Prediction-Based Cyber Analytic Threat Detection

Kedrick Hill

The Big Picture

- 80% of businesses were successfully hacked in 2015 [CBS MoneyWatch]
- Detecting misuse of data efficiently and accurately
- One leading development is through machine learning with prediction algorithms

Outline

- 1. Background
 - a. Machine Learning
 - b. Predictive Analytics
 - c. Cybersecurity
- 2. Clustering
- 3. Decision Trees
- 4. Support Vector Machines
- 5. Hybridization
- 6. Conclusion

Background: Machine Learning

- The process of a system to learn through experience
- Uses Data Science and Data Mining techniques
- Two most common Learning Types:
 - Supervised Learning:
 - Algorithm learns through an outcome
 - Uses labeled (tagged w/ classifications) training data
 - Used to fit model
 - Unsupervised Learning:
 - Analyzes data & learns patterns w/o outcome
 - Data is unlabeled

Background: Predictive Analytics

- A form of business analytics that predicts an outcome through data
- Predictive models (graphical or non-graphical) can calculate patterns or trends from past, current, or future data
- Use of pattern recognition detects anomalies when monitoring or detecting attacks

Background: Cybersecurity

- The process of ensuring information system protection including software, hardware, and any information or data
- Businesses struggle the most with:
 - Attacks
 - Cyber espionage
 - Data theft
- Cyber security intends to achieve:
 - Data confidentiality
 - Availability
 - Stronger Authentication and Integrity

Clustering and K-Means

Clustering

- Pattern recognition method
- Unsupervised
- Buckets data based on their Euclidean distance, or magnitude
- Main advantages in intrusion detection is:
 - Learns from audit (IT infrastructure) data
 - Does not need explicit descriptions
 - Classifies attacks from the data
- Two equations that are commonly used to cluster data:
 - K-Means
 - KNearestneighbor

• Centroids: average position

Example of Clustering

Clustering: K-Means

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} ||x_i - \mu_j||^2$$

- J all sets of points
- k spatial clusters, # of clusters
- n # of observations
- j current set counter
- i current observation value in a set
- x observation, denoted by a i value
- µ mean of points set j

 $\mathsf{J}=\{(0,7),\,(6,8),\,(7,8),\,(1,5),\,(1,3),\,(0,5),\,(5,6),\,(2,3),\,(0,5)\}$

J sets and their values

	x	у
А	0	7
В	6	8
С	7	8
D	1	5
E	1	3
F	0	5
G	5	6
Н	2	3
I	0	5

Centroid sets (initial)

	x	У
ABC	4.33	7.67
DEF	0.67	4.33
GHI	2.33	4.67

- X-position refers to the file trying to be accessed
- Y-position refers to the # of times failed
- Centroid sets are calculated as the mean.

ABC_x = 0 + 7 + 6 = 13/3 = 4.33 ABC_y = 7 + 8 + 8 = 23/3 = 7.67

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} ||x_i - \mu_j||^2$$

	А	В	С	D	E	F	G	Н	I
Att 1	19.2	2.9	7.24	18.22	32.9	25.88	3.24	27.24	25.92
Att 2	7.58	60.56	53.54	0.56	1.88	0.9	21.54	3.54	0.9
Att 3	10.86	41.88	32.9	1.88	4.56	5.54	8.9	2.9	5.54

Clustering K-Means Example

<u>Legend</u> Yellow - Attack 1 Green - Attack 2 Teal - Attack 3

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} ||x_i - \mu_j||^2$$

	А	В	С	D	E	F	G	Н	I
Att 1	19.2	<mark>2.9</mark>	<mark>7.24</mark>	18.22	32.9	25.88	<mark>3.24</mark>	27.24	25.92
Att 2	<mark>7.58</mark>	60.56	53.54	<mark>0.56</mark>	<mark>1.88</mark>	<mark>0.9</mark>	21.54	3.54	<mark>0.9</mark>
Att 3	10.86	41.88	32.9	1.88	4.56	5.54	8.9	<mark>2.9</mark>	5.54

Clustering K-Means Example

<u>Legend</u> Yellow - Attack 1 Green - Attack 2 Teal - Attack 3

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} \|x_i - \mu_j\|^2 = \begin{array}{c} \frac{\text{Cluster groups:}}{1. \quad \text{BCG}}\\ 2. \quad \text{ADEFI}\\ 3. \quad \text{H} \end{array}$$

	А	В	С	D	E	F	G	Н	I
Att 1	19.2	<mark>2.9</mark>	<mark>7.24</mark>	18.22	32.9	25.88	<mark>3.24</mark>	27.24	25.92
Att 2	<mark>7.58</mark>	60.56	53.54	<mark>0.56</mark>	<mark>1.88</mark>	<mark>0.9</mark>	21.54	3.54	<mark>0.9</mark>
Att 3	10.86	41.88	32.9	1.88	4.56	5.54	8.9	<mark>2.9</mark>	5.54

Clustering K-Means Example

Clustering: Results

Clustering studies:

- Blowers and Williams did a study on network packets [Intrusion Detection Survey]
 - Partitions the packets into normal or anomalous
 - Performance: 98% accuracy (attack or non-attack)
- Sequeira and Zaki did a study on shell commands at Purdue University [Intrusion Detection Survey]
 - 500 sessions captured
 - Partitioned sessions into regular and intruder
 - Max sequence length: 20
 - Performance: 80% accuracy with 15% false acceptance rate (false positive)

Decision Trees

Decision Trees

- Tree like structures
- Contain attribute or classification nodes
- Uses an input and output method
- Bottom row of nodes are the final node attributes (contain no children nodes)
- Often prebuilt using a SVM
- Supervised

