An Exploration of Machine Learning Cryptanalysis of a
Quantum Random Number Generator

Abenezer Monjor
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
monjo003@morris.umn.edu

ABSTRACT

Random number generators (RNG) are important for sta-
tistical sampling, computer simulation, cryptography, and
other applications where producing unpredictable results is
crucial. Due to the deterministic nature of these RNG, ap-
plications that depend upon unpredictability, such us cryp-
tography may be exposed to adversarial attack. Quantum
Random Number Generators (QRNG) are inherently ran-
dom because of the quantum mechanics core, which makes
quantum systems a great source of entropy. In this paper,
we will walk through how by using a predictive machine
learning analysis, we can see the influence of deterministic
noise in multiple stages of an optical continuous QRNG. The
machine learning model used in the investigation detects in-
herent correlation if the deterministic sources are prominent.

Keywords

Cryptography, neural network, activation function, adver-
sarial attack

1. INTRODUCTION

There have been numerous stories about NSA putting
a backdoor in RSA cryptography back in 2014. Which
would allow the NSA to determine the output of the random
number generator used in the RSA protocol. According to
Schneier[4] breaking random-number is basically like break-
ing the entire security system because badly designed slow
algorithms gives a backdoor for an attack. Due to that there
is a need to have pretty good secured random number gen-
erators to secure computer systems.

Random number have been used in many applications.
For example, they were used in cipher encryption which was
used during the second war, and now a days, they are used
to securely browse the internet, and for many other applica-
tions in cryptography (eg. Smart Energy Grid, e-banking,
internet trade, prepaid cards etc...). They are also used
outside of cryptography in fields like statistical sampling,
simulation, gaming, and gambling.

There are different ways of generating random numbers
[5], two well known approaches to generate random numbers
are by using a software algorithm, also known as Pseudo-
random number generators (PRNG) and by using Hardware

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

UMM CSci Senior Seminar Conference, November 2019 Morris, MN.

random number generators (HRNG). PRNG is a mathe-
matical formula that produces a sequence of numbers that
are determined by the initial input known as the seed. In
contrast HRNG generate sequences of numbers from a non-
deterministic physical process, which makes them truly ran-
dom.

One type of HRNG is quantum random number genera-
tors (QRNG), which is the main subject of this paper. We
are going to explore a paper written by Nhan Duy Truong,
Jing Yan Haw, Syed Muhamad Assad, Ping Koy Lam, and
Omaid Kavehei titled Machine Learning Cryptanalysis of a
Quantum Random Number Generator [6]. In their paper
they use predictive machine learning in different stages of
an optical QRNG to investigate the impacts of determinis-
tic classical noise. They use a machine learning model to
recognize patterns in a given sequence of randomly gener-
ated numbers to investigate how classical entropy affects the
unpredictability and randomness of a vacuum fluctuation
based QRNG(see Haw, et all’s article [2] for details). They
applied the machine learning model in two situations. The
first only measured the classical entropy coming out of the
QRNG, and the second measured the combined effect of the
quantum and classical noise, to investigate how much the
classical entropy affects the QRNG’s unpredictability and
randomness.

2. BACKGROUND

To understand the paper [6] there are some key concepts
that need to be elaborated. These concepts include random-
ness, random number generators, correlation, adversarial at-
tack, and neural networks.

2.1 Randomness

Randomness can be defined as a lack of predictability in
a sequence of events. Some times things are unpredictable
because we don’t understand the outcome of physical prop-
erties (eg. rolling a dice), but some times randomness can
exist because some things are truly random. The type of
randomness that is the result of complexity and our igno-
rance of the system is called classical randomness which is
deterministic, whereas the result of randomness caused by
quantum mechanics is called quantum randomness, which is
non-deterministic.

For instance, soccer referees flip a coin for the teams to
decide which goal they will attack in the first half of the
match, and it is believed that flipping coin is something
random, but it is not truly random. Because if we would
have known how the coin started to flip, the forces acting

on it, and if we are brave enough to calculate that, we could
have predicted the outcome. Therefore we can say flipping
a coin is random because of the hidden variables that we
didn’t take into account. This can be an example of classical
randomness, which is deterministic. An example of a non-
deterministic type of randomness is a randomness extracted
from radioactive decay, which is a process of unstable atomic
nucleus losing energy. The time frame of a particular atom
decay is completely random and it is impossible to predict
when a single atom will decay.

