
Rainbow Tables

Yukai Zang
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

zangx040@morris.umn.edu

ABSTRACT
This paper introduces rainbow tables and shows how they are used
to break a form of password protection known as a hash. Two
types of rainbow tables are introduced, homogeneous and hetero-
geneous. Homogeneous rainbow tables were the �rst to be used,
but heterogeneous rainbow table can be more e�cient. Some de-
tails of their di�erences are explored. The choice of the structure
of a rainbow table produces a time-memory trade-o� that is also
described. To make all the necessary concepts clear, a demo of an
actual attack is outlined. Finally, some tests and results detailing
the time-memory trade-o� are explained.

Keywords
rainbow tables; chain; hash; reduction

1. BACKGROUND
Security concerns are important especially when they relate to

sensitive information. It is crucial to protect this sensitive infor-
mation. Normally, after a user has signed up on a website, his
username and password will be sent to a server and stored in a
database. Every time he tries to log in, the server will match his
username and password in the database to identify him to be the
account owner. However, if usernames and passwords are stored
in their original form (called plain-text), then anybody who gains
access to that �le can now log in as the compromised user. Since
most people tend to reuse the same pair of usernames and pass-
words on a variety of di�erent websites, once such information has
been hacked there is a high risk that other account being compro-
mised. So, this type of information will not be stored as its original
plain-text, instead it is more secure to store a string that can act as
proof that the password for an account was correctly entered. A
common approach is transform the password by applying a type
of function known as a cryptographic hash function. Each crypto-
graphic hash function maps data of arbitrary size onto data of �xed
size. The string produced from a cryptographic hash function is
called hashed value, which usually is in hexadecimal using [0-
9] and [a-f]. The following are �ve features that a cryptographic
hash function must have but a normal hash function might only
have some of them:

• it is deterministic so the same original plain-text always re-
sults in the same hash;

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, December 2019 Morris, MN.

• it is quick to compute the hash value for any given plain-
text;

• it is infeasible to generate the original plain-text from its
hash value except by hashing all possible plain-texts;

• a small change to the original plain-text should change the
hash value so extensively that the new hash value appears
uncorrelated with the old hash value;

• it’s infeasible to �nd two di�erent plain-texts with the same
hash value [2].

So, an ideal cryptographic hash function allows the hashing pro-
cess for the password to be infeasible to invert. But, due to the
�rst property of cryptographic hash functions, the same plain-text
will correspond to the same hashed value so that an e�ective and
commonly used way to break the hashing is making lookup tables
for every possible plain-text based on the requirements. However,
the size of lookup tables is dependent on the number of possi-
ble plain-texts. For example, on many websites passwords are 8
characters long where a character can be any one of the 62 al-
phanumeric characters (the digits [0-9], lower-case English let-
ters [a-z], or upper-case English letters [A-Z]). This makes for
628 ≈ 2.18∗ 1014 (or about 218 trillion). In order to store these
many combinations, about 2 quadrillion bytes are needed, and
even working on a fast computer with an i7 processor, it still takes
about 32 days to generate and write all of them [1]. Therefore, the
idea of crypt-analytic time-memory trade-o� (TM-TO) was intro-
duced in 1980 by Martin Hellman [3]. The concept was improved
by Philippe Oechslin in 2003, and then being known as ”Rainbow
tables” [1].

2. INTRODUCTION
In this paper, I will introduce some key parts of rainbow tables

(Section 3), which includes o�ine and online stage, hash function,
reduction function, chain, and collision. This section will explain
each part of this technique. After that, Section 4 will discuss an
improved version (called heterogeneous rainbow tables) com-
pared with the original version (called homogeneous rainbow
tables) of rainbow tables in order to perform faster in search time.
In Section 5, an actual demo will be provided. A simple illustra-
tion of the attack step-by-step will be showed in this section. At
the end, Section 6 will mention and explain the results of three
di�erent tests: relationship between search time and number of
tables used, relationship between chain length and search time,
and relationship between chain length and space needed.

3. RAINBOW TABLES
Rainbow tables are pre-computed tables for password search

from a given hash value. According to the author in [5], rainbow
tables with size of 1.4 GB can have 99.9% success rate in breaking

Windows password consisting of alphanumeric symbols. Using
rainbow tables to break the hash is divided into two stages: the
o�ine stages, and the online stage.

