
Load Balancing in Cloud Computing

Nicholas M. Plucker
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

pluck011@morris.umn.edu

ABSTRACT
Cloud computing utilizes many computing resources to pro-
vide a wide range of services over the internet, rather than on
computing hardware one physically controls. Many organi-
zations are moving their infrastructure to the cloud because
it reduces expenditure, provides flexibility, and offers a reli-
able solution for data storage. As cloud computing continues
to grow, the demand on cloud infrastructure also increases.
Thus, it is necessary that efficient load balancing of tasks
take place. Load balancing distributes tasks on virtual ma-
chines to reduce costs and maximize performance. This pa-
per examines two proposed load balancing algorithms that
shorten completion time and reduce task migrations.

Keywords
Cloud Computing, Load Balancing, Round-Robin

1. INTRODUCTION
The processing of balancing the load of tasks in a cloud

computing environment is complex and essential to ensure
the reliable performance that cloud computing is known for.

A common use of cloud computing is the hosting of web
servers. There is a load balancing system in place that re-
duces the likelihood that web servers will slow down or crash
due to increased traffic. The load balancer distributes the
traffic amongst multiple servers to improve performance and
response time for the user. Additionally, the need for load
balancing is increasing due to the rise of cloud computing [4].

In this paper, we will explore two proposed load balancing
algorithms that aim to improve how quickly tasks execute in
a cloud environment. The first algorithm, devised by Devi
and Uthariaraj [2] (Section 3), expands on weighted round-
robin load balancing. The researchers combine static and
dynamic load balancing techniques to reduce the number
of task migrations and completion time. Simulations us-
ing CloudSim were then used to analyze the performance of
this algorithm. The second algorithm, devised by Babu and
Krishna [1] (Section 4), uses foraging behavior derived from
honey bees as the basis for the algorithm. The goal is to
reduce the number of task migrations and completion time
by migrating tasks from overloaded to underloaded virtual
machines. CloudSim was also used in this study.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, October 2019 Morris, MN.

In addition to the two algorithms discussed in Sections 3
and 4, necessary background is provided in Section 2. This
paper then provides conclusions in Section 5.

2. BACKGROUND
In order to understand the two algorithms in this paper,

an introduction to key concepts is required. In this sec-
tion, background is first given on cloud computing followed
by load balancing. This background lays the framework for
the problem the algorithms are trying to solve. In addition,
background is given on the round robin load balancing algo-
rithm in Section 2.3, the idea of a task migration in Section
2.4 and a tool known as CloudSim in Section 2.5.

2.1 Cloud Computing
Cloud Computing utilizes many computing resources to

provide a wide range of services over the internet, rather
than on computing hardware you physically control. Gener-
ally speaking, cloud computing is the term used to describe
content and services hosting on servers located in a data
center that is connected to the internet. This information
is then delivered to the user through a client, such as a web
browser or application [5].

Since cloud computing is primarily used as a service, it can
be broken up into three distinct service models that build on
top of each other: Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS) and Software as a Service (SaaS)
[5]. The first layer is IaaS. Rather than using onsite com-
puting hardware, IaaS providers give customers access to
computing resources, such as storage, networking and pro-
cessing, over the internet. In addition, IaaS providers only
charge for what you use. Some examples of IaaS providers
include DigitalOcean, Amazon EC2 and Microsoft Azure.
The second layer is PaaS. PaaS providers give customers
the ability to develop and deploy applications on a cloud
service instead of directly managing the underlying infras-
tructure, such as processing capabilities, operating systems,
etc. The PaaS provider will control the underlying infras-
tructure, which simplifies the development process for ap-
plication developers [5]. Some examples of PaaS providers
include Google App Engine, Oracle Cloud Platform and
Heroku. The third layer is SaaS. SaaS providers are ones
we interact with everyday – Google Apps suite, Office 365,
Apple’s iCloud, etc. SaaS providers give customers access to
software over the internet and in turn, customers may pay
a fee for using them.



Figure 1: Load Balancing Model based on [4].

