage-abuse attacks

full plaintext recovery of encrypted databases

25 / 144



Background: Searchable encryption

Searchable encryption necessarily leaks some amount of
information.
This leakage has been shown to allow:

leakage-abuse attacks

full plaintext recovery of encrypted databases

26 / 144



Background: Forward Privacy

Forward Privacy:

A searchable encryption scheme is said to be forward private if
queries to the server don’t reveal which keywords are involved in
the keyword/document pairs.

27 / 144



Background: Forward Privacy

Forward Privacy:
A searchable encryption scheme is said to be forward private if
queries to the server don’t reveal which keywords are involved in
the keyword/document pairs.

28 / 144



Background: Backward Privacy

Backward Privacy:

A searchable encryption scheme is backward private if search
queries on the database don’t reveal information about documents
that were deleted.
This can be classified in 3 different levels

29 / 144



Background: Backward Privacy

Backward Privacy:
A searchable encryption scheme is backward private if search
queries on the database don’t reveal information about documents
that were deleted.
This can be classified in 3 different levels

30 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

31 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

32 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

33 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

34 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

35 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:

I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

36 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

37 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

38 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1 , pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
I. Backward privacy with insertion pattern:
leaks the documents currently matching a keyword, when they
were inserted, and the total number of updates on the keyword.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni

39 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
II. Backward privacy with update pattern:
when all the updates on the keyword happened

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni and the time

the time the three updates for pepperoni occurred

40 / 144



Background: Backward Privacy

An example with pizza:

(T1) add to index 1, pepperoni pineapple pizza

(T2) add to index 2, pepperoni pizza

(T3) remove from index 1, pepperoni topping

(T4) add to index 3, pineapple pizza

If there is a search for pepperoni:
III. Weak backward privacy:
which deletion update canceled which insertion update.

index 1 matches the keyword pepperoni

the time at which this entry was added

three updates occurred for pepperoni and the time

the time the three updates for pepperoni occurred

the time index 1 had pepperoni removed from it

41 / 144



Searchable Encryption Schemes

Dual Dictionary

42 / 144



Dual Dictionary

The dual dictionary scheme, proposes a new data structure to
handle indexes, called dual dictionary.

The dual dictionary data structure consists of linked dictionaries
for inverted and forward indexes

Inverted index: maintains lists of documents per keyword

Forward index: maintains lists of keywords per document

43 / 144



Dual Dictionary

The dual dictionary scheme, proposes a new data structure to
handle indexes, called dual dictionary.
The dual dictionary data structure consists of linked dictionaries
for inverted and forward indexes

Inverted index: maintains lists of documents per keyword

Forward index: maintains lists of keywords per document

44 / 144



Dual Dictionary

The dual dictionary scheme, proposes a new data structure to
handle indexes, called dual dictionary.
The dual dictionary data structure consists of linked dictionaries
for inverted and forward indexes

Inverted index: maintains lists of documents per keyword

Forward index: maintains lists of keywords per document

45 / 144



Dual Dictionary

How it works:

The client uses encryption keys to create labels for the data stored
in the database.

Delete Label - DL

Search Label - SL

46 / 144



Dual Dictionary

How it works:
The client uses encryption keys to create labels for the data stored
in the database.

Delete Label - DL

Search Label - SL

47 / 144



Dual Dictionary

How it works:
The client uses encryption keys to create labels for the data stored
in the database.

Delete Label - DL

Search Label - SL

48 / 144



Dual Dictionary

How it works:
The client uses encryption keys to create labels for the data stored
in the database.

Delete Label - DL

Search Label - SL

49 / 144



Dual Dictionary

Delete Label - DL

created for every keyword matching a document

generated using a key corresponding to the document

client keeps a count of how many there are per document

For a pepperoni pineapple pizza being added to an empty database:
We would generate 2 DL’s
pizza− 1− DL1

generated using the key for index 1 and the number 1,
because it is the first keyword of the first pizza

pizza− 1− DL2

generated using the key for index 1 and the number 2,
because it is the second keyword of the first pizza

