
Using MongoDB in Cloud Based Commercial Systems

Ethan M. Uphoff
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

uphof012@morris.umn.edu

ABSTRACT
MongoDB has seen more use in commercial systems in re-
cent years. Commercial systems have many requirements
for their users when it comes to accessing their data. Every
millisecond counts when it comes to accessing said data as
many users will tend to not use a service if it takes too long
to access. As the private sector moves to the cloud, these
delays are becoming a greater problem, potentially leading
to an overall loss of sales. This isn’t the only thing that
needs to be accounted for, as the data being accessed also
needs to be consistent with previous or concurrent opera-
tions. This is where causal consistency is required. This
paper looks at how MongoDB’s most popular drivers affect
latency when deployed in the cloud as well as MongoDB’s
implementation of causal consistency and throughput loss
associated with it.

Keywords
MongoDB, Causal Consitency, Latency, Drivers

1. INTRODUCTION
MongoDB is a NoSQL database which was released on

February 11th 2009; it is classified as a document store
database [9]. Document store databases have numerous ad-
vantages over SQL databases, many of which apply to com-
mercial settings due to how the data is stored and main-
tained. MongoDB specifically lists 3 advantages over more
traditional databases: higher productivity due to faster de-
velopment, less structured data types, and more scalability
over older solutions [3]. This makes MongoDB very appeal-
ing to companies as it can be used for a variety of projects
allowing teams to quickly manage their own database with-
out having to hire employees to maintain SQL tables.

An example of a use case for fast development is proof
of concepts. A company wants to limit their investment
in developing a proof of concept, as this takes away time
from other projects which the company knows will work.
MongoDB doesn’t have a strict document structure. This
means that employees can quickly change data as needed,
as is commonly required by proof of concepts. For example,
say the employees are working on a page which has infor-
mation about a product but they don’t need the price right

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, December 2019 Morris, MN.

away. MongoDB allows them to ignore the price field dur-
ing development and later on can have it added without any
additional hassle.

As companies begin to use MongoDB, some questions
start to arise. One of the biggest ones is based on latency.
In 2016, Google collected anonymized Google Analytics data
and found that 53% of people leave a page if it takes three or
more seconds to load [2]. That is 53% of potential customers
being lost in the case of a commercial service. While there
are multiple factors which need to be accounted for in the
case of page load time, one thing that needs to be looked at
is database access time. This means that while MongoDB
has many features useful for development and use in general,
it needs to be fast. One important part in determining this
latency is the driver which MongoDB uses to choose where
to obtain a users data.

Another interesting thing about MongoDB is its inclusion
of a feature called causal consistency. This is incredibly im-
portant for systems that require that the most recent write
a user makes is readable for said user as soon as possible.
A good example of this is ATMS where users may want to
deposit and immediately check their balance after. Causal
consistency ensures that they can read their data as soon
as possible after it is written. While this feature is more
common in existing SQL systems, it is less seen in NoSQL
databases [3]. This makes MongoDB a rather interesting
case as it is extremely different from existing SQL systems
but has many of the features to possibly replace existing
SQL systems.

In the next section I’ll be providing the necessary back-
ground material required to understand the studies in Sec-
tion 3. In Section 3 I will be covering a study conducted
by Bogdanov et al. [1] on the impact of various MongoDB
drivers on latency and a study conducted by Tyulenev et
al. [6] on how causal consistency affects throughput in Mon-
goDB. I will wrap up this paper with a conclusion in Sec-
tion 4.

2. BACKGROUND
In order to understand the studies in Section 3 exploring

MongoDB latency and throughput, a few things need to be
covered first about MongoDB and MongoDB concepts.

2.1 MongoDB and Replica Sets
MongoDB is a NoSQL document store database. This

means that unlike traditional SQL databases, it stores its
information in a JSON like structure rather than tables.
This structure means that it lacks the constraints of strict



Figure 1: Model of a replica set. The primary node
receives all writes and is the source of truth. The
secondary nodes are a replica of the primary node.
The heartbeat is the communication between nodes
and specifies how old the data in a given secondary
node is in order to determine if replication should
occur [4].

rows and columns in SQL databases. It replaces tables with
collections which can be thought of as an array of JSON files,
where each set of data is a document within the collection.
There are no requirements on what is in a document. This
makes MongoDB compelling to work with for developers as
it can be easier to work with than traditional SQL databases
while keeping much of the more advanced functionality of
SQL databases intact.