2.2 Load Balancing
As cloud computing continues to grow, load balancing is

essential to ensure that the quality of service isn’t compro-
mised for end users [4]. Load balancing is the process of
distributing workload amongst a collection of servers in a
data center. It’s an essential operation that improves the
reliability and performance of a cloud service. Improved re-
liability is achieved by routing incoming traffic away from
unhealthy servers to healthy servers. Improved performance
is achieved by routing traffic away from busy servers to idle
servers.

In a cloud environment, tasks are run on a virtual ma-
chine (VM), an emulation of a physical computer. A VM is
hosted on a server and there can be many VMs on a single
server. The VMs each have a chunk of physical comput-
ing resources allocated to it, such as processing capabilities,
RAM, storage, etc., from the server’s hardware. For exam-
ple, if a developer wants to deploy a web server hosted on a
cloud service (such as DigitalOcean), it will be hosted on a
VM. For a large company, their website may be hosted on
multiple VMs across multiple physical servers and poten-
tially spanning multiple data centers. Whenever a user goes
to that website, the load balancer will decide which VM gets
the request and the VM will respond with the content for
the website.

Figure 1 illustrates a load balancing model based on [4].
Users make a request to a cloud service, denoted by
UR1...URn. The first point of arrival is the load balancer.
The load balancer decides which VM gets which task. As
shown in the diagram, there are two physical machines
(servers), denoted as PM1 and PM2, that each contain
n virtual machines, denoted as VM1...V Mn. This resides
within a data center.

There are two types of load balancing algorithms: static
and dynamic. Static load balancing doesn’t depend on the
current state of the virtual machine. The distribution of
tasks depends on information gathered (processing capabil-
ities, storage capacity etc.) about a virtual machine before
run-time. This is potentially problematic as static load bal-
ancers can lead to an uneven distribution of resources. This
is because the load on the virtual machine can change dur-

ing run-time and the information gathered prior to run-time
can become inaccurate [4]. Dynamic load balancing consid-
ers the current state of a virtual machine, but can be com-
plex to implement as more information about the system is
required [4].

2.3 Round Robin Algorithm
The Round Robin (RR) algorithm is a widely used static

load balancing algorithm [4]. It’s a simple algorithm that
assigns tasks to VMs in a cyclical manner. For example,
suppose there are two VMs and six user requests (tasks).
Task 1 will be assigned to VM 1, task 2 will be assigned
to VM 2, task 3 to VM 1, task 4 to VM 2 and so on until
all tasks are assigned to a VM. RR works well in a homo-
geneous environment, where the VMs are more or less the
same. If some VMs are more capable than others (i.e. more
processing capabilities), then the system can become imbal-
anced [4]. If VM 1 was more capable than VM 2, then VM
2 might become overloaded because it will, on average, be
given the same number of tasks as VM 1.

To account for this, a weight can be assigned to a VM.
Continuing the example from above, suppose the weight for
VM 1 is 5 and the weight for VM 2 is 1, then for every 5
tasks VM 1 can take, VM 2 can take 1. This idea is known
as the weighted round robin algorithm – it accounts for the
capabilities of each VM.

There is another problem that arises, however. If a task
is executing for a long period of time, then the tasks waiting
to get executed will also have to wait. At the same time, a
task on a VM with less weight may finish.

Both algorithms in this paper aim to prevent this situa-
tion from happening. The first algorithm in section 3 aims
to effectively allocate tasks before run-time by also consid-
ering task length in the load balancing decision. The second
algorithm in section 4 migrates tasks from an overloaded
VM to an underloaded VM.

2.4 Task Migration
A task migration is the process of moving a task from an

overloaded VM to an underloaded VM at run-time before a
VM executes that task. This is a common technique used
in dynamic load balancing algorithms [4]. Task migrations
are an expensive process because it takes time to move a
task from one VM to another, therefore the goal in both
algorithms in this paper is to minimize the number of task
migrations that occur.

