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ABSTRACT
The topic of this paper is reconstructing 2D art, such as fres-
coes and mosaics, using genetic algorithms and deep learn-
ing. This paper describes research about two algorithms
solving real-world problems of fragmented wall paintings and
dismantled tile panels. One algorithm focuses on wall paint-
ings, while the other focuses on tile panels. They were both
effective and improve upon algorithms already developed in
their problem space. The algorithm for tile panels also im-
proves upon the expert reconstructions they were using for
testing.
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1. INTRODUCTION
Reconstructing broken objects is a hard, time consuming

task and it can take many forms, such as fractured fres-
coes, broken pottery, shredded documents or photographs,
and other archaeological artifacts. Like a jigsaw puzzle, the
pieces of these objects need to be put together to reconstruct
what has been damaged. There are many broken artifacts,
such as the over 100,000 tile panels in the National Tile Mu-
seum in Lisbon, Portugal. It would take decades for the
experts working there to reconstruct all of them, not includ-
ing the additional tile panels being delivered there. As seen
in Figure 1, an expert from the National Tile Museum is in
the process of reconstructing a tile panel.

Here, I will be focusing on the real-world problems of re-
constructing wall paintings and tile panels. In this problem
space, wall paintings and tile panels have similar issues but
also significant differences. They share the issues of missing
pieces and degraded edges on pieces, making them further
harder to fit together. The main difference between wall
paintings and tile panels are the shapes the pieces take and
the techniques we have to put them back together. For ex-
ample, the pieces of wall paintings have various irregular
shapes, and someone trying to reconstruct the painting can
use the different shapes to help find which pieces go together.
However, the pieces of tile panels all have a square shape, ex-
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is unknown (i.e. Type 2 puzzle), as well as the puzzle dimensions.
Specifically, he presented the preferable measure of Mahalanobis
gradient compatibility (MGC), which penalizes changes in intensity
gradients (rather than changes in intensity) and learns the covariance
of the color channels, using the Mahalanobis distance. He suggested
also dissimilarity ratios for a more indicative compatibility measure.

Sholomon et al. [40–42] pursued a GA-based approach based on
a number of innovative crossover procedures, and demonstrated the
effective performance of their methodology on very large Type 1 and
Type 2 puzzles (including two-sided puzzles and a number of mixed
puzzles). Son et al. [45] imposed so-called loop constraints, where
the dissimilarity ratio (with respect to the smallest distance from a
piece edge in question), for each consecutive pair of pieces along a
loop of four or more pieces, is below a certain threshold. They were
able to improve the accuracy for both Type 1 and Type 2 puzzles
in certain cases. Also, they provided, for the first time, an upper
bound on the reconstruction accuracy for various datasets. Paikin
and Tal [31] proposed a greedy solver based on an asymmetric L1-
norm dissimilarity and the best-buddies heuristic. They demonstrated
how to handle, among other things, puzzles with missing pieces, and
reported improved accuracy results and fast running times. More
recently, Andaló et al. [3] showed how to map the JPP to the problem
of maximizing a constrained quadratic function, and presented a
deterministic algorithm for solving it via gradient ascent.

2.1.2 DL Methods. Recently, there have been also a few DL
works related to the JPP [12, 13, 30, 38]. However, these works
barely provide any practical solutions to even “toy instances” of
the JPP, and their main thrust is to “re-purpose” a neural network,
trained to solve a simple jigsaw puzzle (without manual labeling), to
handle advanced tasks, such as object detection and classification, in
an unsupervised manner. Other than the above, a DL-based heuristic
called DNN-buddies was presented in [43], in an attempt to enhance
the accuracy of a GA-based solver. It should be noted, though, that
the above heuristic is employed in conjunction with the SSD mea-
sure, in a rather restrictive manner, so it is expected to perform rather
poorly on real-world JPP-like tasks.

2.2 Real-World Portuguese Tile Panels
The reconstruction of ancient frescoes and wall paintings from nu-
merous large repositories of fragmented artifacts, compiled over
time due to natural deterioration, is of utmost importance in preserv-
ing world cultural heritage. Various efforts to automate the process
(e.g.[4, 33, 44]) rely primarily on shape matching (in 2D and 3D) of
fragments followed by their assembly. While exhibiting good perfor-
mance on relatively small datasets (only a few hundred fragments),
the scalability of these efforts (in terms of the number of fragments
and the number of art works in a given pool) is questionable.

