
Physical Swarm behavior using evolved Behavior Trees

Liam R. Koehler
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

koehl238@morris.umn.edu

ABSTRACT
Behavior trees are a modular and human readable structure
for modeling agent behavior. Their tree structure allows
them to be evolved using Genetic Programming. Creating
agents via evolution is desirable because it allows the cre-
ation of custom agents with minimal human input. This pa-
per will discuss the methods, findings and results of Evolv-
ing behaviour trees for swarm robotics by Jones et al [1],
wherein behavior tree controllers for a swarm foraging task
are evolved using genetic programming.

Keywords
Behavior Trees, Genetic Programming, Agent Behavior, Swarm
Modeling, Foraging

1. INTRODUCTION
Many automated processes contain the concept of an agent.

Agents are autonomous, self-contained units that react to
the world in a convincing and predictable way. Agent mod-
eling is the task of creating the behaviors and control struc-
ture the agent will use to navigate its environment. Agents
appear in a wide range of industries, including video games
and robotics. Agents are special because they fully encapsu-
late desired behavior into self contained units. This allows
the agent to operate independently without relying on an
overhead control structure.

A novel use of agents can be found in the task of swarm
modeling. Swarm modeling is the process of taking a simple
agent and duplicating it many times, allowing many copies
of the same agent to operate together in a shared space.
This is called a homogeneous swarm. Swarms are interesting
because of the possibility that complex behaviors can be
created out of simple agents. This a phenomenon that is
observable in the natural world: bees, termites and others
are all naturally occurring swarms with complex behavior.

Behavior trees (BTs) is an agent modeling schema that
grew out of the video-game industry, but is now also used
in the robotics world. Behavior trees are a hierarchical tree-
based system for modeling agents. Behavior trees can be
used to model individual agents in a swarm. This represents
the first use of behaviors trees for this task [1].

An appealing way to create agent behaviors is through the

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, October 2019 Morris, MN.

use of genetic programming (GP). GP is the process of evolv-
ing programs based on a supplied language, and a supplied
task. This paper will cover the evolution of behavior tree
controllers for foraging swarm robots in Evolving behaviour
trees for swarm robotics by Jones et al [1]. Foraging is the
task of collecting an item, such as food, and returning it to
a home region. Foraging is a common swarm-modeling task
because it mimics the natural behavior of many bio-swarms,
such as ant-colony foraging.

Section 2 will provide an in-depth and comprehensive over-
view of behavior trees, including their structure, function,
and history. Section 3 will examine genetic programming
through the lens of evolving behavior trees. Section 4 will
synthesize these topics by examining the methodologies and
results of Evolving behaviour trees for swarm robotics by
Jones et al [1].

2. BEHAVIOR TREES
Behavior trees are useful for agent modeling because they

break agents down into simple pieces which can be assembled
as desired. As an example, let us take a foraging insect, such
as a termite. At a high level, we would like our termite to
search for food until it is carrying food at which point it
should walk home and drop food.

The bold elements represent agent behaviors. These are
well-defined, actionable behaviors that the agent can per-
form in any given moment. The italic element represents an
interaction between the agent and the world such as, am I
currently carrying food?

To correctly model this agent we need to create a con-
trol structure that allows the agent to switch between these
behaviors as its environment changes (such as discovering
food). Behavior trees, as described in this section provide
such a control structure. Figure 1 shows a behavior tree
that captures this termite behavior. This example behavior
tree will be referenced as the structure of behavior trees is
explained.

2.1 Structure
Behavior Trees are represented as a directed tree, made

up of action nodes and composition nodes. Action nodes
represent actionable behaviors for the agent, and the com-
position nodes represent the control structure for running
these behaviors. The root node of a BT is unique, and con-
ventionally has a single composition node child. Figure 1
represents the root node as ω.

A behavior tree is evaluated from top to bottom, filtering
down through the composition node control structure, and

Figure 1: A sample behavior tree, showcasing a sim-
ple termite controller

ticking various behaviors until all the relevant nodes have
been tried. Then, evaluation will begin again at the top, and
a new selection of behaviors will be ticked. A tick represents
one cycle of a behavior. Behaviors such as move forward
need to be ticked multiple times to make meaningful forward
progress.