2.5 CloudSim
Experimenting with new load balancing techniques in a

real cloud environment is not practical because service could
potentially be disrupted for users if the new technique proves
to be flawed [1]. In addition, it’s expensive to implement an
actual data center. Therefore, simulations are used to exper-
iment with new load balancing techniques. One such simula-
tion tool is known as CloudSim – a modeling and simulation
framework for cloud computing services and infrastructure.
It allows researchers to simulate various aspects of a cloud
system, such as load balancing and scheduling algorithms.
CloudSim is an open source Java-based application avail-
able on GitHub1. Both studies covered in this paper use
CloudSim to analyze the performance of their respective al-
gorithms.

1https://github.com/Cloudslab/cloudsim



Figure 2: LWRR Architecture based on [2]

3. LENGTH BASED WEIGHTED ROUND
ROBIN ALGORITHM

The first algorithm discussed, known as Length Based
Weighted Round Robin (LWRR), was developed by Devi
and Uthariaraj [2]. It improves upon weighted round robin
by considering the length of the task when making load bal-
ancing decisions. LWRR combines static and dynamic load
balancing techniques to effectively allocate tasks to VMs be-
fore run time, reducing the need for task migrations and
improving the overall completion time.

Section 3.1 discusses the architecture of LWRR, Section
3.2 introduces the idea of a threshold value and how it influ-
ences the load balancing decision and Section 3.3 discusses
the simulation results of LWRR.

3.1 LWRR Architecture
There are five main components to LWRR, as shown in

Figure 2. When tasks arrive at the load balancer, they go
to the scheduling controller. Its job is to determine which of
the two schedulers will be used to schedule the current task.
The resource manager gathers information about each VM,
such as the current load and total capacity and passes it to
the scheduling controller.

LWRR combines static and dynamic load balancing tech-
niques to make VM allocation decisions. As mentioned in
Section 2.2, static load balancing doesn’t depend on the cur-
rent state of the system. It makes placement decisions based
on information gathered before run-time, such as a VM’s
maximum capacity, its processing capabilities etc. Eventu-
ally, an imbalance will likely occur, causing some VMs to be
overloaded and some to be underloaded. For LWRR, when
an imbalance occurs, the scheduling controller switches to
the dynamic scheduler. The dynamic scheduler takes into
account the current state of the system and can make bet-
ter decisions on where to place new tasks with a VM. An
imbalance occurs when the current load on a VM is less than
its threshold value, which will be discussed more in Section
3.2. New tasks will be placed to the underloaded VM until
the load is above that VM’s threshold value. When the dy-
namic and static schedulers are used in conjunction, tasks
are effectively allocated to VMs without the need for further
task migrations [2].

In the event that there is a further imbalance in the sys-
tem, the backup task migrator takes over. It’s run after
every task executes and if it finds any further imbalance in
the system that wasn’t taken care of with the static and
dynamic schedulers, it migrates a task from and overloaded

VM to an underloaded VM. As discussed in Section 2.4, the
fewer task migrations, the better. The researchers use this
component to analyze how many task migrations take place
when using LWRR in comparison to using weighted round
robin and plain round robin.

3.2 Threshold Value
The threshold value is the determining factor for which

scheduler is used for VM placement. If the current load
on any VM falls below its threshold value, the dynamic is
scheduler is used until the load is above the threshold value.
Each VM has its own unique threshold value. The details
of the threshold value are described below.

The sum of the current loads on all VMs is defined as:

L =

k∑
i=1

li (1)

where i is the VM number, k is the number of VMs in the
system, and li is the current load on VM i.

The sum of capacities for all VMs defined as:

C =

k∑
i=1

ci (2)

where i is the VM number, k is the number of VMs in the
system and ci is the capacity of VM i.

The load per unit capacity (LPC) defined as:

LPC =
L

C
(3)

The threshold value for each VM i is then defined as:

Ti = LPC ∗ ci (4)

where ci is the capacity for VM i.
Each VM has its own unique threshold value that is cal-

culated every time a task is added or removed from a VM.
The resource manager calculates li and ci which are then
passed to the scheduling controller for the threshold value
calculation.

3.3 Results
In this study, the researchers use CloudSim. The re-

searchers analyze LWRR based on two criteria, task mi-
grations and overall completion time, using homogeneous
and heterogeneous tasks in a homogeneous environment.
Task length is known ahead of time. For heterogeneous
tasks analysis, task length is randomly chosen to be be-
tween 500,000 and 200,000,000 executed instructions. The
researchers compare LWRR against weighted round robin
and plain round robin.