50 / 144



Dual Dictionary

Delete Label - DL

created for every keyword matching a document

generated using a key corresponding to the document

client keeps a count of how many there are per document

For a pepperoni pineapple pizza being added to an empty database:
We would generate 2 DL’s
pizza− 1− DL1

generated using the key for index 1 and the number 1,
because it is the first keyword of the first pizza

pizza− 1− DL2

generated using the key for index 1 and the number 2,
because it is the second keyword of the first pizza

51 / 144



Dual Dictionary

Delete Label - DL

created for every keyword matching a document

generated using a key corresponding to the document

client keeps a count of how many there are per document

For a pepperoni pineapple pizza being added to an empty database:

We would generate 2 DL’s
pizza− 1− DL1

generated using the key for index 1 and the number 1,
because it is the first keyword of the first pizza

pizza− 1− DL2

generated using the key for index 1 and the number 2,
because it is the second keyword of the first pizza

52 / 144



Dual Dictionary

Delete Label - DL

created for every keyword matching a document

generated using a key corresponding to the document

client keeps a count of how many there are per document

For a pepperoni pineapple pizza being added to an empty database:
We would generate 2 DL’s

pizza− 1− DL1

generated using the key for index 1 and the number 1,
because it is the first keyword of the first pizza

pizza− 1− DL2

generated using the key for index 1 and the number 2,
because it is the second keyword of the first pizza

53 / 144



Dual Dictionary

Delete Label - DL

created for every keyword matching a document

generated using a key corresponding to the document

client keeps a count of how many there are per document

For a pepperoni pineapple pizza being added to an empty database:
We would generate 2 DL’s
pizza− 1− DL1

generated using the key for index 1 and the number 1,
because it is the first keyword of the first pizza

pizza− 1− DL2

generated using the key for index 1 and the number 2,
because it is the second keyword of the first pizza

54 / 144



Dual Dictionary

Delete Label - DL

created for every keyword matching a document

generated using a key corresponding to the document

client keeps a count of how many there are per document

For a pepperoni pineapple pizza being added to an empty database:
We would generate 2 DL’s
pizza− 1− DL1

generated using the key for index 1 and the number 1,
because it is the first keyword of the first pizza

pizza− 1− DL2

generated using the key for index 1 and the number 2,
because it is the second keyword of the first pizza

55 / 144



Dual Dictionary

Search Label - SL

created for every document matching a given keyword

generated using a key corresponding to the keyword

client keeps a count of how many there are per keyword

For the pepperoni pineapple pizza:
We would then generate 2 SL’s
pepperoni − SL1

generated using the key for pepperoni and the number 1

pineapple − SL1

generated using the key for pineapple and the number 1

56 / 144



Dual Dictionary

Search Label - SL

created for every document matching a given keyword

generated using a key corresponding to the keyword

client keeps a count of how many there are per keyword

For the pepperoni pineapple pizza:
We would then generate 2 SL’s
pepperoni − SL1

generated using the key for pepperoni and the number 1

pineapple − SL1

generated using the key for pineapple and the number 1

57 / 144



Dual Dictionary

Search Label - SL

created for every document matching a given keyword

generated using a key corresponding to the keyword

client keeps a count of how many there are per keyword

For the pepperoni pineapple pizza:

We would then generate 2 SL’s
pepperoni − SL1

generated using the key for pepperoni and the number 1

pineapple − SL1

generated using the key for pineapple and the number 1

58 / 144



Dual Dictionary

Search Label - SL

created for every document matching a given keyword

generated using a key corresponding to the keyword

client keeps a count of how many there are per keyword

For the pepperoni pineapple pizza:
We would then generate 2 SL’s

pepperoni − SL1

generated using the key for pepperoni and the number 1

pineapple − SL1

generated using the key for pineapple and the number 1

59 / 144



Dual Dictionary

Search Label - SL

created for every document matching a given keyword

generated using a key corresponding to the keyword

client keeps a count of how many there are per keyword

For the pepperoni pineapple pizza:
We would then generate 2 SL’s
pepperoni − SL1

generated using the key for pepperoni and the number 1

pineapple − SL1

generated using the key for pineapple and the number 1

60 / 144



Dual Dictionary

Search Label - SL

created for every document matching a given keyword

generated using a key corresponding to the keyword

client keeps a count of how many there are per keyword

For the pepperoni pineapple pizza:
We would then generate 2 SL’s
pepperoni − SL1

generated using the key for pepperoni and the number 1

pineapple − SL1

generated using the key for pineapple and the number 1

61 / 144



Dual Dictionary

These labels are stored in two dictionaries. As a pair, (DLi ,SLi ), in
Dic1
As a triplet with a document index, (SLi ,(DLi , index)), in Dic2