2.2 Entropy

Entropy is a measurement of a system’s disorder. In
statistics entropy can be defined as a logarithm of differ-
ent ways of arrangements a system can be configured. It
can be described as follows:

S:*ipzh’lpz

where P; is the probability of each outcome. Entropy
has nothing to do with the actual values of an outcome,
but it measures the relative probabilities of the outcomes.
Therefore it is maximum when all the outcomes are equally
likely and it is always greater than or equals to zero.

2.3 Random Numbers Generators

Random number generators (RNG) are devices that gen-
erate a sequence of a random number that can not be pre-
dicted better than a guess. There are generally two kinds
of RNG: Hardware random number generators (HRNG) and
pseudo-random number generators (PRNG). HRNG are non-
deterministic, meaning events on the same input can result
different behavior in different runs, which makes them to be
more secure than PRNG. Whereas PRNG are determinis-
tic, which means given a particular input always results in
the same output. One good example of HRNG are quantum
random number generators (QRNG).

2.3.1 Pseudo-random Number Generator

Pseudo-random numbers generator is a deterministic al-
gorithm to generate a sequence of numbers that have an
approximate property of random numbers. Pseudo-random
number generators are not truly random, but their random-
ness is enough for some applications. When sequences are
generated there are many sequences that can not occur. Al-
though they are not perfectly secure, they are practically
secure and used for some applications in cryptography and
simulation.

Generating pseudo-random numbers start by inputting a
seed, which can be generated from a current-time in millisec-
onds or from a measurement of noise, into a deterministic
algorithm. After inputting the seed, the algorithm uses the
output of the seed as the next seed and repeats the process
as many times as needed. The deterministic algorithm [3],
for example, can be based on number theory (i.e linear con-
gruential generators, they produce random numbers from a
recursive formula). See article [1] for more details.

Znt+1 = (axn +¢) mod m,n >0

where x; is the ith digit in the random number sequence,
M > 0 is the modulus, 0 < ¢ < m is the increment and 0 <
a < m is the multiplier.

PRNG can also be generated from a linear shift feedback
registers (LSFRs), by using right shift operation and an
XOR operation, A basic LFSR doesn’t produce very good
random numbers [3]. To have a better random number, a
larger LESR with a lower bit is should to be used.

There are many advantages of using PRNG over hard-
ware random number generators. Some of the reasons are
PRNG are much faster than true random number genera-
tors, and same sequence of generated random numbers can
be repeated upon demand, which is very helpful to look for
errors in calculation that rely on random numbers.

2.3.2 Quantum Random Number Generator

Quantum random number generators (QRNG) are devices
that uses quantum random properties to generate true ran-
dom numbers. As opposed to deterministic RNG, where
randomness is the result of uncertainty [3].

QRNG are very important in cryptography, but they also
have some limitations. Some of their limitations are they
are slow compared to PRNG, adding an external device is
not usually convenient, and it is hard to detect if there are
failures or errors.

The type of QRNG that is used in the paper [6] is an op-
tical quantum random number generator that has two seg-
ments: entropy source and post-processing procedure [6].
The entropy source produces raw randomness as a result of
a physical process. This raw randomness contains both clas-
sical and quantum noises [6]. The noise that comes from the
classical entropy is from devices such as analog to analog
converters and peripheral measuring devices. To produce
pure randomness the classical entropy has to be removed
from the main random bit stream since it is untrusted [6].
The post-processing block is what is used to extract pure
quantum randomness from the device.

2.4 Correlation and Auto-correlation

Correlation is a statical association between two random
variables, which is used to indicate a predictive relationship
that can be used in practice.

Auto-correlation measures similarity between a variable’s
current value in a given time-serious with its lagged version
over-successive time interval. A time-series is a measure-
ment of the same variable over time. Auto-correlation is
useful to detect if a given sequence of numbers are not ran-
dom and it can be expressed as the following formula, where
Y1, Y2, ..., YN are the given measurements. X1, Xo,..., X is
the given time period.