One important thing about MongoDB in commercial set-
tings is how it is managed in the cloud. MongoDB allows
users to create replica sets which are essentially copies of a
MongoDB instance. In this setup, there is a primary node,
one or more secondary nodes, and an optional arbiter. The
primary node is the source of truth for the secondary nodes.
All write requests go to the primary node but reads can go
to any of the secondary nodes. Secondary nodes are going to
hold a replica of the data in the primary node. Arbiters ex-
ist to essentially change secondary nodes into primary nodes
if needed. A default MongoDB setup will replicate the data
from the primary node to the secondary nodes as soon as it
possibly can [4]. A simple setup with a primary node and
two secondary nodes can be seen in Figure 1.

Using replica sets, MongoDB can decide on which replica
to read data from, which has a significant impact on latency.
A secondary node doesn’t have to be on the same machine
as the primary node. This means that a primary node could
be based here in Minnesota while a secondary node could be
in Hong Kong. This means that Chinese and US customers
would see similar times in reading their data from MongoDB.
Writes are likely to be slower from China, though, as they
need to travel to Minnesota 1. This means that if MongoDB
were to pick a replica which is further away from the user
than it should be, it can cause the latency for a given user
to increase; thus causing a worse experience for the user.

2.2 Writes
Writes in MongoDB can be broken into two different types,

durable and non-durable writes. Durable writing is part of
the write concern functionality of MongoDB. Write concern
allows the user to specify whether their data should be im-
mediately propagated over a number of nodes [5]. A durable
write would not be complete until it has spread to every node

1There is something called multi-master to deal with this is-
sue, but it is essentially just a greater scale version of normal
replication with multiple primary nodes.

specified. This means that a durable writes can take quite a
long time depending on the number of nodes being written
to. Non-durable writes, on the other hand, only write to the
primary node; once that write has occurred it is done. Non-
durable writes essentially leave data replication up to the
replica set algorithm in place and have nothing to do with
the data replication process. Overall this leaves it up to the
company storing the data to decide if they want the data to
be quickly accessible on all replicas or let it eventually reach
all replicas over time.

2.3 Consistency
When it comes to consistency, there are multiple models

which are used. Two of these models are eventual consis-
tency and causal consistency. Eventual consistency is the
default model used by MongoDB, and is the model main-
tained by the normal replica set algorithm. If a write oc-
curs on a node, it will eventually reach all nodes after some
time [8]. Eventual consistency has its issues though. If a
user makes a write and immediately follows up with a read,
they wont necessarily get the information they just wrote to
the database if the replica they’re reading from hasn’t been
updated with the new information. MongoDB does work to
try and mitigate some of these issues, but in general even-
tual consistency has many issues in regards to multi-node
systems.

Eventual consistency finds its main use case in systems
which customers may not have to interact with. For in-
stance, a database which stores all the products for a com-
pany. If a company is releasing a product and it isn’t im-
portant, they may be able to let eventual consistency prop-
agate the data over all the secondary nodes over time. In
cases where a product may be important, they are able to
get around the issues of eventual consistency by using write
concern to specify that they want it available in a certain
number of nodes. Issues with eventual consistency start to
appear in multi-node systems when customers begin to get
directly involved. In cases where a user may want to read
data they just wrote to the database, eventual consistency
may not have propagated the data to the node the user is
reading from at that time. This is where causal consistency
steps in.

MongoDB is able to switch from eventual consistency to
causal consistency if the developer decides to. Causal con-
sistency is essentially a series of causal relationships which
makes sure users can read their writes as soon as they pos-
sibly can from a secondary node [7]. This means that the
likelihood of incorrect data being returned, or no data at
all, is far less likely. In a multi-node system this means the
users will not have to worry about being able to read writes
recently made. If a user writes to the primary nodes, then
reads from a secondary, the secondary node they are reading
from will have the data they just wrote as causal consistency
guarantees this.

For example, if someone is using an ATM which is based
on MongoDB and wanted to make a deposit followed by
a check balance request, causal consistency would step in.
It would first deposit the money, effectively writing that
deposit to the primary node. Once it is done with the write,
it needs to make the information accessable to the user for
reading as soon as possible. Causal consistency replicates
the data to the node the user is reading their balance from,
thus resulting in the correct balance. While in an eventually



consistent system with the same request, the user may not
immediately receive their proper balance as the data needs
to propagate eventually to the node they are reading from.