Our focus in this paper is on the reconstruction of the Portuguese
tiles panels [9], which concerns the assembly of ancient panels of
2D square tiles that have been removed from many buildings and
landmarks in Portugal (see Figure 2). Currently, over one hundred
thousand such tiles are stored at the Portuguese National Tile Mu-
seum (Museu Nacional do Azulejo) in Lisbon, and are awaiting
manual assembly by human experts. In view of the extremely chal-
lenging nature of the problem, it would take decades, at the current

pace, before all these “jigsaw puzzles” are solved, i.e. before the
panels are assembled by the human experts [32].

Fonseca [14] acquired tile images and adapted their shape to
squares; he then applied an augmented Lagrange multipliers tech-
nique to an equivalent optimization problem and a greedy approach
for Type 1 and Type 2 variants, respectively. He obtained 57.8%
and 39.1% accuracy for these cases, respectively, on panels contain-
ing only a few dozen tiles. In comparison, Gallagher’s method [16]
achieves corresponding accuracy levels of 64.5% and 49.4%. An-
dalo et al. [2] reported perfect reconstruction (of 4 mixed tile panels)
using their PSQP method [3] for known tile orientation. However,
their method does not handle the Type 2 variant, and its preliminary
results were obtained for panels containing a fairly small number of,
presumably, high-resolution tiles.

Figure 2: Manual assembling of a panel of Portuguese tiles at
the National Tile Museum (Museu Nacional do Azulejo, MNAz),
Lisbon, Portugal: Source [14].

3 GA SOLVER
We seek a global optimizer that can exploit the relative accurate
piece adjacency prediction capability, but that can also overcome
its inaccuracies. Previous solvers rely typically on some specialized
criterion, which implies a subset of edge adjacencies that are likely
to be correct. To avoid searching for such a specific criterion, we
pursue a GA approach [18] for tile placement, in the spirit of the
kernel-growth scheme presented in Sholomon et al. [40, 41]. Since
the proposed GA solver is of a random nature, it could correct,
potentially, wrong adjacencies during the global optimization.

Following [40], we describe here the new hierarchical phases
of our modified crossover operator. In a nutshell, a chromosome
is associated with a puzzle configuration (or a “solution”), and its
fitness function is defined by the overall sum of pairwise, adjacent
tile compatibilities (see below). The principle of hierarchical phases
is that a piece is added to the growing kernel at each phase only if the
previous phases have been exhausted (i.e. no further pieces can be
added due to these phases); the crossover terminates once the kernel
contains all the pieces. Our proposed phases and their hierarchical
arrangement are as follows.

• Phase I: If there is a free (piece) boundary in the kernel,
which has a neighboring piece in a chromosome parent, such
that the score of each of these adjacent pieces is greater than
max(0.8,Cmean), where Cmean is the chromosome’s average
compatibility across all boundaries, then add the neighboring

Figure 1: Expert reconstructing a tile panel at the
National Tile Museum in Lisbon, Portugal. Taken
from [5].

cluding degraded edges, and anyone reconstructing the tile
panels would have to rely solely on the images on the pieces
to know which are next to each other. Figure 2 shows two
examples of what a tile panel might look like before and
after they are reconstructed.

The two algorithms I will discuss are the Wall Painting
Algorithm (WPA) developed by Sizikova and Funkhouser in
[7] and the Tile Panel Algorithm (TPA) developed by Rika
et al. in [5]. As their names suggest, the WPA reconstructs
wall paintings while the TPA reconstructs tile panels. Both
use genetic algorithms (GA), but the TPA also uses deep
learning to aid in the reconstruction. In Section 3, I will go
over the structure of the WPA and the results found from
testing the algorithm. Afterwards in Section 4, I will go
over the structure for the TPA and its testing results. I will
conclude with further work to be done in this problem space.

2. BACKGROUND
In this section, I will give background on genetic algo-

rithms and deep learning. Both the WPA and TPA use
genetic algorithms, while the TPA incorporates deep learn-
ing.

2.1 Genetic Algorithms
Genetic Algorithms (GAs) are algorithms based on evo-

lution via natural selection. GAs use a selection procedure
to find candidates with the best traits from the population
along with recombination, otherwise known as crossover,
and mutation to produce new potential solutions [2]. For
the Wall Painting Algorithm, a solution is an assemblage
of a portion of a wall painting. For the Tile Panel Algo-
rithm, a solution is a complete tile panel. Often, the can-



GECCO ’19, July 13–17, 2019, Prague, Czech Republic D. Rika, D. Sholomon., E.O. David, and N.S. Netanyahu

Figure 1: Reconstruction of Portuguese tile panels with un-
known piece orientation and panel dimensions, due to our pro-
posed system. Left: Input images of Portuguese tile panels, con-
taining 256 (top) and 150 (bottom) pieces. Right: Perfectly re-
constructed images due to our novel compatibility measure cou-
pled with the enhanced version of a "kernel-growth" GA.

