
Evolution of Databases in Big Data

Jubair Hassan
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

hassa357@morris.umn.edu

ABSTRACT
The evolution of data and its increasing interconnections in
today’s world has every big company that is reliant on big
data looking for solutions that will sustain them for a good
period of time in the dynamic world of technology. It would
be bold to claim that no such solution exists since compa-
nies are clearly learning how to adapt to the fast changing
technology around them. This paper compares relational
databases and graph databases. The results suggest that re-
lational databases, as useful as they may be for simple data,
are not a good choice for handling big data and provides an
alternative to move on from it.

1. INTRODUCTION
Data is growing at an exponential rate right now. Inter-

net Data Center (IDC) predicts that the collective world-
wide data - both from cloud and from data centers, will
grow to approximately 175 zettabytes from the current 33
zettabytes. That is a compounded annual growth rate of
sixty-one percent [3]. This increase comes from a shift to
big data.

Big data refers to the large, diverse sets of information
that grow at ever-increasing rates. It encompasses the vol-
ume of information, the velocity or speed at which it is cre-
ated and collected, and the variety or scope of the data
points being covered. Big data often comes from multi-
ple sources and arrives in multiple formats. Traditionally,
there are three “V”s that characterize big data: the volume
(amount) of data, the velocity (speed) at which it is col-
lected, and the variety of the information. As we keep going
forward, big data is becoming more and more unstructured,
which is any data that does not have a particular structure.
It could be anything from texts to music, images, videos etc.

In order to store it efficiently, the databases that are used
currently need to be evaluated. Relational databases have
been the staple for data storage for the longest time. This
paper intends to look into why that is a challenge for han-
dling big data. To follow up, multiple database systems will
be evaluated using studies that were done earlier. It will
then conclude by showing how graph databases are better
at handling big data.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2019 Morris, MN.

Figure 1: An Example of a Relational Database

2. BACKGROUND

2.1 Relational Databases
A relational database is a collection of formally defined

tables that can be used to reassemble or access data in var-
ious ways without needing to reorganize the tables in the
database. Relational databases focus more on a straight-
forward way of representing data in tables. In a relational
database, each row in the table is a record with a unique
ID called a key. The columns of the table hold attributes of
the data, and each record usually has a value for each at-
tribute, making it easy to establish the relationships among
data points [8]. The tables can have primary keys. Primary
keys are a unique attribute in a table that identifies a cer-
tain row. In Figure 1, in the top left table, Name and Age
cannot be a primary key since there can be multiple stu-
dents with the same name and age. Therefore, Student ID
is the primary key of the table. Multiple tables are linked
by foreign keys. A foreign key references the primary key of
another table and thereby it is used as a cross-reference be-
tween tables. This is shown in Figure 1, where in the table at
the bottom, Student ID and Subject ID are the foreign keys.

Another key terminology of relational databases is join
statements. These are primarily used to combine data from



Figure 2: A Code Snippet of “Join” Statements [4]

Figure 3: The Result of the Code Snippet [4]

two tables. Figure 2 is an example of what join statements
look like. What it essentially is asking is to print out all the
instances of OrderID and OrderDate from the Orders table
along with the CustomerName from the Customers table
where the CustomerID in each table matches. Figure 3 is
the result of the join statement from Figure 2.

There are two types of scaling options in relational
databases: vertical and horizontal. When a database is
scaled horizontally, more machines are added and data is
distributed among those machines. The pros of this process
is that it is cheap, and since data is distributed, the load
is less on a single machine and the performance is better.
However, this data distribution is what makes joins harder,
because it might involve communication across servers. Ver-
tical scaling is quite basic: the machine is upgraded to a
more powerful one. The advantage of this option is that
it is a simple process that yields better performance. One
disadvantage is that it is more difficult to perform multiple
queries. There is also the cost efficiency factor to consider:
since upgrading to higher performance machines always ex-
pensive since most relational databases rely on proprietary
hardware [1].