The o�ine stage (Section 3.1) is where the table(s) are com-
puted and stored in memory. The tables must be computed prior
to use and the computation will not depend upon any passwords
that you want to �nd. Using parallel processing, multiple, non-
redundant tables can be produced. The number of tables chosen
will depend upon the number of processors available for the online
stage. There is an extra cost associated to detecting and removing
redundant information which will be discussed in Section 4.

The online stage (Section 3.2) is when the Rainbow Tables are
being used to recover the original plain-text password from its
hashed value. The speed of the lookup can be increased by using
multiple tables and multiple processors–one for each table.

3.1 Offline stage
At this stage, rainbow tables are generated and stored in mem-

ory. In order to compute rainbow tables, there are three key com-
ponents: hash functions, reduction functions, and chains. A com-
mon problem that arises when producing chains is called a colli-
sion (Section 3.1.1).

3.1.1 Collision
If a function maps two di�erent values in one set onto the same

value in another set, it is called a collision. It happens more fre-
quent when the size of these two sets are signi�cant di�erent. The
mathematical principle known as the Pigeonhole Principle [4] en-
sures that anytime the range of function is smaller than the domain
a collision is inevitable. Therefor, when we want to map data from
a larger set into a smaller set, collision will occur.

3.1.2 Hash functions
The hash function is dependent on the hash algorithm chosen:

MD5, SHA-1, SHA-2, SHA-3, and BLAKE2 are some algorithms
referenced relatively often. Each uses a di�erent technique to hash
the plain-text to get the hash value. Due to the di�erent restric-
tions in di�erent hash algorithms, there will be slight di�erences
in time to generate a hash value since it takes di�erent time to run
di�erent hash functions [5]. The hash algorithm used in building
the rainbow tables must the same one that was used to hash the
password that was stored on the server.

3.1.3 Reduction functions
The reduction function is a mathematical function that maps

from the set of hash values back to the set of plain-texts. Di�er-
ent hash algorithms result in hashed values of di�erent lengths,
therefore, the reduction function used to construct the rainbow
tables will also depend upon the hash algorithm used to encrypt
the passwords. The set of legal passwords is much smaller than
the set of hash values, for example, the size of a set of plain-texts
which allows 62 alphanumeric characters for 8 digits is about
2.18∗1014. Meanwhile, the size of a set of hashed values based
on hash function MD5 is about 1632 ≈ 3.40∗1038, which is signif-
icantly larger than the set of plain-texts. Since a reduction function
takes a hash value and reduces it to a shorter plain-text collisions
are inevitable. One way to reduce the number of collisions is to
use multiple reduction functions (See Section 3.1.4 for an example
of how this works) [6].

3.1.4 Chains
Each entry in a rainbow table represents one chain. A chain is

an alternating sequence of strings produced by applying the hash

function and the reduction function one after another (See Equa-
tion 1). The length of a chain is the number of hashed values in the
sequence (which is equal to the number of plain-text values in the
sequence as well). This is called the chain length. The original
version of rainbow tables used the same chain length in all the ta-
bles, and this became known as homogeneous rainbow tables.
Author G. Avoine and X. Carpent [1] explored the consequences
of using chains of di�ering lengths among di�erent tables. This is
known as heterogeneous rainbow tables (Section 4). With the
pre-set chain length n, a single chain starts at t0 (which is called
starting point S0), an arbitrary plain-text, and we apply hash func-
tion h and a reduction function r0 in order to get t1. Repeat this
step n times, and hash the �nal answer to get hn (which is called
ending point E0). Only S0 and E0 are stored in the rainbow table.

S0 = t0
h−→ h0

r0−→ t1
h−→ h1

r1−→ . . .
h−→ hn = E0 (1)

Although only the starting point and ending point of a chain (one
plain-text value and one hashed value) are stored, the other values
in the chain can still be considered to exist as virtual columns.
Column 0 contains the initial plain-text (such as t0 in the example
above), Column 1 would contain the hashed values of Column 0,
Column 2 would be the reduced values of Column 1, etc.

