
Analysis and Genre Classification of Music in Digital Music
Libraries

Jacob Grinstead
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
grins008@morris.umn.edu

ABSTRACT
In what ways is digitally stored music classified by genre?
What analysis process is used to allow for these classifica-
tions to be made? What affects the analysis of music? These
questions are addressed in this research paper. This pa-
per focuses on content-based classification algorithms, or in
other words, algorithms that process the analysis results of
the music’s musical features like tempo or average loudness.
The overarching goal of this research is to see just how effec-
tive algorithms have become in terms of classifying music.
This problem is being addressed by the use of multiple algo-
rithms that analyze the music’s harmonics, patterns, stylis-
tics (tempo, beats, etc. . . ), and more to classify them into
different genres. These algorithms include Extreme Gradi-
ent Boosting, Extreme Random Trees, and a deep neural
network. This paper highlights the importance of musical
encoding in digital music and the effectiveness of different
algorithms used for classifying the music. The XGBoost
algorithm ended up being the best at classifying pieces of
music by genre.
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1. INTRODUCTION
Digital music libraries are electronic libraries where music

is stored. These range from music managers like Spotify or
iTunes to independent music libraries like those that music
organizations use to store their music. These digital libraries
are continuing to rapidly increase in number and size, many
of them offering hundreds of thousands of songs at least.
As is the nature of music, all of these songs have their own
distinct features that, when combined, can be used to clas-
sify them. The field of music analysis and classification is
also continuously growing. New algorithms, implementa-
tions, and general ideas are replacing older, less effective
versions as time goes on.

There are many challenges with using genre as a classifica-
tion in music. These challenges come in both technical and
practical forms. On the technical side, we see difficulties in
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improving the algorithms that are used to analyze and clas-
sify. Fortunately, time has been kind to these challenges as
continuous improvement is being made as time progresses.
The practical difficulties we see are in the subjectivity of
genres. Songs can be classified as many genres, and people
also disagree on these genres that songs belong to. These
practical challenges also relate to the importance of genre.

Using genre as a classification is important for many rea-
sons. The subjectivity of genres allows for people to identify
with them. For example, people culturally identify with jazz,
rap, country, etc... People also are already accustomed to us-
ing genres when searching for music - evident in both online
music stores as well as music collections in retail stores. Fi-
nally, people use genres more than any other criteria when
searching for music [7]. All of these reasons show why it
makes sense to continue classifying music with genres.

This paper provides an overview of musical terms and
theory, Essentia (a library used for analyzing music), and
machine learning. These are necessary to understand the
following topics.

How music is encoded impacts its representation and thus
impacts further analysis by algorithms. Section 3 covers the
majority of the analysis portion of the paper. It focuses
mainly on the basics of musical encoding, what the different
encodings of the same piece of music look like and how they
behave, and the results that these different encodings bring
to light.

After analysis follows classification. This paper goes into
a few content based algorithms that can be used to classify
genres of songs in digital music libraries in section 4. It cov-
ers Extreme Gradient Boosting (XGBoost), Extreme Ran-
dom Trees (ExtraTrees), and a deep neural network. Lastly,
this paper provides conclusions about these algorithms and
their importance in the field of musical analysis and classi-
fication.

2. BACKGROUND
In order to completely understand musical encoding and

the algorithms that are covered in the paper, it’s important
to know the basics of music and music theory. This back-
ground’s first subsection will cover these basics, and will
then go on to give a brief overview of Essentia, the library
used for the analysis of the music. Finally, it will cover the
basics of machine learning in preparation for the classifica-
tion algorithms in section 4.

2.1 Music Theory
Figure 1 has the majority of the music theory terms needed
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Figure 1: Some basic music theory terms [1]