Creating a behavior tree from scratch comes in two steps:
first, create the set of composition and action nodes available
to your system. This is called the node set. Second, place
these nodes into a proper behavior tree structure. It should
be noted that the same node set can be recombined in an
infinite number of ways. For example, our termite node set
(the set of nodes shown in Figure 1) could be reused to
create behaviors for an ant, a bee, or with some re-labeling,
a dog playing fetch. This modularity and re-usability is an
advantage of a behavior tree system.

The remainder of this section will go over the structure
of a behavior tree, including behavior nodes, composition
nodes, and memory capabilities (called blackboard). Special
attention will be paid to the composition node set, which is
relatively static compared to action nodes.

2.1.1 Action Nodes
The leaves of a behavior tree are called action nodes, and

represent the desired behaviors of the tree. The following
action types exist:

• Behavior : Proper action nodes represent agent behav-
iors, such as “Search for Food” or “Walk Home”. When
reached, the action node will be ticked. Figure 1 rep-
resents those nodes as rectangles.

• Blackboard : Blackboard nodes are “false behaviors”
that sit at the leaves of the tree, and are used to query
the internal memory of the agent, as discussed later
in this section. Blackboard nodes come in the form
of questions, such as “Is Home?”. Figure 1 represents
blackboard nodes as ovals.

Action nodes are tricky because they are typically prob-
lem dependant. Behaviors such as search for food (from
Figure 1) make no sense in the context of a self-driving-
car agent for example. For this reason, it may be helpful
to think of action nodes as pointers to behavior functions.
Each behavior node simply contains a reference to the func-
tion it should call when its reached. This encapsulates the

idea of both proper behavior nodes, which perform an ac-
tion, and blackboard nodes, which return a Boolean result.
It also reinforces the idea that BTs are nothing more than
a structure for picking behaviors. The behaviors themselves
still have to be supplied by some outside system.

2.1.2 Composition nodes
Composition nodes are contained within the tree, and

represent the control structure for a BT. While behaviors
change based on the problem, composition nodes are signifi-
cantly more static. Composition nodes can be thought of as
the language for a behavior tree. Different languages exist,
but they all share commonalities.

Composition nodes are somewhat abstract, which can make
them hard to understand at a glance. It can be helpful to
think of composition nodes as replacing logical constructions
in a traditional programming language. Concepts such as if,
then, else, repeat are all achievable using the following node
types: [2]

• Select : Select nodes will try each child from left to
right, moving control to the first successful child. A
select node will return false if all children fail. This can
be thought of as an if/then/else block. The select node
is used to pick a child subtree, in order of importance.
A select node will return Success if it can find a valid
child to run, and Failure otherwise. Figure 1 represents
Select nodes as ‘?’.

• Sequence: Sequence nodes will try each child from left
to right, ticking each child until a child fails. Sequence
nodes can be used to run multiple behaviors in se-
quence. Sequence nodes can also be used to create
protected behaviors, which can only be run if the be-
haviors to its left succeed. For example, in Figure 1,
drop food will only run if is home is true, insuring that
the termite only drops its food when it is home. A
sequence node will return Failure if a child fails, and
Success otherwise. Figure 1 represents sequence nodes
as ‘>’.

Select and sequence nodes make up the backbone of a
decision node implementation, but additional control types
might be provided. These auxiliary control types are used to
more conveniently represent complex behaviors. Examples
include always-true, which simply evaluates to true without
an associated query, or random-select, which will randomly
select from its children.

2.1.3 Tree Traversals
BT implementations come with the concept of a tick. A

tick is a small, measured time interval, often tied into a
system clock. Each tick, evaluation of the BT begins at
the root node, and continues through the composition nodes
until all relevant composition nodes have been queried.

When an action node is reached during traversal, it is
ticked by its parent. Each action node will handle this tick
request independently. For example, when the Search for
Food task in Figure 1 is ticked, it will fire off subtasks to
begin a search procedure in the area.

When an action node is ticked, it returns a tick state to
its parent. This state is used by the composition nodes to
continue the behavior tree traversal.

The following behavior node states exist: [4]

• Running : The behavior node will return running if it
is still processing its current behavior. This is used in
scenarios where a behavior cannot be interrupted.

• Success: The behavior node will return success, and
set its internal state to running, unless it is unable to
handle the behavior for some other reason.

• Failure: Failure is a fallback state, and represents a
behavior that is unable to be run at that time.

In each case, an iteration of the tree should conclude with
a number of ticked action nodes. The set of ticked nodes
determines the agents behavior in that tick.