3. MONGODB PERFORMANCE STUDIES
There are a multitude of pieces in MongoDB which can af-

fect overall latency and throughput. Two of these things are
the drivers being used and the consistency model. Bogdanov
et al. [1] chose to look at the two most popular MongoDB
drivers and the overall effects drivers had on latency. Tyu-
lenev et al. [6] decided to look into the effect causal consis-
tency has on throughput compared to eventual consistency
with MongoDB. Both latency and throughput are important
for keeping users, as a system with high latency will bottle-
neck the overall throughput of the system causing nodes to
be utilized poorly and low throughput will increase latency
as users cannot get their data quickly.

3.1 MongoDB Replica Selection
When using MongoDB in a commercial environment, com-

panies may want to sell their products around the world. An
issue arises from this: optimizing the latency for users when
accessing their websites. Bogdanov et al. [1] set out to find
the optimal algorithm for selecting replicas, as well as de-
termining the optimal distance users can be from replicas as
to reduce latency [1].

A good example of this is a company such as Amazon
who may want to sell products in a country such as Ger-
many. While Amazon is based in the United States, they
want to make sure their users in Germany have similar laten-
cies when connecting to their website as users in the United
States. Companies such as Amazon have noticed loss of rev-
enue due to latency, as mentioned by Bogdanov et al.

For example, Amazon reports that it loses 1% of
sales if response latency increases by 100 ms [1].

Bogdanov et al. primarily used Amazon EC2, a cloud
deployment service, for their research. The main focus of
their research was to find bugs in commonly used replica
selection algorithms [1]. In the process of doing so, they
also ended up gathering data on optimal replica selection
algorithms as well as overall latencies.

When analysing replica selection algorithms in MongoDB,
Bogdanov et al. had to look at MongoDB’s drivers [1].
These drivers manage which node is selected when a user
is trying to read data. It will attempt to choose the most
optimal node for the user. This makes drivers an important
part of MongoDB when evaluating latencies.

3.1.1 Tools
To evaluate the algorithms being used, Bogdanov et al. [1]

built a tool which they call GeoPerf. GeoPerf tests how the
various replica selection algorithms respond to changes in
latency on various nodes. This helped them to find issues in
the algorithms as well as determine their effect on latency [1].

As for the latency information GeoPerf used, Bogdanov
et al. collected data on the latency of all Amazon EC2
datacenters at the time. They had not found any previous
latency information for this service so they had to collect it
all themselves. This is important information as they found
that data centers are not stable in terms of latency [1]. A
request to a datacenter may have a latency of five millisec-
onds at some point and twenty milliseconds at another point.

Bogdanov et al. used this important information in using
GeoPerf to test the algorithms, as the algorithms would need
to cope with latency changes.

Bogdanov et al. looked at two drivers in particular for
MongoDB, C++ and Java, as they were the most widely
used at the time of the study. There are other drivers which
MongoDB can make use of, but they decided to only look
at these since they were the most popular at the time [1].

3.1.2 Replica Selection
According to Bogdanov et al., replica selection has two

important pieces to keep track of: latency smoothing and
the replica selection algorithm. MongoDB manages latency
smoothing based on the location of the client, which they
call latency estimation. This latency estimation is calculated
by the driver said MongoDB instance is using. The drivers
goal is to look over available MongoDB nodes and determine
which node is the fastest to access, or has the lowest latency.
Each driver has different calculations they run in order to
find the ideal node which causes variability when it comes
to latency evaluation. This means while the C++ driver
may find one node to be the best based on it’s estimation,
the Java driver may find a different node as each calculate
latency evaluation differently [1].

The second factor in replica selection is the replica algo-
rithm itself. MongoDB manages this mostly through the
latency estimation process but also has an additional three
steps [1].

1. Collects latency samples to find the closest replicas.
These samples are the latency of calling MongoDB
replicas, which are used to find the ideal replica for
a user to read from.

2. Uses latency estimation to find relevant replicas with
less than 15ms of latency, from the latency samples, if
possible.

3. Selects a random replica from the remaining replicas.

These three steps are common across all the drivers, as most
of the variance in replica selection is based in the latency
estimation piece of MongoDB. The only part of this process
which does not happen during latency evaluation is the final
selection of a random node [1].