been devoted to devising reliable compatibility measures for jigsaw-
like problems, they may not always be consistent1; if they were, the
problem would not be NP-hard. More importantly, the typical de-
pendence of current compatibility measures on correlations between
low-level color/texture statistics in the proximity of tile boundaries,
renders jigsaw puzzle solvers based on such measures virtually
ineffective for real-world problems, such as the reconstruction of
archaeological fragments and shredded documents (where often the
information is severely degraded near the points of fraction), or that
of Portuguese tile panels, whose image content is not necessarily
color-rich and where chromatic information near tile boundaries
might be severely corrupted. In addition, many methods for solving
optimally the piece placement problem resort to greedy strategies,
which are problematic in encountering local optima. Moreover, they
usually cannot recover from erroneous placements made early on
(as a result of a greedy, locally optimal choice). To meet these chal-
lenges, we employ in this paper a computational intelligence (CI)

1In the sense that the most compatible piece to a given piece A, with respect to a
compatibility measure in question, may not necessarily be adjacent to A in the “correct”
puzzle configuration.

approach in dealing effectively with both components of the prob-
lem (i.e. the search and the compatibility measure). Specifically, we
present a unique combination of: (1) An enhanced genetic algo-
rithm (GA)-based scheme for finding promising (partial) solutions
(i.e. fittest chromosomes), at each iterative stage, as a strategy for
optimal piece placement, and (2) a novel deep learning (DL) model
for learning piece compatibility by directly training on the raw data
(of a fairly small training set), without applying any standard feature
selection/extraction techniques,

Our contributions are summarized as follows:
(1) Provided an enhanced GA solver for the construction of Por-

tuguese tile panels;
(2) Obtained for the first time a DL-based compatibility measure

(DLCM) for a real-world JPP-like task;
(3) Presented a unique combination of the above GA module

and the novel compatibility measure for the reconstruction of
Portuguese tile panels on a large-scale basis (see e.g. Fig. 1);

(4) Obtained state-of-the-art-results for the above real world
problem; specifically, achieved an average accuracy of 82%
on Type 2 puzzles with unknown dimensions (compared
to merely 3.5% average accuracy achieved by Gallagher’s
method [16], which is the best method known for solving this
problem variant);

(5) Compiled a new benchmark for the community, regarding
training and test data for the Portuguese tile problem.

The paper is organized as follows. Section 2 provides a brief
survey of recent related work. Section 3 and Section 4 describe,
respectively, our novel GA-based solver and the DL method for
learning a compatibility measure. Section 5 presents the datasets
used, and Section 6 provides detailed experimental results. Section 7
makes concluding remarks.

2 RELATED WORK
2.1 Synthetic JPP

2.1.1 Traditional Methods. Freeman and Garder [15] intro-
duced initially in 1964 a computational solver, which handled up to
nine-piece puzzles. Subsequent research [17, 22, 35, 48] relied solely
on shape cues of the pieces. Kosiba et al. [23] were the first to use
image content, in addition to boundary shape; their method computes
color compatibility along the matching contour, rewarding adjacent
jigsaw pieces with similar colors. This trend continued for more
than a decade (see, e.g. [8, 25, 29, 37, 50]), before the research focus
shifted from shape-based to merely color-based solvers of square-tile
puzzles with known piece orientation (i.e. Type 1 puzzles).

Cho et al. [5] used dissimilarity (i.e. the sum, over all neighboring
pixels, of squared color differences over all color bands), as a compat-
ibility measure for their probabilistic puzzle solver, that handles up
to 432 pieces, given some a priori knowledge of the puzzle. (The sum
of squared differences is referred to as SSD.) Their 2010 paper was
followed by Yang et al. [49], who reported improved performance
due to their particle filter-based solver. Shortly after, Pomeranz et
al. [34] presented, for the first time, a fully-automated jigsaw puzzle
solver of puzzles containing up to 3,000 square pieces, using the
above defined dissimilarity and their so-called best-buddies heuristic.
Gallagher [16] advanced further the state-of-the-art by considering
a more general variant of the problem, where a piece orientation

Figure 2: Example of what the Tile Panel Algorithm
takes in, disassembled tiles on the left, and what it
returns, assembled tile panel on the right. Taken
from [5]

didates found from the selection process are called parents,
and the solutions produced by crossover and mutation are
called children. As Figure 3 illustrates, the basic GA struc-
ture initializes the population with solutions, often randomly
generated, that then iteratively goes through the selection
process and recombination process until an ending criteria
is met.