3.1.5 Table generation
In order to perform a faster generation and computation, tables’

generation are done in parallel among processors. Each processor
generates its own table. So there will be l tables generated in total
when l processors are used. During the generation, the same re-
duction function will be applied to the same column for all chains
in the same table (See Table 1). For example, in one table, the re-
duction function used between Column 1 and Column 2 would
be the same (it might be di�erent for di�erent tables). However,
in order to lower the frequency of collisions, di�erent reduction
functions are used among di�erent columns. For example, the re-
duction function used between Column 3 and Column 4 is di�erent
from the one used between Column 1 and Column 2.

It is possible for two entries in the same column to end up with
the same value. This kind of collision will usually occur in a
plain-text column. After such a collision, the remainder of the
respective chains will match perfectly and the ending points of
those two chains will be the same. In this circumstance, one of the
two chains with the duplicated endpoint will be removed from the
table. Note that the longer the chain, the more opportunities for
collisions there are–so the more entries will likely need to be re-
moved. There might be duplicated chains among di�erent tables,
which is acceptable.

The generation usually stops when the number of di�erent end-
ing points m is deemed satisfactory [1]. After that the table will
be called a clean table [1]. On the other hand, we are remov-
ing information from the table and it is now possible for a pass-
word to no longer be able to be successfully looked up. This is
where using multiple tables with di�erent reduction functions is
important. On any given table it is a near certainty that collision
will occur and information will be removed from the table, but if
the reduction functions are di�erent between the tables then the
chances are less likely that the same password information will be
removed from all tables. As the number of tables goes up so too
does the probability of successfully �nding a password on at least
one of the tables. If a table contains all or almost all possible end-
ing points, which happens when adding any new chain with any
possible starting point would have a high probability to cause a
collision, it is called maximal size table [1]. The following is the
relationship between the probability of success and the number of

Table 1: Structure of a rainbow table [1]

S0 = t0,0
h−→ h0,0

r0◦h−−−→ h0,1
r1◦h−−−→ . . .

rn−2◦h−−−−−→ h0,n−1
rn−1◦h−−−−−→ h0,n = E0

S1 = t1,0
h−→ h1,0

r0◦h−−−→ h1,1
r1◦h−−−→ . . .

rn−2◦h−−−−−→ h1,n−1
rn−1◦h−−−−−→ h1,n = E1

...
...

...
...

...
...

S j = t j ,0
h−→ h j ,0

r0◦h−−−→ h j ,1
r1◦h−−−→ . . .

rn−2◦h−−−−−→ h j ,n−1
rn−1◦h−−−−−→ h j ,n = E j

...
...

...
...

...
...

Sm = tm,0
h−→ hm,0

r0◦h−−−→ hm,1
r1◦h−−−→ . . .

rn−2◦h−−−−−→ hm,n−1
rn−1◦h−−−−−→ hm,n = Em

clean rainbow tables of maximal size [1]:

P∗ ≈ 1−e−2l .

The author, based on this result, indicates that a value of l = 4
tables will obtain a total success rate of 99.97% [1].

3.2 Online stage
At this stage, Rainbow tables are loaded in memory and searche-

d to �nd a possible match for the given hash value. In Table 1
[1], S j is the j th chain in table, t j ,x is the j th chain in the table,
and x th plain-text in a single chain. h j ,n is the ending point of
j th chain, which is also represented as E j . The steps provided
by G. Avoine and X. Carpent [1] are as follows: according to the
given hash value y = h(x), search through the column of ending
points in all tables; if such a j that E j = y is not found, compute
h(rn−1(y)) and search through the column of ending points to �nd
a match j satisfying E j = h(rn−1(y)); if still no match, compute
h(rn−1(h(rn−2(y)))) and so on until a match j is found or all the
columns in all tables are searched; if we �nd a match, we rebuild a
chain based on the corresponding staring point S j ; we stop when
we get t j ,x which has the property h(t j ,x) = y . An example of this
process is in Section 5.2.

4. HETEROGENEOUS RAINBOW TABLES
Author G. Avoine and X. Carpent [1] suggested an optimal struc-

ture of rainbow tables. Compared with the original version, it al-
lows di�erent chain length in order to improve the performance,
especially on search time. This setup is called heterogeneous
rainbow table. Authors also indicated these tables should be
clean with maximal size since it is the most memory-e�cient to
tables satisfying these two criteria (See detail in [1]). Similar to
the procedure for homogeneous rainbow tables, the technique for
using heterogeneous rainbow tables is still divided into two stages
that have similar roles: o�ine stage and online stage. The impor-
tant di�erences that will be discussed in this section are for: the
chain length in the o�ine stage, the order of visit in the online
stage, and the parameter set-up.