3.1.3 Evaluation of Algorithms and Drivers
For evaluating the algorithms being used, Bogdanov et

al. used the GeoPerf tool they created, as well as a series of
other tools to create tests for the algorithms. In order to test
their the drivers, they used GeoPerf to emulate the latencies
of the various AWS EC2 instances around the world. By
doing this they could attach these fake latencies to nodes in
their system, from there they were able to see which node
the drivers would pick and analyse the results from this. It
is important to note they were emulating datacenters as well
so latencies were not always stable, the ideal datacenter may
change randomly. An example of this process can be seen
in Figure 2 [1]. They compared the results returned from
the tests run by GeoPerf to determine which algorithm was
the most optimal. To do this they calculated the total time
each request would take based on the following equation:

Ttotal =
RTTrequest

2
+ Tprocessing +

RTTreply

2



Request

Replica 
Selection 
(Driver)

Latencies

Node 1
(Hong Kong)

Node 2
(Minneapolis)

Node 3
(London)

Latency 
Analysis

Figure 2: This is an abstracted model in which Bog-
danov et al. used to test replica selection algotihms.
Bogdanov et al. sent in requests and attached a
fake latency to each node. They would then anal-
yse which node was accessed and use the latency
attached to said node to check the effect each driver
had on latency. In this example, each node is being
treated as a different city with it’s own latency. The
latency can then be analysed based on which node
is selected. Based on [1].

In this equation, T is the total time spent doing a task. RTT
is the simulated time gathered from looking into the latency
of each AWS EC2 instance, ie, RTT is the simulated time
from when info is sent to a replica and time to return. By
using this equation, Bogdanov et al. could properly estimate
the latency of each algorithm.

After running 230 iterations of GeoPerf over a MongoDB
instance using Java drivers and one using C++ drivers, Bog-
danov et al. found that the C++ drivers were significantly
better than the Java drivers [1]:

when Java and C++ drivers are compared un-
der identical conditions, the Java driver demon-

Figure 3: This shows the difference in latencies be-
tween MongoDB drivers. It is showing the percent
of requests which completed in a given time. CDF
is the percent of completed requests and Request
Completion Time is the time in milliseconds it took
for that percent of requests to complete [1].

strates inferior performance in 80% of the cases.

They found that Java was not accounting for changes in the
simulated latencies gathered from AWS EC2 many of the
times. It was essentially taking a snapshot of latencies when
the driver began running and failed to update them as it
ran. C++ on the other hand, actively updated latencies
resulting in better latencies overall [1]. This can be seen in
Figure 3 as the C++ driver has a lower overall completion
time than the Java driver.

This means overall, if a user were choosing between the
two most popular MongoDB drivers to use in the cloud,
they should use C++ whenever possible. C++ will update
for changes in the cloud environment much more often than
Java will. This results in lower overall latency for users.

It is important to note that the research done by Bogdanov
et al. is now relatively outdated. Since the paper’s writing
in 2015, MongoDB has expanded it’s drivers substantially
and there is now a wider variety of driver choices, as well as
drivers for specific purposes. This study would need to be
run on the variations of the new C++ and Java drivers in
order to be accurate again.

3.2 Causal Consistency
When developing cloud systems which make use of data-

bases, an important requirement is that users be able to read
their data after writing it. MongoDB has causal consistency
built into it in order to circumvent these issues.

The MongoDB team did not want to eliminate eventual
consistency when adding causal consistency to the database,
and made a point to make both compatible in the same
system [6]. They implemented this so only relevant data
implements causal consistency, while less important data
can propagate to nodes over time with eventual consistency.
This means there does not need to be unnecessary strain on
the database as it will not have to apply causal consistency
to every request.

When comparing consistency models, throughput can be
analysed in place of latency. Throughput is the number
of operations a computer can process in a given amount
of time. Throughput plays a role in the overall latency of
a request as a device with lower throughput may process
requests slower if multiple users are accessing it, thus caus-
ing increased latency. This means a system with greater
throughput can process a greater number of users requests
in a given amount of time.

This is particularly important in multi-node systems where
a user’s read requests may be picked up by different nodes.
Causally consistent systems will make sure all the data the
user is reading is up to date. An example of this, as men-
tioned in 2.3, is an ATM. Users need to be able to read their
balance after depositing or withdrawing.

3.2.1 Logical Clocks
Tyulenev et al. [6] wanted a way to test the impacts

of causal consistency in MongoDB’s throughput to see the
effects the user would see. They decided on testing this
through a logical clock based on a paper written by Leslie
Lamport in 1978 [6].

Tyulenev et al. decided to use a modified version of Leslie
Lamport’s scalar logical clock to track causal consistency.
The logical clock they decided to use is called a hybrid logical
clock. This clock takes the basic idea of a scalar logical clock
and adds a real time value as well. The scalar portion is a



very simple incrementing clock. This clock increments when
specific operations occur, attaching a logical time to specific
requests. The part that makes this a hybrid clock is the real
time aspect.