The selection procedure uses a fitness function to evaluate
which solutions from the population will go to the recombi-
nation step to create children. Fitness functions are specific
to the problem an algorithm is trying to solve, and they con-
tain the criteria of what a good solution is. An algorithm’s
fitness function assigns scores to children from the previ-
ous generation. The children with higher fitness scores are
selected to be parents in the next generation. Then the se-
lected parents go through the recombination process, which
creates hopefully better solutions, i.e. children. In general,
the recombination process takes some characteristics of the
parent, and combines them in a different way. For exam-
ple, in the Tile Panel Algorithm, if both parents have the
same match between two tiles, then the child would have
that match as well.

A mutation will introduce some randomness to a GA. Mu-
tation isn’t always used in GAs, but is generally used to
create solutions not normally allowed in recombination. An
example of mutation being implemented in a GA can be
found in Section 4.

2.2 Deep Learning
Deep Learning is a type of machine learning that is based

on neural networks, which are systems loosely imitating how
human brains process information and recognize patterns. A
deep neural network (DNN) is made up of multiple layers
that each extract features from the input, progressively ex-
tracting more complex data and creating representations of
increasingly abstract concepts [1]. Rika et al. use multiple

Figure 3: A simplified illustration of a genetic algo-
rithm. In selection, the population has their fitness
evaluated, and the ones with the highest score go
to crossover to recombine into a new population. If
the GA has mutation, it will occur during crossover.
Then the GA checks if it’s done, and either goes
through the algorithm again, or takes the best from
the population.

DNNs to analyze the color values of a given pair of tiles and
to produce a value determining the compatibility between
them. For an example of the basic idea, when comparing
two tiles to see if they match, the DNN’s first layer might
extract only the red color values on the tiles. The second
would then find lines in the colors, while the third layer finds
more complex patterns on the tiles. Then, the fourth layer
would compare the two tiles to see if they have matching
patterns and return a corresponding number.

3. WALL PAINTING ALGORITHM
Sizikova and Funkhouser develop a GA, the Wall Painting

Algorithm (WPA), in [7] to solve the real-world problem of
reconstructing fractured wall paintings. The WPA focuses
on the shape of the fragments when putting the painting
together, ignoring the image. It takes in clusters, or col-
lections of painting fragments with matches between them,
and produces a solution, or a reconstruction of part of a
wall painting. Something to note, is a single fragment can
be part of multiple clusters.

3.1 Algorithm Structure
When the WPA initializes, it takes in singleton clusters,

which are single fragments with no matches, and paired clus-
ters, which are two fragments with a match between them.
The WPA’s selection process starts with ranking the clusters
using the fitness function created in [7], which is explained
below. After the clusters have been ranked, the next step
is to filter them so that ones with a ratio of total fragments
to unique fragments passed a threshold are kept. Sizikova
and Funkhouser used 0.85 as the threshold. An example of
a unique fragment is one found in only one cluster. The
filtering is to encourage diversity in the clusters, so that the
ones being passed along don’t all have the same fragments
in different configurations.

For the WPA, the fitness function ranks clusters by cal-
culating MaxST (Ci) and the number of fragments, spanfi ,
or the number of matches, spanmi , that are a part of the



Figure 4: An example of a spanning tree for a clus-
ter. The squares represent fragments and the lines
between them represent matches. The dark blue
square and dark blue line are examples of loose con-
nections, because if they were removed the single
cluster would become multiple clusters.

spanning tree of cluster Ci (i.e. if a fragment or match is
removed from a cluster, it will disconnect and become two
separate clusters). MaxST (Ci) is the sum of the match
scores — numerical values attached to matches (described
below) — of the maximal spanning tree of cluster Ci. Fig-
ure 4 shows an example of a spanning tree and highlights
some loose connections within it. The goal of the fitness
function is to maximize the match scores within the clus-
ter, MaxST (Ci), and minimize the number of loose connec-
tions, spanfi and spanmi , so that the clusters are strongly
connected and less likely to include an incorrect placement
of a fragment. Sizikova and Funkhouser also included W as
a weighting parameter to control the effect of the spanning
fragments and matches in the clusters. The fitness function
of the cluster Ci is

f(ci) = MaxST (Ci) −W (spanfi + spanmi).

During the recombination process, new matches being cre-
ated receive a match score to signify how strong it is. When
combining cluster Ci and Ck, the match between them is
scored by Cik(1+0.1M) where Cik is the fitness score of the
new combined cluster, and M is the number of additional
matches being added to the this cluster. In other words, if
a match was created between two clusters, each with many
fragments, M would be the additional matches found be-
tween the two clusters as a result of the match receiving the
score.