Figure 2: An example of what sheet music looks
like. It also shows a difference between a slur and a
tie which are encoded differently, even though they
look similar [9]

to understand how music is represented. Music is primarily
made up of notes and rests, as seen in the top and bot-
tom left sections of Figure 1, where notes represent different
sounds, or pitches. Rests are where sound is not being made.
Notes range from letters A through G, most of which can
be sharp or flat - these symbols can be seen in the bottom
middle section. Clefs make up one of the left-most elements
on a musical staff, and relate to note range. Treble clefs rep-
resent higher pitches and base clefs represent lower pitches.
The musical key of the piece is indicated by the amount of
sharps or flats on the right side of the respective clef. Fig-
ure 2 has one flat on the right of the clefs, so we can get the
major key of F. That’s one example of a way an algorithm
can detect information about a piece given only the music.
Figure 2 also shows the subtle difference in appearance be-
tween a slur and a tie. The slur is shown to be extending
downwards farther than the tie. Slurs can be used on two or
more notes of the same or differing pitch (same or different
notes) and make the slurred notes be played in a smooth
and connected manner. Ties, on the other hand, can only
be placed on two notes of the same pitch (same notes) and
make the first note tied be played for the duration of the
two tied notes. For example, in Figure 2, the Violin I part
bows their instrument on each of the first two notes while
the Violin II part bows once for the first quarter note and
the following eighth note together.

2.2 Essentia

Essentia is an open-source library for music analysis [4],
and is comprised of many different algorithms that allows it
to do many different things. Some of these things are:

• Classify music based on computed audio features

• Detect the key of a song

• Estimate beat positions and tempo of a song

• Find if a song is happy, sad, aggressive, or relaxed
based on its note progression

• Find the similarity between different songs

It is used in a study by Benjamin Murauer and Gunther
Specht[8] to extract different musical features from songs.
They use these features in their classification algorithms to
help with the classification.

2.3 Machine Learning
Machine learning is a method of data analysis where com-

puter systems rely on patterns and inference to do specific
tasks rather than being given explicit instructions [10]. Al-
gorithms that use machine learning build and update models
based on sample data to make predictions without being ex-
plicitly programmed to do so [13]. There are many different
branches of machine learning as well as ways that these algo-
rithms learn. The one this paper will focus on is supervised
learning.

Supervised learning includes inputs and desired outputs
that both make up the training data, formed as a matrix.
In this matrix of training data, there are vectors known as
training examples, which are numerical representations of
data. Through iterations, these algorithms learn the func-
tion that can be used to predict outputs based on the inputs
of the training data. These outputs are labeled as desired,
so if the machine gets it incorrect, someone can change it to
the desired label and the program learns from that. This is
one of the key features of supervised learning.

Relating to the material in this paper, the three classifica-
tion algorithms covered in section 4 are machine learning al-
gorithms at their core. Each of these algorithms use machine
learning to build and predict mathematical models based on
a training set of 25,000 songs, but does so in a different way.
These ways are covered in their respective subsections. Rep-
resenting these inputs and outputs from the training data is
Table 1. It shows outputs from the pieces (used as inputs for
training) as features extracted by Essentia from the training
data.

3. MUSICAL ENCODING
Before seeing any algorithms that are used to analyze mu-

sic, it is important to understand musical encoding and what
effects it can have on analysis. There are two forms that mu-
sic can take when encoded. The first way is in image form,
otherwise known as sheet music - the music is scanned and
uploaded to a digital music library or database. This is
mainly used for sites that have sheet music on them like
MuseScore or online sheet music stores, where the music
is in sheet music form. Typically, these aren’t optimal for
analysis, as it’s much more difficult to analyze an image than
it is musical features. The second form is what this paper
will focus on. It is a content-based representation - the staff,
measures, notes, duration of notes, etc... [9]. This form takes



much longer to analyze than the image-based approach as
it takes much less time to scan a piece of music rather than
extracting features from it and analyzing them using a pro-
gram like Essentia. However, content-based representations
like this give rise to better analysis results, as we’ll see later
in Section 4. For example, finding how many times a singu-
lar note appears or finding parts where a particular melody
plays is easier and faster.

This second form is one that matters in most algorithms
that analyze music. Until music classification technologies,
like the algorithms covered in Section 4, improve, the cur-
rent best way to encode music in this form is to use a music
notation software like MuseScore or Finale. Programs like
these encode the music while it’s being written by the com-
poser in the software, and use what is known as a What
You See is What You Get model. All of these programs en-
code differently, though - a piece written in MuseScore will
be encoded differently than the same piece written in Fi-
nale. The music notation software used isn’t the only thing
that matters when it comes to encoding. Encodings can be
different based on how the composers create their music.
For example, two composers may use ties differently in their
corresponding compositions of the same piece, thus causing
differences.