The incrementing, scalar, part of the clock and real time
part are two separate entities in this system. The scalar
clock exists to ensure that operations are occurring in a
causally consistent manner. The real time is a separate value
which is used to keep many of MongoDBs features intact.
They wanted to make sure the rollback functionality of Mon-
goDB could be used with this in case there were any issues
with the data they needed to deal with. By keeping real
time available, they could roll back to a specified time. If
they did not care about additional MongoDB features, they
could have gone with a normal scalar logical clock.

For a user using an ATM, this would be the system keep-
ing track of their transactions. For instance, they make a
deposit earlier in the week and said deposit is given a logical
time of 31 as the deposit before it was given a logical time of
30 . If the user makes another deposit, that time will then
be updated to 32 and they should expect that the data they
then read has a logical time of 32 or 33 depending on how
the time is updated. Each of these requests would also be
given a real timestamp as well as it is a hybrid logical clock.

3.2.2 Dependencies
Tyulenev et al. decided to use explicit dependency track-

ing to ensure causal consistency was in effect. This depen-
dency tracking acts as a layer which updates the scalar clock
every time a specific type of request occurs. They decided to
only update this time when a write occurs, this is due to the
fact that a read will not change the data, thus not causing
causal consistency to take effect. By doing this they were
able to attach an additional write to the write the user sent,
effectively adding a logical time and a real time to their
write. They do note that while this does have very little
overhead, it does have some and was the best option they
had available. This method ends up putting more strain on
the user rather than the server processing requests though,
making it’s overall effect on throughput much lower than a
service running directly within the MongoDB instance [6].

Explicit dependency tracking would attach an operation-

Time, also referred to as a logical time, to requests as they
came in. This method, while reducing throughput due to
adding an additional write to each write request, would make
sure every request happens in the correct order and main-
tains a correct logical time. operationTime is a variable
stored in each item which records the logical ordering in
which said action occurred. By comparing the operation-

Time in various requests, they could validate that causal
consistency was in effect [6].

In terms of a user using an ATM, this is how the logical
time is going to be written in the database. So in the case
of the explicit dependency tracking Tyulenev et al. use, the
logical time is stored as operationTime, and is updated only
on writes. This means if a user deposits and the operation-

Time is 31 after the deposit, when they read their balance
they will see an operationTime of 31 if it is shown.

3.2.3 Synchronizing Clocks
Once a system to track dependencies and a clock were

decided on, there needed to be a way to keep the clock con-
sistent with incoming writes. Tyulenev et al. decided to

Figure 4: Non-Durable writes with and without
causal consistency. w:1 is a level of write concern
which can roll back writes if there is a failover.
Throughput is measured using TCP-C which has
clients sending random read and write operations
which then measures the operations per second. [6]

use SCT, Stable Cluster Time, to manage synchronization,
since SCT is optimal for strictly increasing time [6].

SCT uses the MongoDB oplog, operation log, to track
whenever updates happen. The oplog is a log in the primary
node which tracks all writes which have occurred. SCT can
make use of this by reading the oplog, seeing whenever it
updates. Whenever the oplog updates, it indicates that a
write has occurred which SCT uses to increment the opera-

tionTime value, thus making sure the operationTime is the
correct value. When SCT updates operationTime, it uses a
noop write. This write makes sure that the write which up-
dates the operationTime value does not update the oplog.
If the updating of the operationTime value was a normal
write, it would result in an endless loop as SCT would see
updates in oplog and continuously update operationTime

when it should not be [6].
For the ATM example, this is how the operationTime

updates. When the user makes their deposit on the ATM,
it sends a write request to the database. This write is then
recorded in the oplog which SCT then uses to increment the
operationTime value. This ensures that the logical time is
always valid when incrementing for writes.

3.2.4 Results
To calculate the effects causal consistency had on through-

put there were a few requirements for the system Tyulenev
et al. decided to use. They used a system with a multi-
tude of threads in order to see how the number of threads
affected throughput [6]. Threads in this case are logical pro-
cessors. This means there can be more concurrent requests
with more threads, thus increasing the overall throughput
of a server. More threads also means more availability for
the server to move data between nodes which is important
for causal consistency.