Elasticity is a key concept in database technology which
essentially means the ability to “undistribute” data after the
distributions and the allocation of additional space have al-
ready taken place.

3. NOSQL DATABASES
NoSQL - not only SQL - is a blanket term for projects

that have been in development in recent years after investi-
gation into storage alternatives for relational databases. The
key difference between a NoSQL database and a relational
one is that a NoSQL database does not require a prede-

Figure 4: A Standard Graph

fined schema. If a student’s data, such as name, address,
parents, grades, etc., was going to be stored in a relational
database, the schema needs to be configured beforehand.
NoSQL databases can insert any sort of data dynamically
without any pre-defined schema.

There are different types of NoSQL databases. Some ex-
amples are: Cassandra, BigTable, CouchDB and Project
Voldemort. All of these have one thing in common, they ar-
dently reject the relational and object-relational models [12].
When trying to decide whether the NoSQL model is a better
fit for the current set of data at hand, one needs to look at
the following criteria: tables with a large number of columns,
each of them being used by only a few rows; attribute tables;
a large volume of many-to-many relationships; tree-like char-
acteristics; and the constant need of schema updates. If the
set of data meets several of these criteria, a NoSQL model
should be explored [10].

3.1 Graph Databases
Graphs are used to represent numerous types of data in

today’s world. Common examples are data from social net-
works and information networks. The type of graphs that
are most commonly used are directed graphs that are en-
hanced by their properties. To put it simply, these graphs
have a number of nodes, which are combined together with
binary relations known as edges [9]. Figure 4 is a sample
twitter graph map. Here, the Nodes are the Users: AOC,
Obama, Jubair and Nic. The vertices (relationships) are the
arrows which denotes who follows whom.

Any system that uses graphs to represent and store data
is called a graph database. As mentioned earlier, there are
multiple types of NoSQL databases. Graph databases are a
type of NoSQL database because of some particular proper-
ties and features that they have.

This paper focuses on a particular graph database - Neo4j;
and it is essential that two key properties of this database
are explored.



3.1.1 Native Graph Storage
When discussing native graph storage, it refers to the un-

derlying architecture of a database to store graph data. Any
graph database that has native graph storage is designed
explicitly to store and manage graph data. In Neo4j, graph
data is stored in files that each contains the data for a par-
ticular part of the graph, such as nodes, relations, labels,
and properties. The graphs are now traversed at a higher
efficiency rate given that data storage is divided [5].

Non-native graph storage, unlike the native storage, does
not use a system explicitly designed to store and manage
graph data. It uses some kind of general purpose data stor-
age systems like relational databases to store graph data.
Since the nodes and relations are not stored efficiently and
there is a disconnect between them, it would imply that con-
nected data have to be retrieved and reassembled for every
new query. For any sort of ceaseless operation that is going
to result in a big number of performance issues [5].

3.1.2 Native Graph Processing
A graph database that uses index-free adjacency has na-

tive graph processing. What that means is that each node
acts as an micro-index for all its nearby nodes, referring to
the ones adjacent to it. This is very efficient, as the query
time does not increase as the total size of the data grows
rather, it is proportional to the amount of the graph that is
searched [5].

An important aspect of graph database is that it always
prioritizes relationships between two nodes. Therefore, if
the reliance on indexes is minimized, traversing relationships
are much more efficient. For example, in Figure 4, it is a
very simple task to find out who is connected to whom with
index-free adjacency, but this would not be the case with
non-native graph processing where multiple indexes would
be used to connect the nodes, making it more expensive.

4. DATABASE SYSTEMS IN BIG DATA

4.1 Relational Databases in Big Data
Relational databases are great for simple data types; they

represent data well on a small scale. When it comes to big
data, however, it is a completely different story. The number
of interconnections in big data is constantly growing. As a
result, when we try to query data in a relational database, it
takes multiple join operations and a longer time than usual.
In today’s world, companies handling big data would move
away from a system without hesitation if it keeps taking up
more than a reasonable amount of time to retrieve data. It
would not be a bad idea to vertically scale the database.
But when we are scaling vertically, it is often limited to the
capacity of a single machine. Scaling beyond that capac-
ity often involves downtime and comes with an upper limit.
Then, there is the other option: to scale it horizontally. The
problem with this is relational databases are not designed
for scaling of any type [7].