Unfortunately, since composers create their scores differ-
ently, and there is no way for them to indicate their in-
tentions within the score nor is there a standard to follow,
encodings will always differ. However, one way to combat
this slightly is the MusicXML file. This file type can be re-
trieved from several different programs and therefore can be
a useful go between for comparison. We’ll see one way it’s
used in the following section.

3.1 Different Encodings of Music
To show that pieces of music that are visually the same

get encoded differently, we can look at the research done by
Néstor Nápoles, Gabriel Vigliensoni, and Ichiro Fujinaga[9].
They found the same piece (Beethoven’s Op.18 No.1 ) on
three different platforms where each instance of that piece
was generated by unique individuals using different software.
One was taken from MuseScore’s community website, and
using the MuseScore software, was exported from a .mscz
file to the MusicXML file format. The second piece was
taken from gutenberg.org, and using the Finale software,
was exported from a .MUS file to a MusicXML file. The
final piece was taken from tes.com, and using the Sibelius
software, was exported from a .SIB file to a MusicXML file.

With each of the encoded pieces, Nápoles, Vigliensoni, and
Fujinaga used the toolkit music21 and VIS framework for
their music analysis. In their analysis, they looked for dis-
crepancies between the three pieces. They looked for some-
thing they call note/rest onsets. By this, they mean looking
at two notes or rests in the same spot in each encoding of the
piece. These onsets are said to be matching when the notes
or rests are the same. They were able to tell discrepancies
when these onsets weren’t matching in their comparisons.
Figure 3 shows the discrepancies from the three compar-
isons of the encoded pieces. The vertical axis shows each in-
strument in the piece, and following from them horizontally,
the black areas represent where both pieces being compared
had matching onsets. On the other hand, the white areas
show the discrepancies, where the onsets didn’t equal each
other. It’s worth noting that the authors don’t discuss the

Table 1: Numerical features extracted from a song
with Essentia [8]

strengths or weaknesses of using onset matching compared
to other possible options for comparing encodings.

3.2 Results of the Different Encodings
It’s unfortunate, but the use of ”Encoding x vs Encoding

y” shows the authors randomized their encodings so they
couldn’t tell which encoding was for which piece. By doing
this, we are unable to draw conclusions about which encod-
ing provides the most consistency when compared with an-
other. However, from the results shown in Figure 3, we can
still make two observations. The first is that the same piece
encoded in three different ways will have somewhat similar,
but still different onsets. This tells us that depending on
how a piece of music is encoded, the classification may be
different since the encoding being analyzed is unique to that
piece within the music software used.

The second comes in the form of a question. What causes
the discrepancies that we see, exactly? The authors used
the graph as a guide for finding the discrepancies in the en-
codings. They were able to narrow it down to two main
factors: discrepancies caused by the music notation soft-
ware (i.e. MuseScore) and those caused by human error
(the composer of the new piece him/herself). From these
two categories, they found discrepancies caused by incom-
plete measures, non-closed ties, using slurs instead of ties,
use of repeated notes vs. musical symbol meaning to repeat
the note, and more. Whether these issues were the fault of
the software or the composer, they all caused the encoding
to be symbolically different, thus causing the discrepancies.
From these results, we can see that how pieces get encoded
is important to the results we may get from subsequent anal-
ysis or classification.

4. ANALYSIS AND CONTENT BASED AL-
GORITHMS FOR CLASSIFICATION

After seeing how encodings of digital music can affect how
they are represented, some algorithms that can be used to
analyze these representations will be covered. The following
three machine learning algorithms, XGBoost, ExtraTrees,
and a deep neural network, were used in a study done by
Benjamin Murauer and Günther Specht from Innsbruck Uni-
versity to classify genres of music [8]. In the study, 25,000
songs were used for training and 35,000 songs were used for
the testing of their algorithms. Each algorithm used super-
vised learning to train on the 25,000 pieces of music. The
majority of the songs came as standard mp3 files from a free
musical data set of 100,000 songs, created for purposes like



Figure 3: Summary of the discrepancies between
the three different encodings. The horizontal axis
represents where notes or rests were the same and
started in the same spot in the music (in black) and
where different notes or the same notes that started
at a different time in the music (in white) [9]

this study, that they then extracted musical features from
using Essentia. Table 2 shows the genres used in the train-
ing data set, but the artist, song title, and genre were taken
out of the metadata for the testing data set. The majority
of the tracks were 30 seconds long.