4.1 Table generation
In the o�ine stage, table generation is the main part of this

stage. While, the same chain length among all di�erent tables
in homogeneous rainbow tables, G. Avoine and X. Carpent [1]
showed that chain length n of each table should be individually
computed. Meanwhile, since the tables are clean and of maximal
size, the number of chains m in a speci�c table, size of inputs N ,
and chain length n in that table are related as following [1]:

m = 2N

n +1

4.2 Order of visit
In heterogeneous rainbow tables, the chains and tables visit-

ing order is quite di�erent from in homogeneous rainbow tables.
Di�erent chain lengths among di�erent tables is the main issue.
In homogeneous rainbow tables, the visiting order is paralleled
among each table. Since the chain length and number of chains
are identical to each other, we could promise to search through ta-
bles entirely at the same time without worrying there is no entry
for any table. However, tables of di�erent chain length would have
this problem. If we do the same parallel searching, we might end
up with only one search involving a few tables with longer chain
length but do nothing to tables with short chain length. Also, we
might only search a few tables with more chains but do nothing
to tables with fewer chains. Either of these two situations are a
huge waste of time. G. Avoine and X. Carpent suggested that we
should start a search from the table with shortest and most chains
[1]. After each search step, a decision should be made based on
a metric for each tables, which is computed from the ratio of the
probability to �nd a solution over the average amount of work.
The following is the metric for the i th steps in k th table:

η(i ,k) = P (x found at the i th step in table k)

E(work for the i th step in table k)
,

with x to be the desired answer.
The decision is to choose the metric with the highest value in

order to decide which table the next search will be done. Author
had proved when we use this technique, the search time could be
minimized (See detail in [1]).

4.3 Parameter set-up
In heterogeneous rainbow tables, there are �ve parameters:

• number of tables l ,
• size of inputs N ,
• number of chains {[m]1, . . . , [m]l },
• chain lengths {[n]1, . . . , [n]l },
• memory needed to store each table {[M]1, . . . , [M]l }

For these parameters, the number of tables l is decided in Sec-
tion 3.1.5. The size of inputs is �xed by the requirements on plain-
text. The number of chains {[m]1, . . . , [m]l } is de�ned in Section
4.1. Memory of each tables should sum to a �xed value M , in Sec-
tion 6, in order to compare the search time between homogeneous
and heterogeneous rainbow tables, author use the size needed for
homogeneous rainbow tables to be the total size M in heteroge-
neous rainbow tables set-up. Besides, author used an optimization
function to compute the chain length {[n]1, . . . , [n]l } for di�erent
tables according to the �xed total size M (See detail in [1]).

Figure 1: Structure of parallel computation [6]

5. ATTACK DEMO
In this section, an attack demo based on the normal rainbow

tables technique (homogeneous rainbow tables)will be present [6].
For easy illustration in this demo, the set of plain-text allows 4
characters with [a-z] texts; there are l = 4 processors used; m =
1000 chains would be produced in each table; the chain length is
n = 2. Each reduction function ri is distinct from the rest. Table 1
de�nes the symbolism we’ll use to refer to the contents of one of
the l rainbow tables. Table 2 is a fake rainbow table.

5.1 Offline stage
At this stage, the set-up and generation of the tables would be

done, which would have the following parts: computation set-up,
chain set-up, and chain storage.

Computation set-up: With l = 4 processors, generate four
rainbow tables, one per processor. Each table will be stored in
processor locally (See Figure 1).

Chain set-up: In order to know how to produce a chain two
types of functions need to be determined in advance, the hash
function and the reduction functions. In our demo we will use MD5
as the hash function. A family of reduction functions can be gen-
erated using a method known as index shifting [5].

The hash value is a sequence of hexadecimal values represented
in ASCII. Each reduction function takes 4 bytes, which are rep-
resented by 8 hexadecimal digits. Each byte is reduced modulus
26. The resulting value is converted to ASCII using 0 7→ a, 1 7→
b, . . . , 25 7→ z. Each reduction function uses a di�erent set of four
characters. Imagine a sliding-window that is advanced by 1 char-
acter each iteration. This is the index shift. We keep shifting the
starting index as we generate the chain (See the example below).