- TCP Transmission Control Protocol UDP - User Datagram Protocol SFTP - SSH File Transfer Protocol PING - Ping Flood DoS POP - Post Office Protocol
- RTP Real-Time Transport Protocol DoS - Denial of Service U2R - User to Root R2L - Remote to Local

Example of a Decision Tree - Small

TCP - Transmission Control Protocol UDP - User Datagram Protocol SFTP - SSH File Transfer Protocol PING - Ping Flood DoS POP - Post Office Protocol RTP - Real-Time Transport Protocol DoS - Denial of Service U2R - User to Root R2L - Remote to Local

Example of a Decision Tree - Small

Decision Trees: Results

Studies with Decision Trees:

- Kruegel and Toth did a study on Snort, an open source tool [Intrusion Detection Survey]
 - Performed clustering rules to create a tree
 - Studied on tcpdump files from 1999 DARPA evaluation
 - Increasing number of rules increased the speed of the tree
 - Found that clustering methods coupled with decision trees reduce processing time
- Relan and Patil did a study the 2 two KDD data sets (Cup 99 & NSL-) [ML & DL in Cyber]
 - Millions of lines of data in the set
 - Network intrusion dataset
 - Two variations of Decision Trees (w/ and w/o pruning)
 - Prevents overfitting (extra parameters)
 - Found that using pruning had a higher accuracy that w/o using it
 - 98.45% accuracy with a 1.55% false acceptance rate

Support Vector Machines

Support Vector Machines

- Accurate, robust, and reliable machine learning algorithm
- Effective when features are high and data points are low
- SVM's plot data on a high dimensional space
- Supervised

Support Vector Machines: Results

Studies of in anomaly detection:

- Wagner et al. did a study on NetFlow data [Intrusion Detection Survey]
 - Studied record traffic volume in a window kernel
 - Used internet service provider sources
 - Multiple test reported a range:
 - 89% 94% accuracy on various attacks
 - 0% 3% error rate
- Perez and Farid did a study on Network Intrusion Data [ML & DL in Cyber]
 - Used NSL-KDD data set
 - Filtering algorithm
 - Tested various feature sizes (3, 36, and 41)
 - 3: 91% accuracy
 - 36: 99% accuracy
 - 41: 99% accuracy

Hybridization

Hybridization

Using multiple methods can . . .

- Increase processing speeds
 - Clustering + Decision Trees
- Simplify methods
- Aide in creation of models
 - SVM -> Decision Tree
- Cover weaknesses of alternate method(s)

Hybridization: Results

Study with Hybridization:

Yeborah-Ofori and Boachie studied the usage of ML and PA algorithms in threat detection

- Used Logistic Regression(LR), Majority Voting(MV), Support Vector Machines(SVM), and Decision Trees(DT)
- Using LR, MV, and SVM to build a DT
- Alternated tests that coupled one of the algorithms with a DT
- DT had best accuracy at predicting attacks

[Malware attacks]

Conclusion

- Cyber security is growing quickly with the high reliance on technology
- Machine learning and predictive analytics lead a new frontier in cybersecurity
- Studies prove ML and PA methods have high accuracy and speeds
- Combining methods can reduce processing time when detecting attacks
- Hybridization can improve anomaly detection

Questions?

Yeboah-Ofori and C. Boachie, "<u>Malware Attack Predictive Analytics in a</u> <u>Cyber Supply Chain Context Using Machine Learning</u>," 2019 International Conference on Cyber Security and Internet of Things (ICSIoT), Accra, Ghana, 2019, pp. 66-73, doi: 10.1109/ICSIoT47925.2019.00019.

Kuan-Ching Li, Beniamino Di Martino, Laurence T. Yang, Qingchen Zhang, "<u>Smart Data: State-of-the-Art Perspectives in Computing and Applications</u>," CRC Press, Mar 19, 2019, pp. 113-132.

Y. Xin *et al.*, "<u>Machine Learning and Deep Learning Methods for</u> <u>Cybersecurity</u>," in *IEEE Access*, vol. 6, pp. 35365-35381, 2018, doi: 10.1109/ACCESS.2018.2836950.

R. Adlakha, S. Sharma, A. Rawat and K. Sharma, "<u>Cyber Security</u> <u>Goal's, Issue's, Categorization & Data Breaches</u>," *2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon)*, Faridabad, India, 2019, pp. 397-402, doi: 10.1109/COMITCon.2019.8862245.

Wikipedia contributors. "<u>Machine learning</u>." *Wikipedia, The Free Encyclopedia*. Wikipedia, The Free Encyclopedia, 4 Sep. 2020. Web. 8 Sep. 2020.

Wikipedia contributors. "<u>Predictive analytics</u>." *Wikipedia, The Free Encyclopedia*. Wikipedia, The Free Encyclopedia, 29 Aug. 2020. Web. 8 Sep. 2020.

H. M. Farooq and N. M. Otaibi, "<u>Optimal Machine Learning Algorithms</u> for Cyber Threat Detection," 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim), Cambridge, 2018, pp. 32-37, doi: 10.1109/UKSim.2018.00018.

A. L. Buczak and E. Guven, "<u>A Survey of Data Mining and Machine</u> <u>Learning Methods for Cyber Security Intrusion Detection</u>," in IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153-1176, Secondquarter 2016, doi: 10.1109/COMST.2015.2494502.

O. Yavanoglu and M. Aydos, "<u>A review on cyber security datasets for</u> <u>machine learning algorithms</u>," 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, 2017, pp. 2186-2193, doi: 10.1109/BigData.2017.8258167.

Wikipedia contributors. "<u>Data science</u>." *Wikipedia, The Free Encyclopedia*. Wikipedia, The Free Encyclopedia, 17 Sep. 2020. Web. 22 Sep. 2020.