Figures 3 and 4 compare the number of task migrations
to the number of VMs for both heterogeneous and homoge-
neous tasks, respectively. LWRR is compared against round
robin (RR) and weighted round robin (WRR) algorithms.
The number of tasks used is not specified in the study. The
x-axis represents the number of VMs, ranging from 10 to
100 in increments of 10 for both Figures 3 and 4. The y-
axis represents the number of task migrations. Note that
the units range from 0 to 20 in Figure 3 and from 0 to 15 in
Figure 4.

Both RR and WRR perform well when tasks are the same
(homogeneous), therefore there are more task migrations
when tasks are of different type (heterogeneous). Since



Figure 3: Number of Heterogeneous Task Migra-
tions vs Number of VMs [2]

Figure 4: Number of Homogeneous Task Migrations
vs Number of VMs [2]

LWRR effectively allocates tasks to VMs without the need
for task migrations, the number of task migrations is mini-
mal. In Figure 3, the number of task migrations for RR with
10 VMs is 16, as compared to 6 in Figure 4. For WRR, the
number of task migrations in Figure 3 is 3, as compared to 1
in Figure 4. The number of task migrations for all three al-
gorithms converge to zero when there are ≥ 70 VMs, which
suggests that there are more VMs than tasks at that point.

Figures 5 and 6 compare the overall completion time to
the number of VMs for both heterogeneous and homoge-
neous tasks, respectively. LWRR is compared against RR
and WRR. The y-axis represents the overall completion time
in seconds (×104), ranging from 0 to 15 in increments of 5.
The x-axis represents the number of VMs, ranging from 10
to 100 in increments of 10. For both Figures 5 and 6, it is
clear that LWRR performs better than RR and WRR. This
is because LWRR allocates tasks to VMs better than RR
and WRR, therefore tasks will complete faster due to less
waiting time.

4. HONEY BEE BEHAVIOR INSPIRED
LOAD BALANCING

The second proposed algorithm, developed by Babu and
Krishna [1] is derived from the foraging behavior of honey
bees. The researchers base this algorithm on work done by
Johnson and Nieh [3], in which they describe honey bees as

Figure 5: Completion Time vs Number of VMs with
Heterogeneous Tasks [2]

Figure 6: Completion Time vs Number of VMs with
Homogeneous Tasks [2]

social insects that communicate using a network of feedback
cycles.

The algorithm in this work, known as Honey Bee Behavior
Inspired Load Balancing (HBB-LB), differs from LWRR in
that it identifies tasks in an overloaded VM and migrates
them to an underloaded VM at run-time. The goal is to
reduce the number of task migrations and completion time.

Section 4.1 describes the idea of honey bee foraging behav-
ior and how it relates to a cloud environment, Section 4.2
analyzes the HBB-LB algorithm and Section 4.3 analyzes
the results of HBB-LB on two criteria: task migrations and
completion time.

4.1 Honey Bee Behavior
The HBB-LB algorithm is based on honey bee foraging

behavior as described in the work by Johnson and Nieh [3].
They describe bees as social insects that communicate using
a network of feedback cycles. Honey bees, for example, have
several roles within a colony. Once such role, and perhaps
the type we see the most, are the forager and scout bees. A
scout bee’s job is to search for a food source. Once a suitable
food source is found, the scout bee returns to the hive and
does a dance. This dance notifies other bees in the hive
where the food source is located, the quality and quantity
of the food source, etc. A forager bee then follows the scout
bee’s directions to the food source that was discovered. The
forager bee’s job is to then collect the food, return to the
hive, dance and drop off the food. This dance tells other
scout and forager bees the status of a food source, i.e if the



food source is depleted, they should abandon it and find a
new food source [1].