Dic1

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 1− DL2 pineapple − SL1

Dic2

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pineapple − SL1 (pizza− 1− DL2, 1)

62 / 144



Dual Dictionary

These labels are stored in two dictionaries. As a pair, (DLi ,SLi ), in
Dic1
As a triplet with a document index, (SLi ,(DLi , index)), in Dic2

Dic1

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 1− DL2 pineapple − SL1

Dic2

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pineapple − SL1 (pizza− 1− DL2, 1)

63 / 144



Dual Dictionary

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 2− DL1 pepperoni − SL2

pizza− 2− DL2 pineapple − SL1

pizza− 3− DL1 sausage − SL1

pizza− 4− DL1 ham − SL1

pizza− 4− DL2 pineapple − SL2

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

64 / 144



Dual Dictionary

Deleting a document (pizza) with index 2:

calculate DL’s for however many keywords the document has
(in this case: 2)

search Dic1 for the DL’s (in this case: pizza− 2− DL1,
pizza− 2− DL2)

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 2− DL1 pepperoni − SL2

pizza− 2− DL2 pineapple − SL1

pizza− 3− DL1 sausage − SL1

pizza− 4− DL1 ham − SL1

pizza− 4− DL2 pineapple − SL2

65 / 144



Dual Dictionary

Deleting a document (pizza) with index 2:

calculate DL’s for however many keywords the document has
(in this case: 2)

search Dic1 for the DL’s (in this case: pizza− 2− DL1,
pizza− 2− DL2)

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 2− DL1 pepperoni − SL2

pizza− 2− DL2 pineapple − SL1

pizza− 3− DL1 sausage − SL1

pizza− 4− DL1 ham − SL1

pizza− 4− DL2 pineapple − SL2

66 / 144



Dual Dictionary

Deleting a document (pizza) with index 2:

calculate DL’s for however many keywords the document has
(in this case: 2)

search Dic1 for the DL’s (in this case: pizza− 2− DL1,
pizza− 2− DL2)

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 2− DL1 pepperoni − SL2

pizza− 2− DL2 pineapple − SL1

pizza− 3− DL1 sausage − SL1

pizza− 4− DL1 ham − SL1

pizza− 4− DL2 pineapple − SL2

67 / 144



Dual Dictionary

Deleting a document (pizza) with index 2:

calculate DL’s for however many keywords the document has
(in this case: 2)

search Dic1 for the DL’s (in this case: pizza− 2− DL1,
pizza− 2− DL2)

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 2− DL1 pepperoni − SL2

pizza− 2− DL2 pineapple − SL1

pizza− 3− DL1 sausage − SL1

pizza− 4− DL1 ham − SL1

pizza− 4− DL2 pineapple − SL2

68 / 144



Dual Dictionary

Deleting a document (pizza) with index 2:

calculate DL’s for however many keywords the document has
(in this case: 2)

search Dic1 for the DL’s (in this case: pizza− 2− DL1,
pizza− 2− DL2)

DL SL

pizza− 1− DL1 pepperoni − SL1

pizza− 2− DL1 pepperoni − SL2

pizza− 2− DL2 pineapple − SL1

pizza− 3− DL1 sausage − SL1

pizza− 4− DL1 ham − SL1

pizza− 4− DL2 pineapple − SL2

69 / 144



Dual Dictionary

Deleting a document (pizza) with index 2:
We would then use the result to identify which SL’s to look for in
Dic2.

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

Then all the results from Dic1, Dic2, and the document would be
deleted.

70 / 144



Dual Dictionary

Deleting a document (pizza) with index 2:
We would then use the result to identify which SL’s to look for in
Dic2.

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

Then all the results from Dic1, Dic2, and the document would be
deleted.

71 / 144



Dual Dictionary

Deleting a document (pizza) with index 2:
We would then use the result to identify which SL’s to look for in
Dic2.