Instead of classifying the genre for each of the 35,000 songs
in the testing data set, they gave the probability of a song
being in a genre. For example, the chance of a song being
rock and roll might be .9, pop at .06 and hip-hop at .04
[8]. To see how accurate their algorithms are at predicting
genres, a predefined mean log loss equation was used:

L = − 1

N

N∑
n=1

C∑
c=1

ync ln(pnc) (1)

In this equation, N is the number of songs (35,000), C is
the number of distinct genres, ync is a binary label show-
ing that the nth sample belongs to a class c, and pnc is the
provided probability for that specific song. L, then, is the
mean log loss score. A log loss score measures the perfor-
mance of a classification model’s prediction accuracy. The
closer this score is to 0, the more accurate the predictions
are. Murauer and Specht matched the predicted genres with
the actual genre, using Equation 1. An example they use in
their paper is a song having the probabilities p(Rock)=.9,
p(Electronic)=.06, p(Hip-Hop)=.04, where rock is the se-
lected predicted genre since its probability is highest for that
piece of music [8]. Thus the pnc for this piece would be the
value for the Rock genre, which they don’t go into specifics
over either. Figure 4 represents this well, where the vertical
axis is the log loss score and the horizontal axis is the prob-
ability. For example, having a log loss of 1.5 is roughly a
probability of .27 (27 percent chance of correctly predicting
genre) or having a log loss of .5 is a probability closer to .6

Table 2: Distribution of genres for the training data
set [8]

(60 percent chance of correctly guessing genre).
Using the Essentia library to analyze the music, they

extracted numerical features from each song. A subset of
these features can be seen in Table 1. Some of the features
were categorical instead of numerical, take the tonal key
for example, and so these categorical features were trans-
formed into a form suitable for machine learning, known
as a one-hot encoding (see Murauer and Spechct’s study
for further details)[8]. After the features were extracted in
Essentia and approximately pre-processed, they were put
through three classifier algorithms: XGBoost, ExtraTrees,
and a Deep Neural Network.

4.1 XGBoost Classifier
The XGBoost classifier is a scalable tree boosting system

that is shown to be able to solve real-world scale problems
with minimal resource usage [3]. It was developed with ef-
ficiency in mind and uses a gradient boosting algorithm for
its classification [2]. This algorithm produces an ensem-
ble of weak prediction models and generalizes them with a
differentiable loss equation - like equation 1 [12].

4.1.1 Gradient Boosting
The purpose of gradient boosting algorithms is to support

predictive modeling problems for classification . They do
so by producing models based on decision trees that the
algorithm creates. These models predict and improve upon
errors of previous models to continuously better themselves,
using machine learning. The algorithm used for XGBoost
continuously produces models of different probabilities of a
piece based on the decision trees that were formed for that
piece. It does this to find the most likely probability.

The use of decision trees as their structure allows the al-
gorithm to go from observations in the branches of the trees
to conclusions in the leaves [11]. Gradient boosting also
implements a gradient descent algorithm to minimize the
loss between prediction models. This algorithm is used for



Figure 4: Graph of log loss function. The vertical
axis shows the log loss scores, and thus following a
stright line right and then down to the horizontal
axis once connecting with the function’s line, gives
the probability related to the log loss score [6]

finding the minimum of functions, which is what helps with
minimizing the loss.

4.1.2 XGBoost Results
As seen in Table 3, the mean loss log scores, L , for XG-

Boost resulted in a low of .82 and a high of .85. The param-
eter n_estimator represents how many decision trees were
used and max depth is the maximum depth each tree could
be. Thus, we can see that with fewer trees and a smaller
depth, the XGBoost classifier was more efficient at predict-
ing the correct genre of a piece at about .57.

4.2 ExtraTrees Classifier
The ExtraTrees classifier is a variant of the random forest

classifier. It uses an extreme random trees algorithm for
classification. Similar to the XGBoost classifier, ExtraTrees
uses averaging of the decision trees from the extreme random
tree algorithm to make its predictions of probability. By
using extreme random trees, it differs from other tree-based
classifiers in two ways [5]. The first is that it splits its nodes
by choosing a cutting point completely at random. This
means that each decision tree will have different nodes in
different locations within the tree. The second difference is
that it uses the whole learning sample rather than a subset of
it. In other words, the ExtraTrees classifier used all 25,000
pieces in the training data set to learn from, where other
popular tree-based algorithms would not.