A honey bee can be thought of as a task, and its food
source is considered a VM. A honey bee foraging a food
source can be thought of as a task being assigned to a VM.
In addition, a honey bee running out of food at a food source
would be a VM in an overloaded state. Finally, a scout bee
finding a new food source would be a task being moved from
an overloaded VM to an underloaded VM. The hive in this
analogy would be the load balancer itself. A resource man-
ager, similar to that in Section 3.1, calculates information
about each VM. The resource manager can be thought of as
doing a dance whenever a VM is identified as underloaded
or overloaded. This causes the load balancer to find a new,
underloaded VM for a task to move to and migrates it ac-
cordingly [1].

Algorithm 1 HBB-LB Algorithm based on [1]

1: Find capacity and loads of all VMs
2: if Load > Maximum Capacity then exit

3: if σ ≤ Ts then exit

4: while both UVM and OVM are not empty do
5: Group VMs based on load:
6: Underloaded VMs (UVM)
7: Balanced VMs (BVM)
8: Overloaded VMs (OVM)
9: Sort VMs in UVM set in ascending order by load

10: Sort VMs in OVM set in descending order by load
11: Remove a task from first VM in OVM set
12: Assign task to first VM in UVM set
13: Update UVM and OVM sets

4.2 HBB-LB Algorithm
The HBB-LB algorithm is illustrated, at a high level, in

Algorithm 1. It’s important to note that HBB-LB isn’t con-
cerned with the initial placement of tasks, rather it’s a task
migration algorithm. First, line 1 finds the capacity and
loads of all VMs. After that, there are two checks that
take place to determine if load balancing is necessary. In
line 2, if the total load in the system is greater than the
maximum capacity in the system, then the entire system is
overloaded and load balancing won’t help. In line 3, if the
standard deviation (σ) of the loads in the system is less than
the threshold condition set (Ts), then the system is balanced
and load balancing is not necessary. After these checks, load
balancing takes place.

Lines 4-13 illustrate the load balancing logic. Lines 5-8
group VMs based on their load – underloaded VMs (UVM),
balanced VMs (BVM) and overloaded VMs (OVM). Line 9
sorts the VMs in the UVM set in ascending order by load,
such that the VMs that are the most underloaded will be
first. Line 10 sorts the VMs in the OVM set in descending or-
der by load, such that the VMs that are the most overloaded
will be first. Line 11 removes a task from the first VM in the
OVM set (the most overloaded VM) and line 12 assigns that
task to the first VM in the UVM set (the most underloaded
VM). Line 13 updates the UVM and OVM sets. This is an
important step as lines 11 and 12 could cause the VMs in ei-
ther set to become balanced, thus removing the VM from the
set.

Lines 4-13 then repeat until either the UVM or OVM set
is empty. This process runs after every task executes.

4.3 Results
In this study, the researchers used CloudSim. They ana-

lyzed HBB-LB based on two criteria: task migrations and
overall completion time. As mentioned in Section 2.4, a
task migration is the process of moving a task from an over-
loaded to an underloaded VM. The overall completion time
is the time the system takes for all tasks to finish executing.
The goal is to reduce the number of task migrations and
overall completion time. Figures 7 and 8 compare the num-
ber of task migrations vs number of tasks for 4 VMs and 7
VMs, respectively. HBB-LB is compared against dynamic
load balancing (DLB) and dynamic load balancing using a
heuristic (HDLB). DLB and HDLB aren’t described in de-
tail; it’s only mentioned that they are existing load balancing
algorithms [1]. The x-axis represents the number of tasks,
ranging from 10 to 40 in increments of 5 for both Figures 7
and 8. The y-axis represents the number of task migrations.
Note that the units range from 3 to 12 task migrations in
Figure 7 and from 0 to 7 task migrations in Figure 8.

Figure 7: Number of Task Migrations vs Number of
Tasks for 4 VMs [1]

.

Figure 8: Number of Task Migrations vs Number of
Tasks for 7 VMs [1]

.

In both figures, it is clear that HBB-LB is better than DLB
and HDLB. The maximum number of task migrations for
HBB-LB when there are 4 VMs (Figure 7) and a maximum
number of tasks (40 in this experiment) is 5, as compared to
10 for DLB and 11 for HDLB. When there are 7 VMs (Figure
8), the maximum number of task migrations for HBB-LB in
this scenario is 4, as compared to 6 for DLB and 7 for HDLB.



