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Abstraci—Random number generators (RNGs) that are
crucial for cryptographic applications have been the subject of
adversarial attacks. These attacks exploit environmental infor-
mation to predict generated random numbers that are supposed
to be truly random and unpredictable. Though quantum random
number generators (QRNGs) are based on the intrinsic indeter-
ministic nature of quantum properties, the presence of classical

noise in the measurement process compromises the integrity
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based on deterministic algorithms and can exhibit long-range
correlation. For instance, weak cryptographic keys due to
the poor source of randomness have been a known threat
for years [2], [3]. In 2012, the biggest scan of Transport
Layer Secunty (TLS5) and Secure Shell (S5H) at the time
unveiled surprisingly widespread vulnerable keys [2]. In fact,
Heninger ef al. [2] managed to acquired private keys for 0.5%
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1. Background: Randomness

Lack of predictability in a sequence of events




1. Background: Randomness

Pick a random
number

between 1 and
107




1. Background: Randomness

Pick a random number from 1-10
(n=8604, mean=5.687, median=6)
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The probability distribution of random numbers between 1 and 10.




1. Background: Probability Distribution

e List of all possible outcome of random
variable with probability value

e Can be expressed in the form of table, a
graph




1. Background: Entropy

e Measure of the disorder

S=-> PlogP,

e Maximum when all the outcome are equally likely

e Always greater than or equalsto O




1. Background: Randomness

Classical: Non-classical:

e Deterministic e Non-deterministic
e Based on lack of e Based on non-
knowledge deterministic
physical process
e Not-truly random e Truly random
Eg. Coin flipping Eg. Radioactive

materials decays



1. Background: Random Numbers Generators

e (Generate a sequence of random numbers
e Used in a wide array of application :

- Gaming

- Simulation

- Cryptography




Deterministic

e Uses software
algorithm

e Determined by initial
Input - seed

e Same seed = same

sequence

1. Background: Random Numbers Generators

Pseudo-Random Number Generator

Xpe1 = (aX, + c) mod m

where X is the sequence of pseudo-random walues
m, 0 «=m - modulus

a, 0 <a<m - multiplier

c, 0 =c <m - increment

Xp, 0 = %y < m - the seed or start value

Eg. Linear Congruential Generator(LCG)




1. Background: Random Numbers Generators

Hardware Random Number Generator

Non-deterministic
Generates sequences using physical process
Same input = Different output

No discernable pattern

Best suited for encryption key generation



1. Background: Correlation & Autocorrelation

Correlation:

- Measures linear relationship between variables

Autocorrelation:
- Lagged correlation

- Compares changing variable to itself at different time
points




1. Background: Neural Network and Deep
Learning

® Inspired by structure of our brain
e Designed to recognize patternsin data

® Can guess next generated random numbers using
previous values




1. Background: Neural Network and Deep
Learning

e |[nput Layer

e Hidden
Layers

e Output Layer

Output Layer




Learning

e Inputs
e Weights

e Activation
Function

Output

1. Background: Neural Network and Deep
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1. Background: Neural Network and Deep
Learning

e Predication: Input Predication

Weight — | NN — | Cost

e Training

e Cost compare prediction to target
In paper called label




1. Background: Training

e Improving predictions
e Adjusting weights
e By comparing prediction to label

e Usually data set is split into two: for training and
testing purposes




1. Background: Training

e Training set run through the network
e Updates weights

e Repeat until predicted outputs close to labels




1. Background: Testing

Used to evaluate the network




1. Background: Overfitting

e Network learns the training data too well

e Network performs well on the training set but
performs poorly on testing set




e Representation of
categorical variable
good for ML

e 0 indicates non-existent
1 indicates existent

1. Background: One Hot Encoder

color color_red | color_blue |color_green
red 1 0 0
green 0 0 1
0 1 0




1. Background: Recurrent Convolutional Neural
Network (RCNN)

e Combination of convolutional neural network and

recurrent neural network




1. Background: Convolutional Neural Network (CNN)

e Well known for its use in analyzing visual imagery

® Inspired by the visual cortex

e Kernels detect patterns



1. Background: Convolutional Neural Network
(CNN)

Kernel:

e Small matrices of 1/1/1/0|0
weights 0/1,/1/1|0 4
e Slides over the input olol1l1l1
data x1 x0 x1
0(0(1|1]|0
0(1|1(0]|0
Convolved