The WPA recombines through two different methods: by
fragments or by match. When the parent clusters are re-
combined by fragment, the two clusters must have the same
fragment within their clusters. The WPA considers all pos-
sible shared fragments within the clusters and the different
ways they can connect them, choosing the child with the
highest match score. When the clusters are recombined by
match, they need to have a match between a fragment from
one cluster and a fragment from the other. Since the number
of potential children from this type of combination is vast,
Sizikova and Funkhouser [7] use a weighted probability to
choose which matches produced are considered. Specifically,
when given a set of N spanning matches with match scores
f1, f2, ..., fn, match i will be selected with probability P ,

P (i) =
fi∑N

k=1 fk
.

This tends towards considering matches with higher match

Figure 5: The shaded in fragments on the left show
fragment overlap. The stripped shaded part on the
right is the convex hull. These are examples of what
the feasibility check looks for. Taken from [7].

scores to the population, but since it is a probability some
lower match scores will be considered as well.

After a match has been created, but before it gets added to
the population, the new cluster has to go though three feasi-
bility checks to make sure the configuration of fragments is
a feasible one. The first check makes sure that no fragments
overlap each other. The second makes sure that clusters
containing a certain number spanning fragments or matches
passed a threshold are infeasible. The third checks that the
cluster has a high fragment to convex hull ratio. A convex
hull is the maximum area that the cluster will take up con-
necting the farthest points in the cluster with straight lines.
An example of fragment overlap and a low fragment to con-
vex hull ratio can be seen in Figure 5. After the cluster has
passed the feasibility check, it gets added to the population
and could become a parent when its generation goes through
the selection process.

3.2 Wall Painting Algorithm Results
When testing this algorithm, Sizikova and Funkhouser

used an artificial data set from a fresco that was created by
others to specifically test algorithms for this problem space.
The fresco was created, broken up, and weathered so people
creating algorithms for this problem space could know the
ground truth when testing their algorithm and could com-
pare their algorithm against others. During testing, Sizikova
and Funkhouser also made sure that the initial set of data
was the same for all algorithms. They compared WPA
against three others: two commonly used algorithms, dense
cluster growth (DCG) and hierarchical clustering (HC), and
the previous state of the art algorithm developed by Cas-
tañeda et al. [3]. The results from comparing DCG, HC,
and WPA is described in Section 3.2.1 while the compari-
son results from Castañeda et al. and WPA is described in
Section 3.2.2.

3.2.1 Comparison with DCG and HC
When evaluating DCG, HC, and WPA, Sizikova and Funk-

houser compared results using the number of fragments in
the final cluster and the F-score for that cluster, which is
the average of precision and recall. In this case, precision is
the proportion of correct matches within the cluster, while
recall is the proportion of correct matches within the whole
painting. The results are shown in Table 3 while the solu-
tions for the three algorithms can be seen in Figure 6. As
can be seen from Figure 6 and Table 1, more than double the
fragments were found using WPA than the second biggest,



Figure 6: These are the solutions created when com-
paring from the Dense Cluster Growth (DCG), Hi-
erarchical Clustering (HC), and the Wall Painting.
Green lines signify correct matches, while red lines
are incorrect matches. Figure taken from [7].

Method # of Fragments F-score
WPA 90 0.823
HC 42 0.411

DCG 7 0.082

Table 1: Based on table from [7]

which was HC. WPA’s F-score was also more than double
the second best, which was HC again. The size and accu-
racy of the WPA’s solution are vastly improved over both
the HC and DCG solutions, reconstructing much more of
the painting and lessening the workload of the experts who
would finish the reconstruction, if it was needed. Along with
improved size and accuracy, something to note is that the
mistakes present in the WPA’s solution are all along the
edge of the cluster while the mistakes from both HC and
DCG are within the interior of the cluster.

3.2.2 Comparison with Castañeda et al.
When comparing the WPA to Castañeda et al. [3] they

didn’t have access to the code or data for it, so they just
compared the visuals. The solutions from the WPA and
Castañeda et al. [3] can be found in Figure 7. When look-
ing at the visuals, it can be seen that, while the Castañeda
et al. and WPA solutions are of similar size, WPA had fewer
incorrect matches. As was also seen in Section 3.2.1, Cas-
tañeda et al.[3] had more mistakes within its interior, while
the WPA had only three mistakes, all of which are along
the outer edges of the solution, two of them from the same
fragment. Since there are less mistakes within the solution
from WPA, if experts were to continue the reconstruction,
they would make less mistakes as well, and would be able to
have a higher confidence that the solution produced by the
algorithm is accurate.

4. TILE PANEL ALGORITHM
The Tile Panel Algorithm (TPA) developed by Rika et

al. in [5] is a hybrid of a GA and a DL based compatibility
measure (DLCM) to reconstruct Portuguese tile panels. In
the TPA, the compatibility measure determines the compat-
ibility between two given tiles to determine if they share an
edge.