Assume we start with the following hash:

74b87337454200d4d33f80c4663dc5e5

In order to produce the next mapped plain-text, we compute:

|74b87337|454200d4d33f80c4663dc5e5
r0−→ mcld

Notice the sequence 74b87337 at the beginning of the MD5
hash. Here is how that is broken into bytes and reduced to a 4
character plain-text sequence:

(74)16 = (116)10
mod 26−−−−−−→ 12 → m

(b8)16 = (184)10
mod 26−−−−−−→ 2 → c

(73)16 = (115)10
mod 26−−−−−−→ 11 → l

(37)16 = (55)10
mod 26−−−−−−→ 3 → d

This is how to get the output h
r0−→ t .

Notice that the same hash-value produces a di�erent plain-text
value when we use a di�erent reduction function:

7|4b873374|54200d4d33f80c4663dc5e5
r1−→ x f zm

(4b)16 = (75)10
mod 26−−−−−−→ 23 → x

(87)16 = (135)10
mod 26−−−−−−→ 5 → f

(33)16 = (51)10
mod 26−−−−−−→ 25 → z

(74)16 = (116)10
mod 26−−−−−−→ 12 → m

This is how to get the output h
r1−→ t .

As we can see, even with the same hashed value, as long as
we are at di�erent part of the chain, which means we are using
di�erent reduction functions (i.e. r0 and r1), we could produce
di�erent plain-texts so that collisions can be reduced. However,
this method is still very weak in eliminating collisions since only
a few parts of the string has been used. We could even create our
own reduction functions to be used in generation. But the rule of
using the same reduction function at the same column of all chains
in the same table has to be followed, otherwise, there is no way
we could provide the search steps outlined in Section 3.2.

Chain storage: After we follow the steps in section 3.1.5, pairs
of S j and E j will be sorted with the respect to the ending points in
each tables in order to have a minimal search time with O(log2(n)),
which is binary search.

5.2 Online stage
At this stage, we would based on the given hashed value to

�nd its corresponding plain-text via rainbow tables generated and
stored in each processor in the o�ine stage. Computation set-up
would still be explained, and a simple search process with the fake
rainbow table (See Table 2) will be illustrated.

Computation set-up: The search will be executed in parallel
among the l processors, like how the tables were generated in the
o�ine stage (similar to the structure showed in Figure 1). For easy
illustration, a simple single rainbow table is provided as Table 2.

Text Hash
aaaa 9056bcf1112722e02e4379d1a0287c4
aaab 4c189b020ceb022e0ecc42482802e2b8
aaac 3963a2ba65ac8eb1c6e2140460031925
aaad aa836f154f3bf01eed8df286afbb388

...
...

Table 2: A fake rainbow table

Search: With chain length n = 2, the structure of a single chain
will be:

Chain : t0
h−→ h0

r0−→ t1
h−→ h1

r1−→ t2
h−→ h2

A search will be performed based on the following hash (which
is not presented in the table):

74b87337454200d4d33f80c4663dc5e5

Assume this hash is mapped from x via MD5. In our demo, there
will be three di�erent cases for x to be located on: t0, t1, or t2.

1. Search through the ending points list, and there is no match
(in this case, we assume that x = t2)

2. Compute
h(r1(h(x)))=2b740a74b4de122dad1317e874ee9711
and search through the ending points list. There is still no
match (in this case, we assume that x = t1)

3. Compute
h(r1(h(r0(h(x)))))=9056bcf11127242e02e4379d1a0287c4
and search through the ending points list. A match is found.

4. Since a match is found, a chain is built from the correspond-
ing starting point aaaa. The generation stops when our
desired plain-text x is produced:

aaaa h−→ 74b87337454200d4d33f80c4663dc5e5
r0−→

mcld
h−→ 297c9f80e9ad49f832e029840b39534a

r1−→
vl oo

h−→ 9056bcf11127242e02e4379d1a0287c4

5. Our desired plain-text is ”aaaa”

In real life attacks, it is possibility that we could not �nd any
match by searching through all the tables we have since we are
not using the maximal-size tables, which means there is a chance
that the given value has not been covered by our rainbow tables.
In this case, the only way to solve it is try to make all tables with
maximal-size, which would cost more time to generate but has
almost 100% coverage on all possible plain-texts.

