
Using MongoDB in Cloud
Based Commercial Systems
Ethan Uphoff
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA

1

MongoDB use in Commercial Systems

2

MongoDB use in Commercial Systems

3

Overview

1. Background
a. MongoDB Overview
b. Replicas Sets
c. Consistency
d. Write Concern
e. MongoDB Drivers

2. MongoDB Driver Selection
3. Maintaining Logical Clocks with Causal Consistency
4. Conclusion

4

MongoDB

GPA Graduation_
Year

Student 1 4.0 2020

Student 2 3.1 2022

[
 {
 Name: “Student 1”,
 GPA: 4
 },
 {
 Name: “Student 2”,
 GPA: 3.1,
 Graduation_Year: 2022
 }
]

5

MongoDB

- Document store database, stores documents in JSON format [9]
- MongoDB eliminates many rules around data consistency
- This leads MongoDB to be a rather simple database in terms of

development

6

Replica Sets

MongoDB manages
replicas using primary
nodes and secondary
nodes [4]

7

Replica Sets

The primary node acts as
the source of truth

All writes go to the primary
node [4]

8

Replica Sets

The secondary nodes
contain a replica of the
primary [4]

9

Replica Sets

Information is passed
between nodes using a
heartbeat [4]

10

Consistency

- Consistency is required in most multi-node systems
- Without consistency, users reading replicas will not have up to date data
- Consistency models allow MongoDB to replicate data to secondary nodes
- MongoDB uses eventual consistency as a default

11

Eventual Consistency

Data will be
replicated as soon
as possible to
secondary nodes [8]

User
Write

Read

12

Eventual Consistency

The users data is not on
the node they are
reading from.

This means they cannot
read the data they just
wrote.

User
Write

Read

13

Eventual Consistency Use Case

Systems which manage
item information may
not have to worry about
consistency as it does
not directly affect users
as long as it eventually
goes to the secondar
nodes

Item API
Item Data

14

Causal Consistency

Data will be
immediately replicated
to the node the user is
reading from [7]

User
Write

Read

15

Causal Consistency

The users data is on the
node they are reading
from

User
Write

Read

16

Causal Consistency Use Case

ATMs require data
consistency at all times

Causal Consistency
allows users to deposit
money and check their
balance immediately [6]

ATM
Deposit

Check
Balance

17

Write Concern

- Write concern is how MongoDB manages write durability
- Durability is determined by how difficult it is to completely delete the data
- Specifies number of nodes being written to with w:<number>
- A write concern of w:1 would be a non-durable write
- A write concern of w:majority is considered durable [5]
- Cannot replace causal consistency as majority isn’t all nodes, only most

18

Write Concern w:1

User
Write

Read

19

Write Concern w:majority

User
Write

Read

w:majority needs
to be spread to
50% or more
nodes to be
considered
complete. [5]

20

MongoDB Drivers

- MongoDB has a multitude of drivers which developers can use
- These drivers choose the replica to use when reading data
- Drivers have similar functionalities but are not the same overall
- The drivers can directly affect latencies

21

Overview

1. Background
2. MongoDB Driver Selection

a. Latency Evaluation
b. GeoPerf
c. Evaluation of MongoDB Drivers

3. Maintaining Logical Clocks with Causal Consistency
4. Conclusion

22

Latency Evaluation

- Bogdanov et al. looked at how the C++ and Java drivers in MongoDB
influenced latency

- Gathered latency data from Amazon data centers around the world
- Using this data, they were able to emulate latencies in testing

23

GeoPerf

- GeoPerf is a tool which was created by Bogdanov et al. to analyse
latencies

- It runs MongoDB in an environment to simulate the latencies Bogdanov et
al. gathered

- By doing this they were able to analyse how the drivers responded to
latency changes [1]

24

GeoPerf

25

Adapted from [1]

Evaluation of MongoDB Drivers

26

[1]