Allen [7] talks about how achieving scalability and elas-
ticity is a big challenge for relational databases. Relational
databases were designed in a period when data could be kept
small, neat, and orderly. That is just not the case anymore.

Yes, to stay in business, all database vendors say they scale
big; but, if the functions are properly examined, the fun-
damental flaws start to become more evident. Relational
databases are typically designed to run on a single server to
preserve table mapping integrity and to prevent distributed
computing problems. This design requires users to buy big-
ger, more complex, and more costly proprietary hardware
with more processing power, memory, and space if a system
needs to be scaled. Improvements are also a concern because
the company must endure a lengthy acquisition process and
because the system must often be taken offline to make the
change. All of this is taking place while the number of users
continues to grow and the potential for risk in the under-
supplied resources continues to grow [7].

To address these issues, relational database suppliers have
made a number of improvements. Nowadays, the evolution
of relational databases permits them to use more complex
architectures using a“master-slave”model where the“slaves”
are additional servers which can handle parallel processing,
replicated information, or sharded data to reduce workloads
on the master server. Sharded data is data that has been
divided and spread out among multiple servers - something
that happens when you scale a database horizontally. Nu-
merous enhancements to relational databases, such as shared
storage, in-memory processing, improved replica use, dis-
tributed caching, and other recent and ‘innovative’ archi-
tectures certainly have had a positive impact on relational
database scalability. Nonetheless, if they were examined
properly, it would not be difficult to find a single point-of-
failure. For instance, Oracle RAC, a “clustered” relational
database with a cluster-aware file system, still has a shared
disk subsystem below. The high costs of these systems is
quite restrictive oftentimes, as the set-up of a single data
warehouse can easily go north of a million dollars. The up-
grade of relational databases also comes with major conces-
sions. For example, to maintain performance, the horizon-
tal scaling of data across a relational database is based on
predefined queries. Additionally, relational databases are
not designed to scale back down. It is almost impossible
to “undistribute” this information after the distribution and
the allocation of additional space [7].

4.2 Graph Databases in Big Data
When relational databases are mentioned, it should be

visualized as numerous structured tables. But when graph
databases are discussed, the base starts from something like
in Figure 4. Then it evolves, as the interconnections grow
between the data and the volume of data keeps increasing,
and it ends up looking like Figure 6.

4.2.1 A MySQL-Neo4j Comparative Analysis
Vicknair et al [12] did a comparative analysis where they

ran queries in two different type of databases namely MySQL
and Neo4j. How this study worked was that it had twelve
databases of each type set up, and each database stored a
DAG that consisted of some number of nodes and edges. A
directed acyclic graph (DAG), as shown in Figure 8, is what
provenance is stored as usually. Provenance refers to lin-
eage. If the provenance of a data item was to be traversed,



Figure 5: A Graph Database [2]

Figure 6: Generated Database with Sizes [12]

it would mean to look at the description of the data as well
as how was it made.

The databases had just enough information about the
structure of the DAG as well as any data that could be
connected to the node objects, otherwise known as payloads
of the DAG. Since the payloads comprised of random inte-
gers, 8K strings and 32K strings, the databases (Figure 7)
that were generated (twelve MySQL and twelve Neo4j) were
from all random graphs.

Queries were developed to simulate some of the sort of
queries used in the provenance systems. There were two
types of queries: structural and data queries. Structural
queries refer to the DAG structure only and the data query
refers to the payload data.

The queries were run ten times each on each database, col-
lecting the runtime in milliseconds (ms). The longest and
shortest times were dropped to ensure that the timings were
not affected by system activity or caching. The rest of the
eight results were averaged.