SN Y = Y)(Yigs — V)
Zi\]:1(yl - }_/)2

TR =

2.5 Neural Network

To find a correlation between the generated random num-
bers by using only classical noise versus using both the quan-
tum and classical noise, neural network can be a great tool.
Neural network are inspired by the structure of the human
brain. As our brain has neurons that are connected with
each other by synapses, Neural networks have nodes that
are connected to edges and each edge has a weight based on
its influence on another node.

Neural network have multiple layers. Between the first
and last layers, there could be different layers, which are
called hidden layers: each of them distilling a particular
feature.

o e e
@

et Lagar

'

Hiddan Layars Dutpat Layer

Figure 1: Example of neural network containing
three hidden layers.

Figure 1 shows a neural network model that has three hid-
den layers. Each of the nodes in a layer updates their values
by taking a weighted sum of the values of the nodes in the
previous layer. The weights are assorted to the connection
between the layers shown as lines on figure 1. Training a
neural network amounts to finding good values for those
weights (see section 2.6). A weight can either dampen or
amplify the influence of one node upon another.

On the paper [6] a neural network is used to forecast what
the next output bit of the QRNG is going to be. The class of
neural network used in [6] is called recurrent convolutional
neural network and it is a combination of recurrent neural
network and convolutional neural network.

2.5.1 Convolutional Neural Network

Convolutional Neural Network (CNN) are one class of
feed-forward neural networks. Feed-forward neural network
are a simple type of neural network where information moves
only in the forward direction. Which means information
moves forward from the input and it goes to the hidden lay-
ers, and after a series of calculations of events it results in
output.

CNN are well known for their use in analyzing visual im-
agery [6]. They were inspired by the biological process of
the visual cortex. As individual neurons in the cortex re-
spond only if there are stimuli in the receptive field, each
neuron in one layer goes to the next layer only if it receive
an input from the previous layer. Most of the time CNNs
are composed of sets of layers that can be grouped by their
functionalities called convolutional layers.

2.5.2 Recurrent Neural Network

Recurrent Neural Networks (RNN) are a powerful class of
neural networks that can be used to find potential patterns
of a long sequences of generated random numbers. They
generate outputs using both the current input and values
from the previous computations. Which means the output
of the results are used as an input for the current step.

RNNs have been very successful in speech recognition and
language modeling [6]. They work similarly to our brain
works when we watch a movie. For example if we want to
classify what is going to happen at every point of a movie,
we have to go back and understand what happened in the
previous scenes, because we can’t make a good guess of what
is going to happen just by watching one scene of a movie.

RNNs addresses this same issue.

Long-short term memory (LSTM) is one of RNN’s archi-
tectures, which is capable of learning long-term dependen-
cies. In the neural net that is used to make predication in
the QRNG, there may be hidden long term dependencies
that are not obvious to human brains, and their goal is to
detect those dependencies, in order to increase the ability of
RCNN to make good predication [6].

2.5.3 Recurrent convolutional neural network

As its name implies recurrent convolutional neural net-
works (RCNN) are the combination of recurrent neural net-
work and convolutional neural network. [6] RCNN are im-
plemented by feeding features extracted by convolutional
layers into RNN [6]. The neural net used in [6] has two
convolutional layers and one LSTM (see fig 3). The convo-
lutional layers look for features in the input, and the LSTM
detect longer and shorter term dependencies, together the
architecture is designed as effective as possible to predict
the next term in a random sequence, by looking at previous
values.

2.6 Model Training

In the paper we are analyzing the QRNG generates a se-
quence of integers. The neural network is given 100 of those
integers and tries to predict the next one. Before the neural
network can make predictions it is trained. Training consists
of using test data to iteratively improve the performance of
the neural network.