The DLCM, when given two tiles in some orientation, re-
turns a real number called the compatibility score, deter-

Figure 7: The reconstruction on the left is the visual
from Castañeda et al. [3], while the reconstruction
on the right is from the Wall Painting Algorithm.
Green lines signify correct matches, while red lines
signify incorrect matches. Figure taken from [7].

mining the compatibility of the two tiles by processing the
images on the tiles. To more easily process the image, Rika
et al. use four networks: one for the combined color chan-
nels (RGB), one for red (R), one for green (G), and one
for blue (B). All four networks follow the same process, and
each network returns a score that is then added to give the
overall compatibility score. When it is required to find the
most compatible piece, or tile, within the pool of uncon-
nected pieces, the DLCM determines the compatibility score
between the free edge and the pieces in the pool.

The GA portion of the TPA is based on the kernel-growth
scheme proposed by Sholomon et al. [6]. A kernel-growth
GA selects parents during the selection procedure like a typ-
ical GA, but during the recombination process, it starts with
a random piece, or collection of connected pieces, called a
kernel and gradually adds more pieces on the edges of the
kernel until a complete child is produced, not just a por-
tion as happened with the WPA. For example, in the TPA a
complete child would be a complete tile panel. This scheme
is more conductive to tile panels because the pieces are uni-
form in shape, unlike wall paintings fragments which are
inconsistent in shape.

For the TPA, Rika et al. use six hierarchical phases to
decide which piece to add, as follows:

• Phase I: If there is a free boundary, i.e. an un-
matched edge, in the kernel, and an unused neighbor-
ing piece from the parent with a greater fitness score
that has an average compatibility score greater than
max(0.8, Cmean), then the neighboring piece is added
to the kernel. The average compatibility score is be-
tween the piece and all of its neighbors and Cmean is
the parent’s average compatibility across the border of
the tile panel.

• Phase II: Similar to Phase I, but using the parent
with the lower fitness score.

• Phase III: If both parents contain the same neigh-
boring piece on the boundary being considered, then
the piece is added to the kernel.

• Phase IV: If the most compatible piece to a given
boundary in the kernel is free, i.e. not already in the
kernel, then that piece is added

• Phase V: Similar to Phase IV, but adds the second
most compatible piece.
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Figure 7: Rank percentages using our DLCM vs. SSD and the MGC measures for Type 2 puzzles. Top three plots correspond to a
single test image (with unknown piece orientation). Bottom plot corresponds to average ranking percentage over all eight test images
(with unknown piece orientation). Note the clear-cut superior performance of DLCM. Interestingly, rank2 percentage of our CNN
model is greater than the rank1 percentage obtained for the SSD and MGC measures.

Type 1 Type 2
SSD [34] 12.7% 7.3%
MGC [16] 17.4% 9.1%
Red-Net 56.9% 44.1%

Green-Net 57.2% 45.1%
Blue-Net 53.4% 40.8%
RGB-Net 59.5% 47.5%
DLCM 68.4% 56.9%

Table 2: Comparison of rank1 scores of our DLCM with those
for the SSD and MGC measures; also included are rank1 scores
of the DLCM’s four sub-networks (i.e. Red-Net, Green-Net,
Blue-Net, and RGB-Net), demonstrating the added value of
their combination.

monotonically-decreasing lower ranks, unlike the more uniform
distribution obtained for the other measures.

Also, to verify the assumption that led to the post-processing steps
described in Section 4.3, we evaluated the raw measure obtained
by the CNN. The values obtained for this measure were 62.8% and
50.6%, respectively, for the Type 1 and Type 2 problem variants.
These results strongly support the use of the post-processing step,
according to Subsection 4.3.

The results clearly indicate that our trained measure is by far supe-
rior to other established compatibility measures, both quantitatively,
in terms of higher accuracy, as well as qualitatively in terms of a
smoother distribution.

6.2 Puzzle Reconstruction
We incorporated our newly trained compatibility measure into our
enhanced GA framework, in an attempt to reconstruct each of the
test set images. We report the reconstruction accuracy, according
to the neighbor comparison definition applied in previous works,
namely the fraction of correctly assigned neighbors, i.e. the fraction
of ground truth adjacent edges in our solution.

We attempted reconstruction under four different variants of the
problem. In all variants we assumed an unknown location of the
different pieces. The variants differ with respect to a priori knowl-
edge of piece orientation and puzzle dimensions. Obviously, the
hardest variant, which is most reflective of a real-world scenario, is
the one for which both piece orientation and puzzle dimensions are
unknown.