4.2.1 Extreme Random Trees
Like XGBoost, this algorithm builds an ensemble of deci-

sion trees as models. However, it randomly chooses where
the splitting of the trees occurs. This random splitting gives
the extreme random trees algorithm a lower variance than
other tree-based algorithms like the random forest classifier.
In clearer words, the chances of the algorithm assigning a
different probability to a piece of music similar to a piece
of music used in the training set are lower. It’s important
to note, however, that this randomness increased its overall
bias as well. This means that when it’s compared to other
algorithms, the chance of some of its results being system-
atically prejudiced based on the machine learning process is

higher.

4.2.2 ExtraTrees Results
As seen in table 3, the mean loss log scores, L , for Ex-

traTrees resulted in a .92 where the number of trees was
either 1,000 or 2,000. Like XGBoost, the n_estimator pa-
rameter represents the number of trees used. We ignore the
balanced ExtraTrees classifier as none of the other runs were
balanced and it performed worse. A .92 mean log loss score
isn’t great, coming out to be around a chance of .5 for correct
classification.

4.3 Deep Neural Network Classifier

4.3.1 Neural Networks
Neural networks are part of one branch of machine learn-

ing. They are a set of algorithms that are designed to rec-
ognize patterns [10]. These patters are numerical in nature,
being stored in vectors, after being translated from its real-
world data. A common use of neural networks is to help with
classification. In other words, they help to group different
data inputs.

There are three general layers to a neural network, the
input layer, hidden layer, and output layer. In terms of a
musical classification example, the input layer takes in the
numerical feature data from Essentia. The authors used one-
hot encoders to turn the features like tonal key into numeri-
cal form. All of this input was then pushed through a hidden
layer, where these numerical features were transformed into
a specific output using activation functions. They were then
pushed out to the output layer, where one last function is
performed to normalize everything. This output is then used
to calculate the probability of the piece of music belongs to
a certain genre.

This paper [8] covers a deep neural network that was cre-
ated by Murauer and Specht as one of their classification al-
gorithms. The biggest difference between a neural network
and a deep neural network is that deep neural networks have
a greater depth. In other words, they have a greater number
of hidden layers that provide better results for classification.

4.3.2 Deep Neural Network
The deep neural network classifier that they designed had

several layers with functions that calculated the different
features extracted by Essentia. After moving between these
layers, it went to the final layer, what they called the soft-
max layer, where everything is normalized, or, transformed
into a range from 0 to 1. They then used these scores as
the pnc from the log loss function in Equation 1 to calcu-
late the final genre probabilities beloning to each piece. The
architecture of the deep neural network is shown in Figure 5.

4.3.3 Deep Neural Network Results
In Table 3, the deep neural network classifier is labeled as

DNN. We can see that the mean loss log score, L , for the
deep neural network is 1.44. This means that it had a fairly
low prediction accuracy.

5. CONCLUSIONS
Analyzing and classifying music in digital music libraries is

not an easy task. Based on Murauer and Specht’s study [8],
we can see from Table 3 the mean loss log scores, L, of the
three classifier algorithms. We’ll ignore the CNN classifier,



Figure 5: Architecture of the deep neural network.
FC denotes a fully connected layer with the different
functions in parentheses [8]

Table 3: Numerical features extracted from a song
with Essentia [8]

which is a convolutional neural network, because it isn’t an
algorithm that uses the content-based encodings. We see
that XGBoost is better at classifying music than ExtraTrees,
as it has a lower mean log loss score. ExtraTrees is then
shown to be better than deep neural networks. In a field
where neural networks are used heavily, this research says a
lot about the future prospects of classifying songs in digital
music libraries.

Based on the main study from Section 3 [9], we can infer
that since pieces are interpreted and thus encoded differ-
ently, there could be different mean log loss scores if the
pieces of music were analyzed with something other than
Essentia. Whether they would be higher or lower is impos-
sible to say. What we can say, however, is that the highest
chance of getting a correct genre classification of around 60
percent is not ideal. Thus, there is plenty of room for im-
provement. Until further improvement is made, however,
manual classification of genres will have to continue to be
done to music in digital music libraries.
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