Neo4j performed significantly better in the three struc-
tural queries that were performed as can be seen in Figure
9. The three structural queries were:

• S0: To return all orphan nodes.

• S4: Determine the number of nodes that can be reached
by traversing the graph to a depth of 4.

• S128: Determine the number of nodes that can be
reached by traversing the graph to a depth of 128.

The data queries showed the superiority of the relational
databases in handling such queries in integer payload databases

Figure 7: A Sample DAG [12]

as Neo4j treated all data as text when querying, conversions
had to made before any sort of comparisons.

Four databases of 8K and 32K were used to do full-text
searches with character payloads. The results were quite
intriguing. The researchers used random data with just let-
ter at the beginning and then used data with spaces that
matched data from the real world. The first time around
MySQL outperformed Neo4j by a good margin. When the
data reflecting real world scenarios were queried, even though,
at a smaller scale, both performed almost equally, Neo4j per-
formed dramatically better as the size of the data continued
to grow.

4.2.2 Migration from a Relational Database to a Graph
Database

Unal et al [11] looked into the relative usefulness of mi-
grating data from MySQL, a relational database, to Neo4j,
a graph database.

The reason they chose to look at MySQL was because it
is one of the most popular open-source relational database,
meaning it had reliable and scalable (to an extent) relational
database applications. The MySQL Community Server was
used as a relational database management system for stor-
ing the application data. It should not come as a surprise
that they chose Neo4j, since it is the most popular graph
database management system, as well as one of the most
popular NoSQL database systems.

The data model that was chosen to migrate from a rela-
tional database to a graph database was a legal document
system. The system had eighteen data entity types with
three levels of hierarchy for each type. The figure shows
the structure of the legal document system data model.
There are cross-relationships between different documents
and data types besides the more simple parent-child rela-
tionships.

This particular data model was designed as a relational
model. Each table had a large volume of data, and the self-
referencing tables, along with the tree-hierarchy meant that
traversing through the data caused a decreased performance.
Self-referencing tables are tables whose primary key is also



Figure 8: Query Results [12]

Figure 9: The Relational Model [11]

its foreign key, and that creating a loop which can be quite
difficult to traverse.

The same model was taken and converted to a graph
model. There were some key transformations:

• Foreign Key references became edges between nodes

• Each table became a node label

• Each data item in the table became a node instance

Figure 10 shows the relational model and Figure 11 shows
the graph model that results from the transformation pro-
cess. Since this was conducted in Turkey, the words were
foreign and have been translated for clarity.

The data migration was a two step process: the first step
was to extract the metadata and table data from MySQL
using Schema Crawler (a tool to comprehend and output
the schema of a database) and Java SQL Library, and the
second step was to import it to Neo4j, using its own API.
Figure 12 shows what changed through the transformation
process from the relational side to the graph side.

To compare the performance of the two databases, all
laws related to the “Tax Legislation Set” (translated) were
queried. It took two join statements in MySQL to perform
the query. As discussed earlier, executing join statements
takes more time, therefore data was retrieved ten times

Figure 10: The Graph Model after the Transforma-
tion [11]

Figure 11: Relational Side vs Graph Side [11]



faster on the graph database.

In general, in the graph model, data was accessed:

• SIX TIMES faster when there were a thousand records.

• THIRTY TIMES faster when there were ten thousand
records.

The researchers concluded that it was ideal to evaluate
the type of data before choosing a database using some ba-
sic criteria. Graph databases are highly recommended in the
case of data having numerous interconnections and a sys-
tem which would go through constant updates as relational
databases must have a predefined schema and it would be
inconvenient to update the schema every time.