2.1.4 Blackboard Memory
A certain amount of memory is reserved for use by the

BT. This is referred to as the blackboard. Blackboard values
are specific memory slots (variables), which the behavior tree
can query during traversals. These blackboard values can be
affected by the outside world as well as by agent activities.
The blackboard represents not only internal memory, but
also the communication medium between the BT and the
outside world.

In Figure 1, blackboard node types are represented as
ovals. These nodes come in the form of questions. For
our termite, those questions are is home? and carrying
food?. is home? is an example of querying the world: the
termite doesn’t decide it’s home, but rather checks its lo-
cation against its knowledge of where home lies. carrying
food? however represents a memory location directly set
by the tree. When food is found, the food should be picked
up, and the value of carrying food? should be set to true.

3. GENETIC PROGRAMMING
Genetic programming (GP) is a subset of artificial intel-

ligence research that involves evolving programs. Genetic
programming works by taking a set of randomly generated
programs and applying evolutionary pressure. Evolution is
achieved by iteratively combining existing programs, rat-
ing the new programs, and a filter which allows the best
rated individuals to propagate from one generation to the
next. After a sufficient number of generations, successful ge-
netic programming will result in agents who have hopefully
“learned” how to perform a supplied task. Genetic program-
ming is desirable because it allows the creation of unique
agents with little human intervention. [5]

While it is a mistake to take the comparison too far, it
is convenient to use biological evolution as a proxy to talk
about genetic programming techniques. Much of the termi-
nology used in genetic programming is co-opted from biolog-
ical evolution. Terms such as generations, children, parents
genes and lineages are all more or less equivalent to their bi-
ological counterparts. Genetic programming can be thought
of as a sped-up version of biological evolution, where pro-
grams are evolved instead of organisms.

When applying genetic programming to behavior trees,
programs are represented as BTs. This means that the
structure of each behavior tree can be thought of as its ge-
netic code; the composition and action nodes, and their or-
dering within the tree structure define the individual. Each
BTs rating is determined via a simulation.

The tree structure is amenable to evolution because trees
are recursive, and resilient against breaking during the com-

bination or mutation stage. In other words, changes can
be applied to the tree without breaking the fundamental
structure of the tree. This can be compared against a pro-
gramming language such as Java, where very small changes
are very likely to cause a compilation error. Since BTs are
already trees, they are especially convenient to evolve.

3.1 Fitness
Fitness is the numeric measure of how we judge the via-

bility of a program during evolution. Fitness can always be
thought of as the “rating” or “quality” of a program. Sort-
ing programs by their fitness is referred to as the fitness
heuristic. What constitutes a fit individual depends on the
problem. For this reason, defining a fitness heuristic is an
important part of applying genetic evolution to a problem.
For the purpose of evolving behavior trees, the fitness of an
individual agent can be thought of as the performance of the
agent in a simulation.

A good fitness heuristic has a relatively smooth gradient.
This property allows even small improvements to the pro-
grams to be rewarded, and insures that the fittest programs
are surviving. Large plateaus or other deformities could
cause fit programs to be overshadowed by inferior ones.

3.2 Mutation, Crossover and subtree-shrink
For genetic programming to progress, new children need to

be created each generation. These children should be based
on their parents in such a way that the desirable genetic
material is passed on. The tree-structure of behavior trees
allow this process to occur in various ways, without breaking
the structure of the tree itself. These methods are outlined
below.

Crossover is the process of combining existing programs
to create new programs. This is done by taking a sub-tree
from one BT, and splicing it onto another BT from the same
generation. This procedure can be thought of as combining
the genetic information from two parents, and passing that
genetic information onto a new child program.

Alongside crossover, there is the concept of mutation. Mu-
tation begins by taking a clone of one BT, and applying one
or more modifications to its structure. This can be thought
of as asexual reproduction. For the purpose of evolving be-
havior trees, modifications come in the form of node swaps.
A node swap is the process of replacing any given node on
the tree with another node that fits. For example, a mu-
tation of Figure 1 could be replacing the uppermost select
node with an always fail node.

The example mutation above would cause the termite to
enter a failure feedback loop. The termite would no longer
be able to move or collect food. This is a convenient exam-
ple because it shows that mutations and crossover are not
strictly beneficial. Just like in nature, many mutations are
in fact harmful, or fatal. Genetic programming will address
this failure by rating our termite very badly, which will most
likely prevent that agent from passing on its genetic mate-
rial.