We ran our GA version ten times on each image, and reported
the best result. For comparison, we also tried reconstructing the
images using the solver proposed by Gallagher [16]. We chose to
compare against this solver, because it is one of the few solvers
that supports all of the different variants and whose reported perfor-
mance is still competitive relatively to state-of-the-art on available
JPP benchmarks and the Portuguese tile panels in [2]. To justify
the net added value of our proposed kernel-growth GA solver, we
compared also its performance (using our DLCM) with that of the
GA solvers [40–42]. The comparative results for all four cases are
reported in Table 3. Examples of reconstructed panels are shown in
Figure 1.

Interestingly, while inspecting the reconstructed puzzles, we no-
ticed three puzzles that were reported as not perfectly solved, despite
the fact that their overall global score was greater than ground truth.
Further manual inspection revealed that apparently, the image was
not assembled correctly by the museum staff, and that the solution

Figure 8: Top three plots correspond to a single test image, for the compatibility measures: Deep Learning
compatibility measure (DLCM), Mahalanobis gradient compatibility (MGC), and sum of squared differences
(SSD). The bottom graph corresponds to the average of the entire test set. All tests are done in the Type 2
test case. Figure taken from [5]

• Phase VI: Picks a random free piece, and adds it to
the free boundary in the kernel.

Rika et al. introduce mutation to their GA by skipping
Phase I and II with 10% probability and Phase III with
20% probability. They use this mutation because it gives
the opportunity for errors from previous generations to be
fixed, since the phases which aren’t skipped, IV-VI, don’t
rely on the child’s parents [5].

Rika et al.’s GA differs from the kernel-growth proposed
by Sholomon et al. [6] - the one it’s based on - by using
hierarchical phases rather than the notion of best-buddies,
where both pieces consider the other as the most compatible.
The reason Rika et al. don’t use the best-buddies principle
is because when combined with their DLCM and used on
the Portuguses tile panels, the best-buddy pairs were only
correct with 70% probability.

4.1 Tile Panel Algorithm Results
Rika et al. used images of tile panels when testing the

DLCM and the TPA as a whole. Half of them were recon-
structed by experts from the National Tile Museum (Museu
Nacional do Azulejo, MNAz) in Lisbon, Portugal, and the
other half were found online. They ran two different test
cases: Type 1, where orientation of the pieces was known,
and Type 2, where orientation was unknown. The DLCM
results are discussed in Section 4.1.1 and the results for the
whole TPA are discussed in Section 4.1.2.

4.1.1 Deep Learning Compatibility Measure Results
The DLCM was tested against the compatibility measures

sum of squared differences (SSD), which uses the sum of
squared color differences of all neighboring pixels and color
bands, and Mahalanobis gradient compatibility (MGC) [4],
which penalizes changes in color intensity from the image
and uses the Mahalanobis distance to find the color channels’
covariance. The results of the tests can be seen in Table 2
and Figure 8. As is seen from Table 2, the DLCM has a

Compatibility Measure Type 1 Type 2
SSD 12.7% 7.3%

MGC 17.4% 9.1%
DLCM 68.45% 56.9%

Table 2: The percentage of how often the compati-
bility measure ranked the most compatible piece as
the first choice for Type 1, known orientation, and
Type 2, unknown orientation, test cases. Based on
table from [5]

significant increase in accuracy in both Type 1 and Type 2
test cases. The DLCM is accurate over half the time for both
cases, while the SSD and MCG are less than 20% acccurate
for Type 1 and less than 10% for Type 2.

Figure 8 shows the frequency that the most compatible
piece was placed at the given rank by the compatibility
measures. It attests to the relatively high quality of the
DLCM due to the having the highest first rank frequency
and the sharp, mostly consistent decrease in frequency af-
ter the first rank, while the SSD and MGC are more uni-
formly distributed. This means that the DLCM has a higher
chance to rank the most compatible piece towards the top.
Since the SSD and the MGC have a more even distribution,
there’s a similar chance that the most compatible piece will
be ranked towards first as ranked towards last. For example,
when using SSD there is an equal chance it will be ranked
first or twelfth. Another thing of note for the single test
image rankings, is that the DLCM had the most compatible
piece ranked first just under 50% of the time, but MGC and
SSD only ranked it first just under 4% and 2%, respectively.

4.1.2 Whole Tile Panel Algorithm Results
When testing the TPA, Rika et al. compared it against

two algorithms: an algorithm proposed by Gallagher [4] that
uses the MGC compatibility measure and the original kernel-
growth algorithm proposed by Sholomon et al. [6] using the



Method Type 1 Type 2
Known dims. Unknown dims. Known dims. Unknown dims.