The weights associated to the edges in a neural network
are used in the calculation that the neural net performs to
make its predictions. If the weights are adjusted then the
prediction can change. There is a technique (which we won’t
cover in this paper) for updating the weights. Each data-
point in the training set must have a target value known
as a label. A data-point is provided to the neural network
and the prediction is compared to the label. The differences
between the prediction and the label are then used to ad-
just the weights in a way that makes the prediction a little
bit more likely to be more accurate. This is repeated for
thousands or millions of times until, hopefully, the neural
network becomes good at making predictions.

color color_red | color_blue |color_green
red 1 0 0
green 0 0 1
blue 0 1 0
red 1 0 0

Figure 2: Example of one hot encoding.

2.6.1 One Hot Encoding

One hot encoding is process of converting categorical vari-
able into a form that could be provided to the model as an
input. For example in fig 2 we can classify the colors red,
green, and blue, which are categorical data and convert them
into numeric vectors where red represents the vector [1, 0,
0], green [0, 1, 0], and blue [0, 0, 1].

N neighboring13-bit integers, N=100

1
LT T

n classes

[T1

1) \ oA
OOKK &

Conv1D-1 AURURL

64\ |

ConviD-2

Pa123uuod-A||ngd
0) 5 I S 5 I N
indaing

Figure 3: Figure modified from [6] recurrent convolutional neural network (RCNN) model: The 100 one hot
encoded 13 bit integers goes to a serious of convolutional kennels, the output is then generated by a buffer
and goes to the LSTM, the output of that goes to two fully-connected layers that output one single one-hot

encoded 13 bits integer

3. PAPER DETAIL

The main objective of Duy Truong, et all’s paper is to use
a neural network model to predict what the next generated
random number is going to be when there is a quantum
source versus when there is only classical noise. The neural
network used for this purpose is RCNN, and it is used to
find potential patterns in the generated random numbers at
the different stages of the QRNG. The model is trained with
N data value to guess what the next generated number is.
The proportion of accurate output values of the model is
denoted by P,,; whereas the probability of what the most
likely out is denoted by P,, which is a baseline strategy for
making guess by observing the most common number to be
put out by the QRNG. The P,,; is compared against P,.

Classical Entropy (b) ((s] (d)
f i ~
| @ i P J_L LPF 1
s (a)i ‘ R e (€)(i) L (d)i) ‘
| Quantum Entropy § b)(ii) T bit g
Laser i LPF 2 b ADC —>&
()i X L

um o X Micer (Dvcor @) veo2
Low Pass Filter (LPF) Band Pass Filter

Figure 4: Data acquisition stages in the entropy
blocks of the QRNG. Stage (a): (i) detector 1 and
(ii) detector 2; Stage (b): (i) difference and (ii) sum
of the photo-currents; Stage (c): difference of the
photo-currents demodulated Stage (d): Low pass fil-
tering of the signals from (c). Picture taken from [6].

3.1 Data acquisition stages of the QRNG

The QRNG has two main parts. The first part is an en-
tropy source, which produces raw randomness that contains
both classical and quantum noise. The second part is post-
processing procedure, where the pure quantum randomness
is extracted from the combined classical and quantum en-
tropy.

(a) [Py P> Py
[T Pw EPw<Py
= 6 L M N
g
2
=
8
g4
&
2 |
0 N v "\ v Vv
< ~
0?}' oq} N & &J’ z\(\ob \‘3‘(&
s F S
® - E—
2 [
z
g 1.0]
3
S
I —
05 HH ‘
00 P g & & N ’ 3 < <
I N Q S & & N N3
& S

Figure 5: Prediction performance of the deep learn-
ing model. (a) P, surpasses P, in 4 out of 8 stages
(Diff, Demod 1, Demod 2 and LPF 1) in scenario 1
(classical) by more than 2 standard deviations (not
shown on the plots) and (b) only 1 out of 8 stages
(Demod 1) in scenario two (quantum and classical).
Fig taken from [6]

To see how much the classical noise affects the QRNG,
data is collected in different stages of the QRNG. As in-
dicated on Figure 4 on the first stage (Figure 4 a), there
is a laser beam that is projected on a half silvered mirror.
Which results in the light beam going vertical half of the
time and horizontal half of the time. The photo detectors
(Fig. 4(a)(i) and a(ii)) detects the light intensity of the pho-
tons and convert them in to electric current. In stage b the
currents are combined together (which will eventually result
in the random values generated by the machine). Then the
wave gets passed through a band pass filter, which only lets