A common problem in evolved tree structures is uncon-
trollable tree-size growth. This is a multifaceted issue that
is beyond the scope of this paper to address. The impor-
tant thing to realise if that the mutation and crossover of
trees has a tendancy to trend towards larger and larger trees.
Subtree-shrink is used to combat this issue. Sub-tree shrink
is a form of mutation where instead of preforming a node-

Figure 2: Foraging, taken from [1]

swap, a node is cut from the tree, including all of its children.

4. EVOLVING BEHAVIOUR TREES
This section will combine the concepts of behavior trees

and genetic programming in a concrete example. In Evolv-
ing behaviour trees for swarm robotics by Jones et al [1],
the researchers evolve behavior trees for a robotics swarm-
modeling task.

4.1 Swarm robotics and Foraging
Swarm robotics is the field of research focusing on small,

autonomous robots interacting with each other, often on
a large scale. The inspiration for swarm-robotics comes
from colony-representative species such as bees or termites
[6]. Swarm robotics uses the emergent properties of swarms
to create useful robotic behaviors out of relatively simple
agents.

The bio-inspiration for swarm behaviors, such as ant colonies,
showcase these emergent properties well. Ant colonies are
able to create vast underground nests, harvest massive amounts
of food, and defend against enemies much larger than an in-
dividual ant. These feats are a cooperative consequence of
many “dumb” ants working together in a swarm. [7].

Rubenstein et al. introduced the concept of a Kilobot [3].
A Kilobot is a small, physical robot which represents a sin-
gle agent in a swarm. Each Kilobot is equipped with two
vibrating motors, which allow the bot to turn and move
forward. Light patterns projected from an overhear light-
source are used by the researchers to create pseudo-physical
environments, where different light patterns denote differ-
ent regions. An upwards facing photo detector attached to
each Kilobot detects these light patterns, and provides lo-
cal location sensing. This light projector setup is shown on
the left side of Figure 2. The combination of these physical
properties allow the Kilobots to navigate their physical en-
vironments in a swarm-like way. These traits make them a
valuable tool for modeling and studying swarm behavior.

A common task for modeling swarm behaviors is forag-
ing, which is the task of moving away from a home area,
collecting food and returning home. This task is interesting
because it includes many agent interactions, and because
it encourages cooperation among the swarm as opposed to
conflict. Jones et al. use a photo-projector to create phys-
ical foraging environments for the kilobots. This foraging

Node Success if Failure if Running if

Composition nodes
Sequence: Tick until failure N Ch S 1 Ch F 1 Ch R
Select: Tick until success 1 Ch S N Ch F 1 Ch R
Repeat: Repeat subtree 1 time 1 Ch S 1 Ch F Ch R
Always Succeed Always Never Never
Always Fail Never Always Never

Behavior nodes
Move forward 1 tick t - 1 never t - 0
Move left 1 tick t - 1 never t - 0
Move right 1 tick t - 1 never t - 0
Always Succeed Always Never Never
Always Fail Never Always Never

Table 1: Action nodes, based on [1]

environment is shown on the right side of Figure 2. The
foraging environment consists of three concentric circular
regions: a nest region with radius 200mm is followed by a
100mm wide air gap. The rest of the accessible region is the
food region. A Kilobot that enters the food region instantly
picks up food, and a Kilobot that is carrying food when it
enters the nest region instantly drops the food. Kilobots are
roughly rated on the amount of food they collect in a fixed
period of time. An efficient Kilobot will move rapidly back
and forth betwen the nest and food regions.

4.2 Why behavior Trees
Jones et al. chose to model Kilobot behavior using be-

havior trees. This represents a novel use for behaviors trees.
To the authors’ knowledge, behavior trees have never been
used to model swarm behaviors. The authors motivate their
choice of agent modeling solution in the following way:

[Behavior trees] are human readable. They are
hierarchical, all subtrees are themselves behaviour
trees, encapsulating a complete behaviour that
can exist within a larger tree, offering possibili-
ties for modularity and building block reuse. Fi-
nally, they can be created and optimised using
the techniques of Genetic Programming. [1]

Essentially, the limited set of inputs, and the constrained
way in which a BT must be built allows genetic programming
to search within the space, and find successful solutions for
the BT construction. Additionally, the BT maintains its
human-readable characteristics, which allows the agents to
be qualitatively evaluated as well as tested in both real and
simulated environments.