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

Then all the results from Dic1, Dic2, and the document would be
deleted.

72 / 144



Dual Dictionary

Retrieving documents (pizzas) with keyword (topping) pineapple:

the client calculates SLi for however many documents match
pineapple (in this case: 2)

search Dic2 for the SL’s (in this case: pineapple − SL1,
pineapple − SL2)

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

73 / 144



Dual Dictionary

Retrieving documents (pizzas) with keyword (topping) pineapple:

the client calculates SLi for however many documents match
pineapple (in this case: 2)

search Dic2 for the SL’s (in this case: pineapple − SL1,
pineapple − SL2)

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

74 / 144



Dual Dictionary

Retrieving documents (pizzas) with keyword (topping) pineapple:

the client calculates SLi for however many documents match
pineapple (in this case: 2)

search Dic2 for the SL’s (in this case: pineapple − SL1,
pineapple − SL2)

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

75 / 144



Dual Dictionary

Retrieving documents (pizzas) with keyword (topping) pineapple:

the client calculates SLi for however many documents match
pineapple (in this case: 2)

search Dic2 for the SL’s (in this case: pineapple − SL1,
pineapple − SL2)

SL (DL, Index)

pepperoni − SL1 (pizza− 1− DL1, 1)

pepperoni − SL2 (pizza− 2− DL1, 2)

pineapple − SL1 (pizza− 2− DL2, 2)

pineapple − SL2 (pizza− 4− DL2, 4)

sausage − SL1 (pizza− 3− DL1, 3)

ham − SL1 (pizza− 4− DL1, 4)

76 / 144



Dual Dictionary

Retrieving documents (pizzas) with keyword (topping) pineapple:
We would then use the result to identify which documents (pizzas)
to retrieve.

Index Document

1 Pizza Box

2 Pizza Box
3 Pizza Box

4 Pizza Box

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza

3 Sausage Pizza

4 Ham Pineapple Pizza

77 / 144



Dual Dictionary

Retrieving documents (pizzas) with keyword (topping) pineapple:
We would then use the result to identify which documents (pizzas)
to retrieve.

Index Document

1 Pizza Box

2 Pizza Box
3 Pizza Box

4 Pizza Box

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza

3 Sausage Pizza

4 Ham Pineapple Pizza

78 / 144



Dual Dictionary

Privacy After Searches

Recall: Forward private if queries to the server don’t reveal which
keywords are involved in the keyword/document pairs.

Dual Dictionary switches keys after every search

(a) Key 1 and Key 2 before search (b) Key 3 and Key 4 after search

79 / 144



Dual Dictionary

Privacy After Searches

Recall: Forward private if queries to the server don’t reveal which
keywords are involved in the keyword/document pairs.

Dual Dictionary switches keys after every search

(a) Key 1 and Key 2 before search (b) Key 3 and Key 4 after search

80 / 144



Dual Dictionary

Privacy After Searches

Recall: Forward private if queries to the server don’t reveal which
keywords are involved in the keyword/document pairs.

Dual Dictionary switches keys after every search

(a) Key 1 and Key 2 before search (b) Key 3 and Key 4 after search

81 / 144



Dual Dictionary

Privacy

Recall: Backward private if search queries on the database don’t
reveal information about documents that were deleted.

The Dual Dictionary scheme isn’t backward private. This is
because further search queries would reveal the documents that
were deleted.

82 / 144



Dual Dictionary

Privacy

Recall: Backward private if search queries on the database don’t
reveal information about documents that were deleted.
The Dual Dictionary scheme isn’t backward private. This is
because further search queries would reveal the documents that
were deleted.