__ 0 {cXi) Demodulation 1
3
o
= _ol
c
k=)
SRR S SN
© —4f
3
Q
o
275
0 2000 400 600 800 1000
Delay (Sample)

__ ol (e)(ii) Demodulation 2
o
o
Q
<2
c
s
E ___
© -4
5]
3
2
E -6
0 200 400 600 800 1000
Delay (Sample)

Figure 6: A sample of stage taken from [6] to show auto-correlation of data-sets in scenario 1 (blue), where
only electrical noise is present and scenario 2 (pink), where both electrical and quantum noise are present.
Dashed lines show the theoretical standard deviation of truly random 5 million samples.

(c)(i) Demodulation 1

Power (dB)
PR
D N o O O 9=
C ©o O o 6 o

o
o

4060 80100 120

Frequency (MHz)

0 20

Power (dB)

110t (e)(ii) Demodulation 2

100
90
80
70
60

S0, ,
0 20

40 80 80 100 120

Frequency (MHz)

Figure 7: Sample of stage taken from [6] to show power spectrum of datasets in scenario 1 (blue), where only
electrical noise is present and scenario 2 (pink), where both electrical and quantum noise are present.

(d)(i) LPF 1

~300 -200 —100 O 100 200 800

Xi

o0.06f (d)(ii) LPF 2

-300 -200 -100 O 100 200 400

X

Figure 8: Sample of a stage taken from [6] shows the different in probability distribution when there is only
classical noise (blue) versus when there is both classical and quantum noise (pink) in the QRNG.

frequencies between two cutoff to pass through. On stage
(c) those cutoffs are demodulated at 1.375 GHz and 1.625
GHz. In stage (d) the signal is passed through a low-pass
filter to cut off the high frequencies. Those signals goes to
an analogue digital converter which produces a single 16 bit
integer. The 16 bit integers are latter converted into a 13 bit
integer, because one hot encoding a 13 bits integer in much
easier than one hot encoding a 16 bit integer.

3.2 Data set and model training

Ten million 13-bit integers are used in the model. The
first 5 million are used to train the model. The remaining 5
million integers are used in 5 test-sets.

The data is 10 million 13-bit integers considered as a se-
quence. 101 of those integers are used as a single ”data
point”: (X1, ..., X101) Think of those 100 values as being
determined by a sliding window that is advanced by 3 steps.

The next data point is also therefore (X4, ... , Xi04), and
SO on.

For any given data point, the first 100 integers are one-
hot encoded and act as the input to the neural net. The
remaining integer is considered to be the target (or label)
that the neural net is trying to predict. The convolutional
layers attempt to find local features that will help in the
prediction and the LSTM layers are included to help detect
longer-term correlations.

The 100 13-bit integers are encoded as one hot vectors
(see section 2.6.1). As it is shown on Figure 3 the one hot
vector goes to two convolutional layers. The output of the
second convolutional layer is stored in a buffer in order to
the subsequent LSTM layer to have access to outputs from
previous data points. The output the LSTM is connected
to 2 fully connected layers. The two layers output a one hot
encoded single 13 bit integer value.

3.3 How the system is evaluated

When Py is compared with Pp,;, the P, corresponds to the
highest probability of a single integer in the probability dis-
tribution of the integers that are extracted from the QRNG.
In figure 3 we see an example from the LPF1 stage, the
most common integer is -26 as can be seen from the location
of the peak. The value has the highest success rate (1.37%).
This value is compared with P,,; in section 4 and figure 9 in
particular. If there happens to be correlation between the
generated numbers P,,; will give a better accuracy result
compared to P,.

4. RESULTS

In the first scenario, where only the classical noise is con-
sidered, the RCNN model demonstrated its ability to find
correlations between the generated numbers. Whereas in
the second scenario, where both the classical and quantum
noises considered, the RCNN model shows a considerable de-
crease in predicting what the next generated random number
is [6]. This can be seen in figure 9, Where the x-axis showing
the different stages of the QRNG, and the y-axis shows the
probability of success. As mentioned we will be comparing
Py and P,,; and discuses in details below.