4.3 Structure
Part of the complexity of designing and implementing a

new genetic programming solution is deciding which compo-
nents to supply the algorithm. This is a non-trivial process.
Deciding which components to include and which to exclude
is not always obvious. For for the purpose of evolving BTs,
the input components are built using action nodes, com-
position nodes, and blackboard values. These elements are
combined and trained using genetic programming. This sec-
tion will outline the behavior tree structure that Jones et al.
used to create Kilobot behavior.

4.3.1 Action Nodes

Name Access Description
motors W 0=off, 1=left, 2 = right, 3 = forward
scratchpad RW Arbitrary state storage
detectedfood R 1 = Light sensor showing food region
carryingfood R 1 = Is carrying food
density R Density of kilobots in local region
∆density R Change in density
∆distfood R Change in distance to food
∆distnest R Change in distance to nest

[]

Table 2: Composition nodes, based on [1]

Several of the action nodes for the behavior tree are laid
out in the upper section of Table 1. Recall that action nodes
are explicit, actionable behaviors. For a Kilobot, these ac-
tionable behaviors consist of three movement based behav-
iors: move forward, move right, and move left. These be-
haviors are provided so the Kilobot can navigate its envi-
ronment. The Kilobot is also provided with two auxiliary
behaviors: instant fail, and instant succeed. These behav-
iors do not cause any actionable behavior in the Kilobot,
but instead only exist to pass a Boolean value from the leaf
to its parent.

As explained in section 2, nodes in a tree can return one of
three states when queried. These columns are displayed as
Success if, Failure if, Running if. The rows can be read as:
N = any, Ch = child, F = Failure, S = Success. For exam-
ple, the sequence node is read as; Fail if any child fails, Run-
ning, if 1 child running, otherwise Success. This information
matches the description of the sequence node in section 2.
This information is provided for all composition nodes, and
all action nodes. Using this information will be invaluable
for reading the constructed behavior tree in Figure 4.

4.3.2 Composition nodes
The composition nodes for the behavior tree are laid out

in the upper section of Table 1. The sequence and select
nodes operate as described in 2.1.2. Three additional com-
position nodes are also provided.Always fail and Always suc-
ceed operate very similarly to their action node counterparts.
They are simply used to prematurely evaluate a subtree to a
Boolean value. The Repeat node is used to repeat a subtree
n times. This node type is utilized by the best evolved Kilo-
bot to repetitively move left until the change in the distance
to the nest is less than some threshold.

4.3.3 Blackboard
The blackboard values available to each Kilobot are listed

in Table 2. Access for each value is denoted as either write
(W), read (R), or RW (read write). RW values can be
thoughts of as proper memory cells: these are values that
the Kilobot can read and write, and use to store informa-
tion about the world. R values however, should be thought
of as a communication path from the outside world. Infor-
mation such as carrying food or detected food is read from
the blackboard using blackboard nodes, but is not directly
set by the Kilobot.

Three delta values are supplied. These are used to track
the change in various properties. The blackboard can be
queried to gain these values. The best Kilobot use ∆dist food
and ∆distnest to determine whether it is facing its respective
region, after a series of turns.

4.4 Evolution

Figure 3: Tracked Kilobot paths, modified from [1]

A population of 25 simulated Kilobots were evolved for
200 generations. Each individual represents a unique behav-
ior tree controller. Fitness was determined by the amount of
food gathered over the length of a 300 second simulation, and
by the size of the behavior tree. As discussed in section 3.2,
uncontrollable tree growth is a problem that genetic pro-
gramming faces. This is partially addressed by penalizing
programs which grow too large. After evolution took place,
the fittest individuals were tested in the physical environ-
ment described in Section 4.1.

Fitness rose very quickly after the first generation, as can
be seen in Figure 5. The authors note that this is because a
Kilobot that does nothing more than move in an arcing line
is still able to gather a small amount of food, by randomly
meandering in and out of the food region. The tracked paths
of the Kilobots for generation one and generation 200 are
shown in Figure 3. This graphic clearly shows that evolution
took place, and that the Kilobots were able to learn efficient
tracking back and forth between regions.