Evaluation of MongoDB Drivers

- The C++ driver was significantly better than Java in a cloud environment.
- Java could not quickly adapt to changes in the datacenters
- It’s difficulty adapting meant it picked worse replicas
- This led C++ to be the better driver overall for use in the cloud if deploying

globally [1]
- Since this paper was published the drivers have been updated so these

results could be different now

27

Overview

1. Background
2. MongoDB Driver Selection
3. Maintaining Logical Clocks with Causal Consistency

a. Logical Clocks
b. Dependencies
c. Synchronization
d. Causal Consistencies Effect on Throughput

4. Conclusion

28

Logical Clocks

- Tyulenev et al. wanted to test the effect on throughput of causal
consistency

- To test this they decided to use a logical clock
- Logical clocks are a clock which instead of incrementing or decrementing

every second, increment after certain operations [7]

29

Logical Clocks

- In this case, Tyulenev et al. used an logical clock which increments
specifically when a write occurs.

- They call the clock they used a “Hybrid Logical Clock”
- This clock increments like a normal clock but also tracks the real time
- Real time allows developers to rollback databases as needed [7]

30

Why Logical Clocks?

Logical clocks track
requests so it can be used
to make sure data being
read is up to date

It is also lightweight as it
is only tracking a single
value

31

Dependencies

- Dependency on causal consistency was tracked using operationTime
- This operationTime is an incremented value in order to show the ordering

in which operations took place
- This allowed Tyulenev et al. to make sure causal consistency was in effect

[7]

32

Synchronizing Clocks

- Tyulenev et al. decided to synchronize clocks using stable cluster time
(SCT)

- Uses the mongoDB oplog, operation log, to track writes and increment
accordingly

- Few extra resources are used as it’s using features already built into
MongoDB

- Uses a noop write to increase the time [7]

33

Effect on Throughput: Non-Durable Writes

34

[7]

Effect on Throughput: Non-Durable Writes

User
Write

Read

35

User
Write

Read

Effect on Throughput: Durable Writes

36

[7]

Effect on Throughput: Durable Writes

User
Write

Read

37

User
Write

Read

Effect on Throughput: Reads

38

[7]

Conclusion

- Bogdanov et al. found that the C++ driver was significantly better than the
Java driver

- Tyulenev et al. found that causal consistency does bring down throughput,
but doesn’t affect durable writes as much

- This means companies should use the C++ driver in the cloud and can use
causal consistency without very little throughput loss if their data is
durable

39

Acknowledgements

Thank you to Nic Mcphee, KK Lamberty, and Kevin Arhelger for feedback

40

Questions?

41

References

[1] K. Bogdanov, M. Pe´on-Quir´os, G. Q. Maguire, Jr., and D. Kosti´c. The nearest
replica can be farther than you think. In Proceedings of the Sixth ACM
Symposium on Cloud Computing, SoCC ’15, pages 16–29, New York, NY, USA,
2015. ACM.
[2] GoogleData. Mobile site load time statistics. [Online; accessed
03-November-2019].

42

References

[3] MongoDB. Mongodb and mysql compared. [Online; accessed
03-November-2019].
[4] MongoDB. Replication. [Online; accessed 03-November-2019].
[5] MongoDB. Write concern. [Online; accessed 03-November-2019].
[6] M. Tyulenev, A. Schwerin, A. Kamsky, R. Tan, A. Cabral, and J. Mulrow.
Implementation of cluster-wide logical clock and causal consistency in
mongodb. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, pages 636–650, New York, NY, USA, 2019.
ACM.

43

References

[7] Wikipedia. Causal consistency — Wikipedia, The Free Encyclopedia, 2019.
[Online; accessed 03-November-2019].
[8] Wikipedia. Eventual consistency — Wikipedia, The Free Encyclopedia, 2019.
[Online; accessed 03-November-2019].
[9] Wikipedia. Mongodb — Wikipedia, The Free Encyclopedia, 2019. [Online;
accessed 03-November-2019].

44