4.3 The Hybrid Approach
An interesting approach is proposed by Vyawahare et al [13]

where the idea is to use both a relational and graph database.
This is so that each database can fill in any of the weaknesses
that the other might have. The process would be something
like this: first data would be loaded, then it will go through
a classifier to determine which kind of database it would
be stored in the relational database if structured and graph
database if unstructured. Since the query language being
used is that for graph databases, there is an additional layer
for the relational side which is a query translator that helps
load the data into the relational database if it is structured.
After that, the hybrid interface is updated. It enables the
user to then View, Delete, Update and Exit.

This is the proposal and even though it is interesting, it
is still yet to be tested.

5. CONCLUSION
Big data is becoming more common for big companies.

Customers are becoming more used to getting information
filtered and presented to them as they wish in a matter or
milliseconds. Companies with the foresight and will to ex-
pand understand one thing: pulling the necessary informa-
tion out of big data is the next step. Relational databases
have long been the staple for anyone and everyone trying to
store data. It still is, for structured data. But with data be-
coming more and more unstructured for big companies, it is
not logical to adhere to the same statement. Eighty percent
of the data in the world is projected to be unstructured by
2025 [6].

Graph databases have proven to be quite the replacement
for that matter. After comparing the performances of both
relational and graph databases, most results indicate that
graph databases seem to be doing better at handling big data
than relational databases. Therefore, any company hoping
to expand in the future are highly recommended to incorpo-
rate graph databases from the start.

6. ACKNOWLEDGEMENTS
The author would like to thank Prof. Hussam Ghunaim

and KK Lamberty for the advice and feedback on the topic.

The author would also like to thank Clara Martinez for her
feedback and advice on the writing and language.

7. REFERENCES
[1] Database scaling. https://hackernoon.com/database-

scaling-horizontal-and-vertical-scaling-85edd2fd9944.
Accessed = 2019-11-12.

[2] Graph database picture.
https://www.cbronline.com/enterprise-
it/software/graph-technology-data-standby-every-
fortune-500-company/. Accessed =
2019-11-12.

[3] Idc data prediction.
https://www.networkworld.com/article/3325397/idc-
expect-175-zettabytes-of-data-worldwide-by-2025.html.
Accessed = 2019-11-18.

[4] Join statements.
https://www.w3schools.com/sql/sqljoin.asp.Accessed =
2019 − 11 − 12.

[5] Neo4j properties. https://neo4j.com/blog/native-vs-
non-native-graph-technology/. Accessed =
2019-10-22.

[6] Prediction on unstructured data.
https://solutionsreview.com/data-management/80-
percent-of-your-data-will-be-unstructured-in-five-
years/. Accessed =
2019-11-22.

[7] Relational databases are not designed for scale.
https://www.marklogic.com/blog/relational-
databases-scale/. Accessed:
2019-10-27.

[8] What is a relational database?
http://https://www.oracle.com/database/what-is-a-
relational-database/. Accessed:
2019-10-27.

[9] J. Pokorný. Conceptual and database modelling of
graph databases. In Proceedings of the 20th
International Database Engineering &#38;
Applications Symposium, IDEAS ’16, pages 370–377,
New York, NY, USA, 2016. ACM.

[10] S. Tamane. Non-relational databases in big data. In
Proceedings of the Second International Conference on
Information and Communication Technology for
Competitive Strategies, ICTCS ’16, pages 134:1–134:4,
New York, NY, USA, 2016. ACM.

[11] Y. Unal and H. Oguztuzun. Migration of data from
relational database to graph database. In Proceedings
of the 8th International Conference on Information
Systems and Technologies, ICIST ’18, pages 6:1–6:5,
New York, NY, USA, 2018. ACM.

[12] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen,
and D. Wilkins. A comparison of a graph database
and a relational database: A data provenance
perspective. In Proceedings of the 48th Annual
Southeast Regional Conference, ACM SE ’10, pages
42:1–42:6, New York, NY, USA, 2010. ACM.

[13] H. R. Vyawahare, P. P. Karde, and V. M. Thakare. A
hybrid database approach using graph and relational
database. In 2018 International Conference on
Research in Intelligent and Computing in Engineering
(RICE), pages 1–4, Aug 2018.