It’s important to note that when the number of VMs in-
crease, the number of task migrations decrease, as long as
the number of tasks stay constant. This is because there
would be a smaller degree of imbalance between the VMs,
thus making the number of task migrations necessary to bal-
ance the system lower. If there were 40 VMs and 40 tasks,
there would be no task migrations because each task would
have its own VM. This is not feasible in a real-world setting
however, because the number of tasks will outnumber the
number of VMs.

Figure 9: Overall Completion Time vs Number of
Tasks [1]

.

Figure 9 compares the overall completion time with the
number of tasks. HBB-LB is compared against dynamic load
balancing (DLB), first-in-first-out load balancing (FIFO)
(also known as round robin), and weighted round robin
(WRR). The x-axis represents the number of tasks, rang-
ing from 10 to 40 in increments of 5. The y-axis represents
the overall completion time in seconds, ranging from 0 to 15
in increments of 5.

It is clear that HBB-LB performs better than DLB, FIFO
and WRR. When there are a small number of tasks (such
as 10), the completion time for all four algorithms is 2 ±
1 seconds. When the number of tasks increase, however,
the variance in completion times between the algorithms in-
creases. For 40 tasks, the completion time for HBB-LB is 4
seconds, as compared to 6.5 seconds for DLB, 7 seconds for
WRR and 15 seconds for FIFO.

5. CONCLUSIONS
Load balancing is the process of distributing workload

amongst multiple servers. This increases reliability and per-
formance by routing incoming tasks away from unhealthy
servers and balancing tasks amongst multiple healthy servers.
This increases the likelihood that cloud servers run effi-
ciently and uninterrupted. As discussed in Section 3, LWRR
improves load balancing by using a combination of static and
dynamic load balancing techniques to distribute load at ar-
rival time. As a result, LWRR minimizes task migrations in
the experiments presented in this paper and decreases the
overall completion time. In Section 4, an algorithm based
on the foraging behavior of honey bees is discussed and an-
alyzed. It identifies VMs as either underloaded, balanced or
overloaded and migrates tasks from an overloaded VM to an
underloaded VM until the system is balanced. This process
minimizes task migrations and overall completion time

While both algorithms aren’t directly compared to one
another, it’s useful to consider how the two algorithms might
compare. As discussed in both algorithms, the number of

task migrations is an important metric in determining the
performance of the algorithm. Since task migrations are
expensive, the goal is to reduce the number of them. Both
LWRR and HBB-LB do this, but I believe that LWRR would
perform better than HBB-LB because LWRR has almost
zero task migrations where HBB-LB still has some, although
the number is minimal. This is due to the idea that LWRR
initially allocates tasks to VMs in such a way that very few
task migrations are necessary, whereas the entire idea of
HBB-LB is to migrate tasks.

Acknowledgments
I would like to thank my advisor Nic McPhee and my se-
nior seminar instructor Elena Machkasvoa for their feedback,
flexibility and support. I would also like to thank Laverne
Schrock for his time and review of this paper.

6. REFERENCES
[1] D. Babu and P. Venkata Krishna. Honey bee behavior

inspired load balancing of tasks in cloud computing
environments. Appl. Soft Comput., 13(5):2292–2303,
May 2013.

[2] D. Devi and V. Uthariaraj. Load balancing in cloud
computing environment using improved weighted round
robin algorithm for nonpreemptive dependent tasks.
The Scientific World Journal, 2016.

[3] B. R. Johnson and J. C. Nieh. Modeling the adaptive
role of negative signaling in honey bee intraspecific
competition. Journal of Insect Behavior, 23(6):459–471,
Nov 2010.

[4] P. Kumar and R. Kumar. Issues and challenges of load
balancing techniques in cloud computing: A survey.
ACM Comput. Surv., 51(6):120:1–120:35, Feb. 2019.

[5] Wikipedia. Cloud computing — Wikipedia, the free
encyclopedia, 2019.
https://en.wikipedia.org/wiki/Cloud_computing

[Online; accessed 04-March-2019].