83 / 144



Searchable Encryption Schemes

Fides

84 / 144



Fides

Fides is a forward and backward private searchable encryption
scheme.
It is a combination of:

Σoψoζ - a forward private scheme

Two-roundtrip - a technique for backward privacy

85 / 144



Fides

Key features of Σoψoζ:
Forward privacy through tokens

Search token - generated by the number of documents
matching a given keyword with a one-way trapdoor
permutation

The client keeps the most recent search token (STn)
The client can generate a new search token (STn+1) based on
an old one (STn)
The server given STn, can derive STn−1 to ST0 but not STn+1

Update token - generated to correspond to 1 search token and
are paired with a document index

86 / 144



Fides

Key features of Σoψoζ:
Forward privacy through tokens

Search token - generated by the number of documents
matching a given keyword with a one-way trapdoor
permutation

The client keeps the most recent search token (STn)
The client can generate a new search token (STn+1) based on
an old one (STn)
The server given STn, can derive STn−1 to ST0 but not STn+1

Update token - generated to correspond to 1 search token and
are paired with a document index

87 / 144



Fides

Key features of Σoψoζ:
Forward privacy through tokens

Search token - generated by the number of documents
matching a given keyword with a one-way trapdoor
permutation

The client keeps the most recent search token (STn)
The client can generate a new search token (STn+1) based on
an old one (STn)
The server given STn, can derive STn−1 to ST0 but not STn+1

Update token - generated to correspond to 1 search token and
are paired with a document index

88 / 144



Fides

Key features of Σoψoζ:
Forward privacy through tokens

Search token - generated by the number of documents
matching a given keyword with a one-way trapdoor
permutation

The client keeps the most recent search token (STn)
The client can generate a new search token (STn+1) based on
an old one (STn)
The server given STn, can derive STn−1 to ST0 but not STn+1

Update token - generated to correspond to 1 search token and
are paired with a document index

89 / 144



Fides

Key features of Two-Roundtrip:

documents aren’t returned in a query

ciphertext containing the document index and operation is
returned

ciphertext encrypted by the client with a key
key is unique for each keyword
operation is addition or deletion

90 / 144



Fides

Key features of Two-Roundtrip:

documents aren’t returned in a query

ciphertext containing the document index and operation is
returned

ciphertext encrypted by the client with a key
key is unique for each keyword
operation is addition or deletion

91 / 144



Fides

Key features of Two-Roundtrip:

documents aren’t returned in a query

ciphertext containing the document index and operation is
returned

ciphertext encrypted by the client with a key
key is unique for each keyword
operation is addition or deletion

92 / 144



Fides

How Fides Functions Differently from Σoψoζ:

Σoψoζ Scheme
Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Indexes with Correspond-
ing Update Tokens

3 ← Documents

Fides First Trip

Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Ciphertext with Corre-
sponding Update Tokens

3 Decrypt Cipher-
text

← Ciphertext

93 / 144



Fides

How Fides Functions Differently from Σoψoζ:

Σoψoζ Scheme
Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Indexes with Correspond-
ing Update Tokens

3 ← Documents

Fides First Trip

Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Ciphertext with Corre-
sponding Update Tokens

3 Decrypt Cipher-
text

← Ciphertext

94 / 144



Fides

How Fides Functions Differently from Σoψoζ:

Σoψoζ Scheme
Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Indexes with Correspond-
ing Update Tokens

3 ← Documents

Fides First Trip

Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Ciphertext with Corre-
sponding Update Tokens

3 Decrypt Cipher-
text

← Ciphertext

95 / 144



Fides

How Fides works:

First Trip
Step Client Server

1 Search Token → Calculate Search Tokens

2 Find Ciphertext with Corre-
sponding Update Tokens

3 Decrypt Cipher-
text

← Ciphertext

Second Trip

Step Client Server

4 Indexes and New
Ciphertext

→ Update Ciphertext

5 ← Documents

96 / 144



Fides

How Fides works:
Update Token Ciphertext

pepperoni 1 e(1,ADD)

pepperoni 2 e(2,ADD)

pineapple 1 e(2,ADD)

pineapple 2 e(4,ADD)

sausage 1 e(3,ADD)

ham 1 e(4,ADD)

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box

97 / 144



Fides

How Fides works:
If we searched for pineapple

Update Token Ciphertext

pepperoni 1 e(1,ADD)

pepperoni 2 e(2,ADD)

pineapple 1 e(2, ADD)
pineapple 2 e(4, ADD)
sausage 1 e(3,ADD)

ham 1 e(4,ADD)

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box

98 / 144



Fides

How Fides works:
If we searched for pineapple

Update Token Ciphertext

pepperoni 1 e(1,ADD)

pepperoni 2 e(2,ADD)

pineapple 1 e(2, ADD)
pineapple 2 e(4, ADD)
sausage 1 e(3,ADD)

ham 1 e(4,ADD)