4.1 Classical Entropy

In the first experiment, only a classical source of entropy
was used. The RCNN model shows P,,; was better in 4 out
of 8 stages than the P, in guessing what the next generated
random number is going to be [6]. As it is shown on the
diagram 5 fig a, we can see P, is greater than P, in the
stages Diff, Demod 1, Demond 2 and LPF 1.

Fig 6 - 9 show the probability distribution, the auto cor-
relation, and power spectral density (PSD) fot the different
stages of the QRNG for both scenarios (purely classical vs
both classical and quantum). The power spectral density
graph shows the strengths of the frequencies in a signal. As
an analogy, if Figure 7 were showing the PSD for a piece
of music, then the peaks would indicate the loudest tones
(frequencies) in the score.

For the measurements in both scenarios, the blue color
shows when there is only classical noise, and the pink color
indicates when there is both classical and quantum noise.
Since we can’t explain all the probability distribution and
autocorrelation for each steps in the QRNG in this paper,
we look at only a few stages. We can see from the sample
probability distribution diagram Fig 8, as seen when there
is only classical noise there is a pretty tight distribution,
whereas when there is both classical and quantum entropy
we see a wide probability distribution meaning there are
more possible outcomes that can be generated when there
is both quantum and classical noise than when there is only
a classical noise in the system.

Also in stage b (corresponds to Diff on Fig 5), where
they have the difference of the detectors, we can see the
RCNN model is better than P,, in capturing patterns and
predicting the next outcome. Again in stage c(corresponds
to Demod 1 on Fig 5), P, makes great prediction which
is almost six time better than the P;. The auto-correlation
(Fig 6) plots show repetitiveness, due to that the P, is
able to make a really good predication.

4.2 Classical and Quantum Entropy

When both quantum and classical noises were considered,
there was a huge decrease in the ability of the RCNN model
to determine what the next random number would be. Out
of the 8 different stages in only one of them, the RCNN
model was better at predicting what the next outcome would
be. As it can be seen from the Fig 5 b only in one of the 8
stages (on stage Demod 1) the Py, is better at determining
the next outcome than P,.

As we can also see from the results of the auto-correlation
Fig 6, there is not much of noticeable repetitiveness when
there is both classical and quantum noise in the system. An-
other way of looking at the result is by looking at the PSD
Fig 8, where again we see a cyclic repetitiveness when there
is only classical noise whereas when there is both classical
and quantum noise in the system, there is a decrease in the
cyclic repetitiveness. Due to the decrease in the autocorre-
lation, PSD, and probability distribution, the P,,; was not
able to make good prediction when there is both classical
and quantum noise.

S. CONCLUSIONS

By applying a machine learning algorithm on [6], Duy
Truong, et all’s were able to find very little pattern in the
various stages of the QRNG. In only one situation was the
machine learning prediction, P,,; substantially better than
just guessing the most commonly observed integer, Py

Acknowledgments

I would like to thank Peter Dolan and KK Lamberty for
their advice and feedback.

6. REFERENCES

[1] A. Belsare, S. Liu, and S. Khatri. Gpu implementation
of a scalable non-linear congruential generator for
cryptography applications. In Proceedings of the 23rd
ACM International Conference on Great Lakes
Symposium on VLSI, GLSVLSI '13, pages 89-94, New
York, NY, USA, 2013. ACM.

[2] J. Haw, S. Assad, A. Lance, N. Ng, V. Sharma, P. Lam,
and T. Symul. Maximization of extractable randomness
in a quantum random-number generator. Physical
Review Applied, 3(5), May 2015.

[3] M. Herrero-Collantes and J. C. Garcia-Escartin.
Quantum random number generators. Reviews of
Modern Physics, 89(1), Feb 2017.

[4] B. Schneier. Schneier on security, Nov 2007.

[5] M. Stipcevic. Quantum random number generators and
their applications in cryptography. Advanced Photon
Counting Techniques VI, May 2012.

[6] N. D. Truong, J. Y. Haw, S. M. Assad, P. K. Lam, and
O. Kavehei. Machine learning cryptanalysis of a
quantum random number generator. IEEE

Transactions on Information Forensics and Security,
14(2):403-414, Feb 2019.

