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Wall Paintings
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Tile Panels
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Why does 
this matter?

• There are many fragmented 

mosaics, murals, frescoes, 

pottery, shredded documents, 

etc.

• Object reconstruction is hard, 

time consuming process

• Over a 100,000 tile panels 

stored at the National Tile 

Museum in Lisbon, Portugal
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Taken from [6]
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Genetic Algorithms (GA)

• Based on evolution via natural selection

• selection, recombination, and mutation

• Selection process: selects solutions made in the previous 

generation, called parents, to recombine

• Uses Fitness Functions to determine selection

• Recombination: recombines parents to create new better 

solutions, called children

• Mutation: adds randomness to the algorithm
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Based on figure from [8]
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Wall Painting Algorithm (WPA)

• Developed by Sizikova and Funkhouser

• GA which given a cluster of fragments, it produces a potential solution

• A cluster is a group of fragments with matches between them

• Initializes with singleton clusters and paired clusters

• Singleton clusters: single fragments

• Paired clusters: two fragments with a match between them
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Taken from [8]



WPA: Selection Procedure

• Starts by ranking clusters with the fitness function developed by Sizikova and 

Funkhouser

• After the clusters have been ranked, the WPA then filters out clusters with a 

low number of unique fragments

• Unique fragments: fragments rarely found in a cluster

• For example, a fragment found only in one cluster

• Encourages diversity in clusters
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WPA: Fitness Function

• Goal is to minimize loose connections

• Ranks clusters by calculating the number of fragments, 

𝑠𝑝𝑎𝑛𝑓𝑖
, or the number of matches, 𝑠𝑝𝑎𝑛𝑚𝑖

, that are part 

of the spanning tree of cluster, 𝐶𝑖
• 𝑀𝑎𝑥𝑆𝑇 𝐶𝑖 is the sum of the match scores of the maximal 

spanning tree of cluster, 𝐶𝑖

• W is a weighting parameter

𝑓 𝑐𝑖 = 𝑀𝑎𝑥𝑆𝑇 𝐶𝑖 −𝑊(𝑠𝑝𝑎𝑛𝑓𝑖
+ 𝑠𝑝𝑎𝑛𝑚𝑖

)
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WPA: Match Scores

• When a match is being considered, the WPA will score it as 𝐶𝑖𝑘(1 + 0.1𝑀)

• 𝐶𝑖𝑘 is the fitness score of the resulting cluster

• 𝑀 is the number of matches being added
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WPA: Recombination Process

• Recombines through two methods: by fragment or by match

• When combining by fragment, both parents must share a fragment

• WPA considers all possible spanning fragments and ways they connect, choosing 

the cluster with the highest match score

• When combining by match, produces a match between the parents

• Uses a weighted probability to choose which matches will be considered

𝑃 𝑖 =
𝑓𝑖

σ𝑘=1
𝑁 𝑓𝑘
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WPA: Results

• A fresco was created and artificially fragmented and weathered for testing 

algorithms in this problem space 

• Compared WPA  to three other algorithms: dense cluster growth (DCG), 

hierarchical clustering (HC), and the previous state of the art algorithm 

developed by Castañeda et al.
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WPA: 
Results

• When comparing the DCG and 

HC to WPA, Sizikova and 

Funkhouser used the same 

initial data

• F-Score is the average of 

precision and recall

• Precision: proportion of correct 
matches in a solution

• Recall: proportion of correct 
matches out of the whole 
painting

Method # of Fragments F-Score

WPA 90 0.823

HC 42 0.411

DCG 7 0.082

WPAHCDCG
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Taken from [8]
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WPA: 
Results

• Sizikova and Funkhouser 

compared the WPA visually 

against Castañeda et al.

Castañeda et al. WPA
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Taken from [8]
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Tile Panel Algorithm (TPA)

• Developed by Rika et al.

• Combination of a Kernel Growth GA and a Deep Learning Compatibility 

Measure

• Compatibility Measure: determines if two given edges match

• Used human expert reconstructed tile panels for testing
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Deep Learning (DL)

• Type of Machine Learning based on Neural Networks

• Uses 4 networks to analyze the color channels (RGB)

• One for each separately and one together

• Each returns a compatibility score, which is then added for the overall score
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Deep Learning Compatibility Measure (DLCM)

• Given two edges, returns a real number to signify its compatibility as an 

adjacent piece
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DLCM 0.91

Tiles from https://artsandculture.google.com/asset/the-hat-maker-panels-detail-real-f%C3%A1brica-de-lou%C3%A7a-ao-rato/kgG8pIatOk9fWA



• Given two edges, returns a real number to signify its compatibility as an 

adjacent piece

25

Deep Learning Compatibility Measure (DLCM)

DLCM 0.22

Tiles from https://artsandculture.google.com/asset/the-hat-maker-panels-detail-real-f%C3%A1brica-de-lou%C3%A7a-ao-rato/kgG8pIatOk9fWA



Original Kernel-
Growth GA

• Kernel: a portion of 

assembled pieces

• Takes a kernel and adds 

pieces to the adjacent edges 

of it
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Taken from [7]



TPA: Kernel-
Growth GA

• Uses 6 hierarchical phases 

to decide which piece gets 

added

• If one phase fails, moves on 

to the next until a success, 

and repeats process for 

each new addition
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Taken from [7]



TPA: Hierarchical Phases
• Phase I: Adds piece from parent with higher finess with average compatibility measure 

between it and all of its neighbors greater than max(0.8, Cmean)

• Cmean is the parent’s average compatibility score across all tile edges

• Phase II: Similar to Phase I, but it selects a piece from the parent with the lower fitness score

Before After
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Based on Figure from [7]



TPA: Hierarchical Phases
• Phase III: Adds piece that both parents agree is adjacent to the edge
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Based on Figure from [7]



TPA: Hierarchical Phases
• Phase IV: adds the most compatible piece, if available

• Phase V: adds the second most compatible piece, if available

• Phase VI: adds a random piece
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TPA: Results

•Compared just the DLCM against sum of squared differences (SSD) and 

Mahalanobis gradient compatibility (MGC) 

• Rika et al. compared whole TPA against 

• Gallagher’s algorithm combined with MGC

• Original Kernel Growth algorithm combined with their proposed DLCM

• Used two different test cases: Type 1, with known orientation, and Type 2, with 

unknown orientation
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TPA: Results

Method Type 1 Type 2

Known Dims. Unknown Dims. Known Dims. Unknown Dims.

Gallagher + MGC — 13.0% — 3.5%

Kernel-growth + DLCM 84.5% — 58.6% —

TPA (using DLCM) 96.3% 96.0% 86.8% 82.2%
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% of correct matches

Based on Table from [6]
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Conclusions

• More can still be done to improve algorithms in this problem space

• Wall Painting Algorithm (WPA)

• Apply to unsolved wall paintings

• Tile Panel Algorithm (TPA)

• Account for missing tiles

• Be able to deal with pool of tiles from more than one panel
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Questions?
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