Gallagher + MGC — 13.0% — 3.5%
kernel-growth + DLCM 84.5% — 58.6% —

TPA (using DLCM) 96.3% 96.0% 86.8% 82.2%

Table 3: Test results found by Rika et al. using the test cases of Type 1, known orientation, and Type 2,
unknown orientation, along with known and unknown dimensions of the tile panel. Results are the percentage
of correct matches within Tile Panel. Based on table from [5]
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Method
Type 1 Type 2

Known Unknown Known Unknown
dims. dims. dims. dims.

Gallagher+
— 13.0% — 3.5%

MGC
Kernel-growth [40, 41]+

84.5% — 58.6% —
symmetric DLCM

Multi-segment [42]+
— — — 62.9%

symmetric DLCM
Our kernel-growth+ 96.9% 96.2% 66.5% 70.6%

DLCM
Our kernel-growth+

96.3% 96.0% 86.8% 82.2%
symmetric DLCM

Table 3: Reconstruction comparison (from top to bottom): Gallagher’s greedy solver, using the MGC compatibility measure [16];
kernel-growth GA (due to Sholomon et al.) with our proposed (symmetric) DLCM; multi-segment GA (due to Sholomon et al.) with
our (symmetric) DLCM; our proposed kernel-growth GA with (non-symmetric) DLCM, and same hybrid scheme with symmetric
post-processing.

suggested by our algorithm was indeed the correct one. Figure 8
shows these segments in question.

Figure 8: Left: Images with human errors (highlighted by red),
received from the MNAz. Right: Correct assembly by our sys-
tem for Type 2 puzzle with known dimensions.

7 CONCLUSIONS
We presented in this paper a novel hybrid scheme, based on an
enhanced GA solver and a novel DL compatibility measure, for
solving the challenging, real-world task of the reconstruction of
Portuguese tile panels, which is a high-profile national endeavor of
significant importance to Portugal’s cultural heritage. Specifically,
we demonstrated how to integrate successfully the above innovative
components to achieve ground-breaking performance (over 96% ac-
curacy for Type 1 variant and roughly 87% and 82% accuracies, for
Type 2 variant with known and unknown dimensions, respectively),
for tile panels containing hundreds of relatively low-resolution tiles.

Finally, we have compiled a decent benchmark of Portuguese tile
panels, to be used by the Computer Vision and Evolutionary Com-
putation communities for training and testing.

With regards to future work, we intend to improve our DL-based
compatibility (by considering, for example, additional training data),
in an attempt to enhance the overall performance of our GA solver.
In addition, we intend to extend the capabilities of our system to
handle also missing tiles and mixed panels of tiles, to meet as many
practical challenges as possible associated with the Portuguese tile
problem.
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Figure 9: Left: Images with human errors with tile
highlighted in red. Right: image produced by TPA
with unknown orientation and known dimensions

DLCM as described above. As they say in [5], they decided
to use Gallagher’s algorithm because it can be used in the
variants they wanted to test, and it is relatively state of
the art. They ran a test for each test image ten times for
the TPA and reported the best result; no other results were
reported. Along with Type 1 and 2 test cases, Rika et al.
used a further subdivision where the dimensions of a tile
panel where known or unknown, i.e. the algorithms knew
the tile panel was 10x20 or it didn’t know. The results from
the tests can be found in Table 3.

As can be seen from Table 3, the TPA is a vast improve-
ment over Gallagher’s GA and MGC, for both Type 1 and
Type 2 test cases. In addition, their GA was an improve-
ment because, as seen in Table 3, even when they combined
their DLCM with another kernel-growth GA, their GA per-
formed better.

4.2 Discovered Human Errors
While running their tests, they ran into the situation were

it was being reported that the reconstruction produced was
wrong, even though the “overall global score was greater
than the ground truth” [5]. After further manual inspection,
it was found out that the museum experts had not assembled
the ground truth panel correctly, and the TPA’s evolved
solution was correct. Figure 9 shows the tile panels and the
pieces in question.

5. CONCLUSION
There are strengths and limitations to both approaches I

have talked about. The reason the TPA can use a kernel-
growth based GA is because of the uniformity of the pieces,
since all the tiles will have a square shape, excluding broken

tiles. It isn’t conductive to the WPA problem space, because
the shapes are so inconsistent. This is why the WPA’s ap-
proach was to use the shape of the pieces and focused less
on the image.

More can still be done to improve algorithms in this prob-
lem space. For the WPA, a next step could be to apply it to
wall paintings reconstructed by experts. For the TPA, some
next steps would be to be able to account for missing tiles,
since at the moment the algorithm assumes all the tiles are
present. It would also be great if the algorithm could also
deal with tiles from more than one panel, i.e. given a mix
of two tile panels at once, return two correctly constructed
tile panels.
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