Index Document

1 Pizza Box

2 Pizza Box
3 Pizza Box

4 Pizza Box

99 / 144



Fides

How Fides works:
If we searched for pineapple

Index Document

1 Pizza Box

2 Pizza Box
3 Pizza Box

4 Pizza Box

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza
3 Sausage Pizza

4 Ham Pineapple Pizza

100 / 144



Fides

Privacy

Forward Private:

the server doesn’t know what keyword can be used for specific
documents

token system

Backward Private with Update Pattern:

The server knows when updates occur, but not their content

two-roundtrip ciphertext

101 / 144



Fides

Privacy

Forward Private:

the server doesn’t know what keyword can be used for specific
documents

token system

Backward Private with Update Pattern:

The server knows when updates occur, but not their content

two-roundtrip ciphertext

102 / 144



Fides

Privacy

Forward Private:

the server doesn’t know what keyword can be used for specific
documents

token system

Backward Private with Update Pattern:

The server knows when updates occur, but not their content

two-roundtrip ciphertext

103 / 144



Fides

Privacy

Forward Private:

the server doesn’t know what keyword can be used for specific
documents

token system

Backward Private with Update Pattern:

The server knows when updates occur, but not their content

two-roundtrip ciphertext

104 / 144



Fides

Privacy

Forward Private:

the server doesn’t know what keyword can be used for specific
documents

token system

Backward Private with Update Pattern:

The server knows when updates occur, but not their content

two-roundtrip ciphertext

105 / 144



Searchable Encryption Schemes

Janus

106 / 144



Janus

Janus is a scheme that uses:

Any forward private scheme

Puncturable Encryption

Incremental Puncture

107 / 144



Janus

Janus is a scheme that uses:

Any forward private scheme

Puncturable Encryption

Incremental Puncture

108 / 144



Puncturable Encryption and Incremental Puncture:

Imagine having a key ring with all the keys to a building

These keys can be taken off of the ring

Security at the entrance can make you take off certain keys

We will call the instructions to take off keys a key part

109 / 144



Janus

How Janus is set up:

Uses 2 instances of the forward private scheme

Used for additions - stores a pair of keyword and encrypted
index
Used for deletion - stores a pair of keyword and key part
(which key to take off the ring)

Each keyword has its own puncturable key (key ring)

the client stores the full key ring for each of these keys

110 / 144



Janus

How Janus is set up:

Uses 2 instances of the forward private scheme

Used for additions - stores a pair of keyword and encrypted
index
Used for deletion - stores a pair of keyword and key part
(which key to take off the ring)

Each keyword has its own puncturable key (key ring)

the client stores the full key ring for each of these keys

111 / 144



Janus

How Janus is set up:

Uses 2 instances of the forward private scheme

Used for additions - stores a pair of keyword and encrypted
index
Used for deletion - stores a pair of keyword and key part
(which key to take off the ring)

Each keyword has its own puncturable key (key ring)

the client stores the full key ring for each of these keys

112 / 144



Janus

An example of what our database would look like:

Keyword Encrypted Indexes

pepperoni e(1)

pepperoni e(2)

pineapple e(2)

pineapple e(4)

sausage e(3)

ham e(4)

Keyword Key Part

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box

113 / 144



Janus

How Janus inserts new documents:

For example: a ham pizza

Client encrypts the new document’s index with the key
corresponding to its keyword

Document is then sent to the database

Keyword and encrypted-index pair is inserted in the addition
instance

114 / 144



Janus

How Janus inserts new documents:
For example: a ham pizza

Client encrypts the new document’s index with the key
corresponding to its keyword

Document is then sent to the database

Keyword and encrypted-index pair is inserted in the addition
instance

115 / 144



Janus

How Janus inserts new documents:
For example: a ham pizza

Client encrypts the new document’s index with the key
corresponding to its keyword

Document is then sent to the database

Keyword and encrypted-index pair is inserted in the addition
instance

116 / 144



Janus

How Janus inserts new documents:

Keyword Encrypted Indexes

pepperoni e(1)

pepperoni e(2)

pineapple e(2)

pineapple e(4)

sausage e(3)

ham e(4)

ham e(5)