The authors note that the best lineage performed signif-
icantly better than the average lineage. This can be seen
clearly in Figure 5 – the top line of the fitness box-plot rises
well above the average. The authors suggest that this is be-
cause the program isn’t exploring the space very efficiently,
and that the average Kilobot was getting stuck in a local
minima.

4.5 The fittest evolved behavior tree
The fittest behavior tree is studied in some depth by Jones

et al, who simplified and analyzed the evolved behavior tree.
This is one of the great advantages of evolving a behavior
tree based system. Even after the complexity of evolution,
the resulting agents are still potentially understandable by

Figure 4: The best kilobot behavior tree, adapted from [1]

humans. Evolved behaviors can be pulled apart, analysed,
or tweaked to the satisfaction of the researchers. This ac-
cessibility is a powerful tool.

The simplified code for the fittest Kilobot is shown in Fig-
ure 4, reconstructed into a behavior tree. The tree contains
three predominant branches, each of which can be consid-
ered as a sub task. Each subtree sits as a child to a single
select node. Recall that a select node is used to pick one
child to run. In other words, each tick, exactly one sub task
will be performed.

• The left branch contains a sequence node. Recall that
sequence nodes are used to run a number of tasks in
a row, until a failure is reached. This sub task can be
interpreted as“move forward, until in the food region”.

• The middle branch is also made up of tasks stacked
under a sequence node. This sub task can be inter-
preted as “move left and forward until out of the food
region”.

• The rightmost branch is also made up of tasks stacked
under a sequence node. This sub task can be inter-
preted as “move left until turned towards the food re-
gion”.

The combination of these three sub tasks allows the Kilo-
bot to travel efficiently back and forth between the food and
the nest regions, as showcased in Figure 3.

4.6 Results
Figure 5 shows the results of the simulation of evolved

Kilobots. The graph shows the best individual fitness across
all 25 evolutionary runs. A box plot is provided every 5
generations. The main takeaway is that evolution did occur.
As supported by Figure 3, the kilobots were able to “learn”
how to efficiently navigate between the home region and the
food region.

It is also interesting to note how the Max fitness line in
Figure 5 rises well above the average. This shows that the
best Kilobot performance was significantly better than the

Figure 5: Results, taken from [1]

average. This is also supported in 3, where it can be seen
that even by generation 200, some Kilobots were still mean-
dering inefficiently.

5. CONCLUSIONS
Behavior trees are a powerful and simple structure for

modeling agent behavior. Their modular and human read-
able structure makes them appealing for swarm modeling
tasks. As shown in Evolving behaviour trees for swarm robotics
by Jones et al [1], behavior trees can be evolved using ge-
netic programming. The evolved behavior tree is able to
succeed at a physical foraging task. Due to behavior trees
human readable structure, evolved behavior trees can also
be studied and tweaked after evolution has occurred.

Acknowledgments
I would like to thank Nic McPhee, Kristin Lamberty and
the students of Senior Seminar 2019.

6. REFERENCES
[1] S. Jones, M. Studley, S. Hauert, and A. Winfield.

Evolving behaviour trees for swarm robotics. In
Distributed Autonomous Robotic Systems, Springer
Tracts in Advanced Robotics, pages 487–501. Springer,
3 2018.

[2] jschomay. Behavior Tree. https:
//hexdocs.pm/behavior_tree/BehaviorTree.html,
2018. [Online; accessed 06-December-2019].

[3] M. Rubenstein, C. Ahler, and R. Nagpal. Kilobot: A
low cost scalable robot system for collective behaviors.
2012 IEEE International Conference on Robotics and
Automation, 2012.

[4] Wikipedia. Behavior tree — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.
php?title=Behavior\%20tree&oldid=922038836, 2019.
[Online; accessed 15-November-2019].

[5] Wikipedia. Genetic programming — Wikipedia, the
free encyclopedia.
http://en.wikipedia.org/w/index.php?title=

Genetic\%20programming&oldid=921953038, 2019.
[Online; accessed 15-November-2019].

[6] Wikipedia. Swarm robotics — Wikipedia, the free
encyclopedia.
http://en.wikipedia.org/w/index.php?title=

Swarm%20robotics&oldid=921430950, 2019. [Online;
accessed 03-November-2019].

[7] E. Şahin. Swarm robotics: From sources of inspiration
to domains of application. Swarm Robotics Lecture
Notes in Computer Science, page 10–20, 2005.