Their testing was done on a single machine running Mon-
goDB with multiple nodes. They compared said system run-
ning a causally consistent model as well as one running an
eventually consistent model over a number of threads. They
broke their testing into three distinct parts: non-durable



Figure 5: Durable writes with and without causal
consistency. w:majority is a write concern which
states that a majority of the data will be durable.
Throughput is managed in the same way as in Fig-
ure 4.

writes, durable writes, and a read only workload. The non-
durable writes and durable writes were aimed at how causal
consistent systems affect overall throughput. The reads only
workload was run to see how the number of nodes affects
reads per second over a number of threads [6].

Non-Durable Writes
When using non-durable writes, Tyulenev et al. found

that there was a significant loss of throughput with causal
consistency enabled for numbers of threads between 12 and
40 but the gap grew smaller with larger numbers of threads.
This can be seen in Figure 4. This means that if the user
can afford a large number of threads, eventually the cost of
causal consistency on non-durable writes will be almost the
same as systems using eventual consistency [6].

Durable Writes
Using durable writes led to a very different result from

non-durable writes. Due to the upfront cost of durable
writes, the throughput was similar between systems using
causal consistency and systems without it. This can be seen
in Figure 5. In these cases, causal consistency would be use-
ful in most systems as there isn’t much of a penalty to using
it [6].

Reading over Multiple Nodes
Finally, the tests on reads across multiple nodes show

that with more nodes and threads, the number of reads per
second increases substantially if a system has 16 or more
threads. This means using a multi node system with durable
writes would result in a very similar system to one without
causal consistency maintaining durable writes [6]. This can
be seen in Figure 6.

4. CONCLUSIONS
When developing a system in a commercial environment

using MongoDB, there are a variety of factors to keep track
of. Two of these factors are the overall latency and ordering
of requests. Latency is made up of multiple pieces, some
of which are easier to control than others. One which can

Figure 6: This shows the possible number of reads
per second over a number of threads. The more
nodes being used, the greater the number of reads
per second which can occur.

be controlled is the driver which MongoDB uses. The most
optimal driver between the two most used drivers in terms
of latency is the C++ driver as the Java driver tends not
to manage well under change according to tests run using
GeoPerf [1]. Though it is very likely this research is now
outdated as MongoDB’s drivers have changed substantially
since the publishing of the research done by Bogdanov et al.
in 2015.

Another important feature is causal consistency. Mon-
goDB has an implementation of causal consistency built into
it which makes sure that users can immediately read what
they write. Tyulenev et al. set out to see the effects causal
consistency had on overall throughput. The results showed
that causal consistency had very little effect on throughput
for durable writes while having a larger effect on non-durable
writes [6].

Acknowledgments
Thank you to Nic McPhee, KK Lamberty, and Kevin Arhel-
ger for giving suggestions on how to improve this paper.

5. REFERENCES
[1] K. Bogdanov, M. Peón-Quirós, G. Q. Maguire, Jr., and

D. Kostić. The nearest replica can be farther than you
think. In Proceedings of the Sixth ACM Symposium on
Cloud Computing, SoCC ’15, pages 16–29, New York,
NY, USA, 2015. ACM.

[2] GoogleData. Mobile site load time statistics. [Online;
accessed 03-November-2019;
https://www.thinkwithgoogle.com/data/mobile-site-
load-time-statistics/].

[3] MongoDB. Mongodb and mysql compared. [Online;
accessed 03-November-2019;
https://www.mongodb.com/compare/mongodb-mysql].

[4] MongoDB. Replication. [Online; accessed
03-November-2019;
https://docs.mongodb.com/manual/replication/].

[5] MongoDB. Write concern. [Online; accessed
03-November-2019;
https://docs.mongodb.com/manual/reference/write-
concern/].

[6] M. Tyulenev, A. Schwerin, A. Kamsky, R. Tan,
A. Cabral, and J. Mulrow. Implementation of
cluster-wide logical clock and causal consistency in



mongodb. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19,
pages 636–650, New York, NY, USA, 2019. ACM.

[7] Wikipedia. Causal consistency — Wikipedia, The Free
Encyclopedia, 2019. [Online; accessed
03-November-2019;
https://en.wikipedia.org/wiki/Causal consistency].

[8] Wikipedia. Eventual consistency — Wikipedia, The
Free Encyclopedia, 2019. [Online; accessed
03-November-2019;
https://en.wikipedia.org/wiki/Eventual consistency].

[9] Wikipedia. Mongodb — Wikipedia, The Free
Encyclopedia, 2019. [Online; accessed
03-November-2019;
https://en.wikipedia.org/wiki/MongoDB].