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box

5 Pizza Box

117 / 144



Janus

How Janus deletes documents:

For example, the ham pizza we just added:

The client calculates its key part (the instructions to remove a
key from the ring)

The client then inserts the key part to the deletion instance

Keyword Key Part

Ham skham
1

118 / 144



Janus

How Janus deletes documents:
For example, the ham pizza we just added:

The client calculates its key part (the instructions to remove a
key from the ring)

The client then inserts the key part to the deletion instance

Keyword Key Part

Ham skham
1

119 / 144



Janus

How Janus deletes documents:
For example, the ham pizza we just added:

The client calculates its key part (the instructions to remove a
key from the ring)

The client then inserts the key part to the deletion instance

Keyword Key Part

Ham skham
1

120 / 144



Janus

How Janus deletes documents:
For example, the ham pizza we just added:

The client calculates its key part (the instructions to remove a
key from the ring)

The client then inserts the key part to the deletion instance

Keyword Key Part

Ham skham
1

121 / 144



Janus

How Janus searches documents:

For example, ham pizzas:

The client sends a search query with keyword (ham) and the
corresponding key ring (skham

0 )

Both instances are searched for the keyword

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1

122 / 144



Janus

How Janus searches documents:
For example, ham pizzas:

The client sends a search query with keyword (ham) and the
corresponding key ring (skham

0 )

Both instances are searched for the keyword

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1

123 / 144



Janus

How Janus searches documents:
For example, ham pizzas:

The client sends a search query with keyword (ham) and the
corresponding key ring (skham

0 )

Both instances are searched for the keyword

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1

124 / 144



Janus

How Janus searches documents:
For example, ham pizzas:

The client sends a search query with keyword (ham) and the
corresponding key ring (skham

0 )

Both instances are searched for the keyword

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1

125 / 144



Janus

How Janus searches documents:
For example, ham pizzas:

The client sends a search query with keyword (ham) and the
corresponding key ring (skham

0 )

Both instances are searched for the keyword

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1

126 / 144



Janus

How Janus searches documents:

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1

The server:
obtains the encrypted indexes from the addition instance
obtains the corresponding key parts from the deletion instance

can then remove the required keys from the key ring and
decrypt the indexes that it still has keys for

127 / 144



Janus

How Janus searches documents:

Keyword Encrypted Indexes

pepperoni e(1, sfadsa)

pepperoni e(2, affdsa)

pineapple e(2, lykuty)

pineapple e(4, lfggry)

sausage e(3, gregff )

ham e(4, ytrhgg)
ham e(5, yiperg)

Keyword Key Part

ham skham
1

The server:
obtains the encrypted indexes from the addition instance
obtains the corresponding key parts from the deletion instance
can then remove the required keys from the key ring and
decrypt the indexes that it still has keys for

128 / 144



Janus

How Janus searches documents:

Keyword Encrypted Indexes

pepperoni e(1)

pepperoni e(2)

pineapple e(2)

pineapple e(4)

sausage e(3)

ham e(4)
ham e(5)

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
5 Pizza Box

With this, the server can retrieve one document

129 / 144



Janus

How Janus searches documents:

Index Document

1 Pizza Box

2 Pizza Box

3 Pizza Box

4 Pizza Box
5 Pizza Box

Index Document

1 Pepperoni Pizza

2 Pepperoni Pineapple Pizza

3 Sausage Pizza

4 Ham Pineapple Pizza
5 Ham Pizza

130 / 144



Janus

After Janus searches documents:
The server has now learned the indexes matching a keyword and its
secret key.

For security any future insertions of that keyword will be
encrypted with a new key

key ring (skham) replaced by a new key ring(sknew−ham)
necessary because the server would be able to use an old key
ring to decrypt new entries and deletions

Previous searches will be cached

cached results are no longer encrypted

Keyword Indexes

ham 4

131 / 144



Janus

After Janus searches documents:
The server has now learned the indexes matching a keyword and its
secret key.