Feature



1. Background: Recurrent Neural Network
(RNN)

e Used to find potential patterns of a long
sequences of data

e (Generates outputs using current input and the

previous computation




1. Background: Long Short Term Memory
(LSTM)

e One of RNN’s architecture
e Capable of learning long-term dependencies

e Effective addressing sequence to sequence
problem




1. Background: Recurrent Convolutional Neural
Network (RCNN)

e A combination of RNN and CNN
e Implemented by feeding features extracted by
CNN into RNN
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2. Paper Details

® Investigate how much classical entropy affects
randomness of QRNG
® First scenario: classical noise
® Second scenario: quantum and classical noise
e Apply ML based predictive analysis on different stages
of the QRNG



QRNG Setup

Classical Entropy Post-processing

Quantum Entropy 1 rH m] | ﬂm

= M Ext

W
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e Two segments:
o Entropy source
o Post-processing procedures
e Entropy source = Produce raw randomness
e Post-processing block = Extract qguantum randomness




QRNG Setup

Classical Entropy
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{ Quantum Entropy
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?J?f?;rence ® Mixer @ VCo1 @ vCo 2
Low Pass Filter (LPF) Band Pass Filter

Data acquisition stages in the entropy blocks of the QRNG. Stage (a): (i) detector 1 and (ii) detector 2;
Stage (b): (i) difference and (ii) sum of the photocurrents; Stage (c): difference of the photocurrents
demodulated at (i) 1.375 GHz (ii)1.625 GHz; Stage (d): Low pass filtering of the signals

from (c).



2. Paper Details

e By using ML they are finding potential patterns
generated numbers at different stages of the
QRNG.

e Probability of successful output prediction = P,

e Guessing probability = P,




2. Paper Details

0.014}
0.012}
0.010}
0.008}
0.006 |
0.004}
0.002}
0.000 |

P(X;)

R N A A AN AN NS EEEEEEEEEEEEEEETEEEEE

Stage: diff

-150 -100 -50

e Best strategy to guess the value of -26, giving
a success rate of 1.37%

100




2. Paper Details: Data set

e 10 million 16-bit integer(turned into 13 bit integers)

e First 5 million data used as training set

e Remaining 5 million data is divided into 5 test-sets
each of which contains 1 million data point




2. Paper Details: Data Preparation

e By using the previously generated numbers
predict the next number at each stages of the
QRNG.

e 100 adjacent numbers are considered as input
and the next number is considered as the label.




2. Paper Details: Data Preparation

e S is used to control the overlap between samples.
e N=100and S=3

1] 2] 3| 4| 5

dq, dy, A3, d4, ds, A6, ... , AN, ANLT, ..., AN+SHY, ...




2. Paper Details

N neighbering13-bit integers, N=100

One-hot encoder
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3. Result




3. Results
Classical entropy: 2
e RCNN model shows
Pm > Py In 4 out of 2|
8 stages.

P,
El PML

] PrL> Pg

I:I P < Pg

Classical Entropy

(a)

(@)

‘ Quantum Entropy

Laser

%‘;‘F';;rence D Mixer () vcor1 @D vco2
Low Pass Filter (LPF) [] L] Band PassFilter




3. Results

Classical and
Quantum Entropy:
e P, >P,in

stages. |
e Considerable Hﬂ
decrease : AT e e

o

Probability (%
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3. Results

® Probability Distribution
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Fig. 8. Distribution of datasets in scenario 1 (blue), where only electrical noise is present and scenario 2 (pink), where both the electrical and guantum noise
are present. SDpy(g) is the standard deviation of the measured (electronic) signal.




3. Results

® Autocorrelation

AutoCorrelation (Logqg)
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3. Results

® Autocorrelation
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Fig. 9. Autocorrelation of datasets in scenario 1 (blue), where only electrical noise is present and scenario 2 (pink), where both electrical and quantum noise
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3. Results

e Power Spectral Density (PSD)
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4. Conclusion




4. Conclusions

e Huge decrease in ML accuracy when both
classical and quantum noise

e Did not explore how knowledge from one
stage gives knowledge about another stage
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3. Results
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Data acquisition stages in the entropy blocks of the QRNG. Stage (a): (i) detector 1 and (ii) detector 2;
Stage (b): (i) difference and (ii) sum of the photocurrents; Stage (c): difference of the photocurrents
demodulated at (i) 1.375 GHz (ii)1.625 GHz; Stage (d): Low pass filtering of the signals

from (c).



3. Results

® Probability Distribution
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