6. TESTS AND RESULTS
Author G. Avoine and X. Carpent calculated the average num-

ber of computation needed for both homogeneous and heteroge-
neous rainbow tables in order to indicate the average search time
needed. They used N = 240 and the same way to set-up all pa-
rameters mentioned in Section 4.3. They compared the average
improvement in search time with di�erent number of tables l are
used [1] (See Figure 2).

Figure 2: Average search time improvement using heteroge-
neous table over using homogeneous tables [1]

In Figure 2, the lower the line is, the few tables are used. From
the results, we could clearly observe the di�erence among di�er-
ent number of tables are used. The more tables we generated, the

Figure 3: Dependence of chain length with average search
time for a password [5]

Figure 4: Dependence of chain size with the length of rain-
bow tables [5]

more improvement we get from using heterogeneous rainbow ta-
bles compared with homogeneous ones, which indicates that het-
erogeneous rainbow tables do perform a faster crypt-analyses, like
suggested in [1].

On the other hand, some authors did researchers on changing
the value of m would a�ect the search time and the storage space
on homogeneous con�guration with �xed number tables [5]. They
performed two speci�c tests. The �rst one is the dependence of
chain length with average search time, see Figure 3. From this re-
sult, it is clear to observe an increasing in search time in millisec-
onds as the chain length increases. For search process in Section
3.2, �nding a match from all ending points in all tables has e�-
ciency O(log2(n)) since we sort all tables with the respect to hash
values in Section 5.1, and there are n columns to search through,
which has a time complexity of O(n log2(n)). The result from �rst
test proves this complexity clearly.

The second test is focused on the relationship between chain
length and the size of rainbow tables, see Figure 4. In Figure 4,
chains are generated form the whole set of plain-texts with di�er-
ent chain length. From this �gure, we are con�dent to conclude
that as the chain length grows, the size of rainbow tables shrinks.
Based on Section 3.1.5, the collisions will be handled, and a clean
table will be produced, and the longer your chain are, the more
likely you will have collisions. This indicates as the chain length
goes up, the total size of homogeneous rainbow tables will de-
crease.

7. CONCLUSIONS
From the results in Section 6, �rst of all, we conclude that het-

erogeneous rainbow tables have a better performance on search
time compared with homogeneous rainbow tables with the same
memory used. Then, under homogeneous con�guration, shorter
chain length leads to less search time. However, the shorter chains
need more memory to store. On the other hand, longer chain
length requires less space to store but a longer searching time
to search through longer chains. This is a typical time-memory
trade-o� model. There are several ways to optimize the model.
One could use heterogeneous tables instead of homogeneous ta-
bles or one could just use more tables. When space is limited, a
longer chain might be a great choice. Otherwise, if it takes a long
time to perform the attack, a shorter chain length that produces
tables requiring more storage space is probably better.

Acknowledgments
Extremely thanks to Professor Peter Dolan, Professor K.K. Lam-
berty, and Professor Elena Machkasova! Also thanks for every-
one’s help!

8. REFERENCES
[1] G. Avoine and X. Carpent. Heterogeneous rainbow table

widths provide faster cryptanalyses. In Proceedings of the
2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, pages 815–822, New
York, NY, USA, 2017. ACM.

[2] Cryptographic hash function. Cryptographic hash function
— Wikipedia, the free encyclopedia, 2019. [Online; accessed
15-March-2019].

[3] M. Hellman. A cryptanalytic time-memory trade-o�. IEEE
Transactions on Information Theory, 26(4):401–406, July 1980.

[4] I. N. Herstein. Topics in algebra. Blaisdell Publishing
Company, 1964.

[5] J. Horáleka, F. Holík, O. Horák, L. Petr, and V. Sobeslav.
Analysis of the use of rainbow tables to break hash. Journal
of Intelligent & Fuzzy Systems, 32(2):1523 – 1534, 2017.

[6] D. D. Mishra, C. S. R. C. Murthy, K. Bhatt, A. K.
Bhattacharjee, and R. S. Mundada. Development and
performance analysis of hpc based framework for
cryptanalytic attacks. In Proceedings of the CUBE
International Information Technology Conference, CUBE ’12,
pages 789–794, New York, NY, USA, 2012. ACM.