For security any future insertions of that keyword will be
encrypted with a new key

key ring (skham) replaced by a new key ring(sknew−ham)
necessary because the server would be able to use an old key
ring to decrypt new entries and deletions

Previous searches will be cached

cached results are no longer encrypted

Keyword Indexes

ham 4

132 / 144



Janus

After Janus searches documents:
The server has now learned the indexes matching a keyword and its
secret key.

For security any future insertions of that keyword will be
encrypted with a new key

key ring (skham) replaced by a new key ring(sknew−ham)
necessary because the server would be able to use an old key
ring to decrypt new entries and deletions

Previous searches will be cached

cached results are no longer encrypted

Keyword Indexes

ham 4

133 / 144



Janus

After Janus searches documents:
The server has now learned the indexes matching a keyword and its
secret key.

For security any future insertions of that keyword will be
encrypted with a new key

key ring (skham) replaced by a new key ring(sknew−ham)
necessary because the server would be able to use an old key
ring to decrypt new entries and deletions

Previous searches will be cached

cached results are no longer encrypted

Keyword Indexes

ham 4

134 / 144



Janus

After Janus searches documents:
The server has now learned the indexes matching a keyword and its
secret key.

For security any future insertions of that keyword will be
encrypted with a new key

key ring (skham) replaced by a new key ring(sknew−ham)
necessary because the server would be able to use an old key
ring to decrypt new entries and deletions

Previous searches will be cached

cached results are no longer encrypted

Keyword Indexes

ham 4

135 / 144



Janus

Privacy

Forward Privacy:
The scheme is forward private because it requires the use of a
forward private scheme
Backward Privacy:
The scheme has weak backward privacy, because:

The server only has access to the key ring during a search
query

The key ring used for a keyword changes after every search

So, deleted indexes remain hidden. However, the server is able to
tell which inserted entries were later deleted.

136 / 144



Janus

Privacy

Forward Privacy:
The scheme is forward private because it requires the use of a
forward private scheme

Backward Privacy:
The scheme has weak backward privacy, because:

The server only has access to the key ring during a search
query

The key ring used for a keyword changes after every search

So, deleted indexes remain hidden. However, the server is able to
tell which inserted entries were later deleted.

137 / 144



Janus

Privacy

Forward Privacy:
The scheme is forward private because it requires the use of a
forward private scheme
Backward Privacy:
The scheme has weak backward privacy, because:

The server only has access to the key ring during a search
query

The key ring used for a keyword changes after every search

So, deleted indexes remain hidden. However, the server is able to
tell which inserted entries were later deleted.

138 / 144



Janus

Janus’ Other Privacy Considerations

Janus is vulnerable to weaker adversaries.

Persistent - constantly monitors from the beginning

Late Persistent - constantly monitors from a given point in
time

Snapshot - only gets to view the database at one given point
in time

139 / 144



Janus

Janus’ Other Privacy Considerations

Janus is vulnerable to weaker adversaries.

Persistent - constantly monitors from the beginning

Late Persistent - constantly monitors from a given point in
time

Snapshot - only gets to view the database at one given point
in time

140 / 144



Conclusions

SE Scheme FP BP Other Considerations

Dual Dict. X
X

Two dictionaries takes twice
the space

Fides X With update
pattern

Two roundtrips increases com-
munication cost

Janus X Weak Vulnerable to weak adversaries

141 / 144



Acknowledgments

Thanks to Elena Machkasova, my senior seminar professor
and advisor

142 / 144



Discussion

Questions?

143 / 144



References

R. Bost. Σoψoζ: Forward secure searchable encryption, 2016

J. P., T. R., David Cash, Paul Grubbs. Leakage-abuse attacks
against searchable encryption, 2015

D. L., J. H., P. W., H. K., Kee sung Kim, Minkyu Kim.
Forward Secure Dynamic Searchable Symmetric Encryption
with Efficient Updates, 2017

H. D., H. Knebl. Introduction to cryptography: Principles and
applications. Springer Berlin Heidelberg, Heidelberg, Germany,
2007

O. O., Raphael Bost, Brice Minaud. Forward and backward
private searchable encryption from constrained cryptographic
primitives 2017

144 / 144


	Introduction
	Background
	Databases and Encryption
	Searchable Encryption

	Searchable Encryption Schemes
	Dual Dictionary
	Fides
	Janus

	Conclusions

