
Application of IBM Watson in the Medical Field

Utkarsh Kumar
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

kumar375@morris.umn.edu

ABSTRACT
There is a vast amount of data generated in medical research.
They promise insights and breakthroughs for researches, but
are a challenge to analyze and comprehend. IBM Watson
is a cognitive computing tool designed to harness volumes
of data, understand their various formats and make novel
connections. This paper will look at a study using Watson
to identify gene mutations in ALS patients and how it can
further the pace of research.
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1. INTRODUCTION
Innovation in medical science research is becoming costlier

every year. A new drug is estimated to cost up to $2 billion
and a decade of investment or more [3]. Out of potential
drug candidates, around 80% fail to gain the approval of
FDA with the most common reasons being lack of safe effi-
cient results as well as poor dosage selection. Therefore, new
drugs must be significantly more effective and safe. Further-
more researchers are often pressured to minimize time and
expenses to meet deadlines such as in the case of COVID-19.

Fortunately, there are extensive sets of published research
available to make informed decisions such as choosing the
best drug candidates to continue research with. These in-
formed decisions are based on complex human cognitive func-
tions such as learning, reasoning and inference. However,
human cognition is limited in scalability.

As of 2018, there are more than 28 million abstracts [2]
in 5000+ journals in the MEDLINE corpus alone with more
than 1.8 million published annually [3]. In contrast, the av-
erage researcher reads 250 to 300 articles in a given year [3].
This makes it impractical for a researcher to keep up with
the latest developments and be fully informed about recent
evidence that may be related to their study.

One tool that could help researchers is cognitive comput-
ing. Cognitive computing combines the capabilities of AI to
read, reason and learn grouped with multiple technologies
to provide a holistic solution to data challenges. IBM Wat-
son is an application of cognitive computing that has been
utilized in the medical field to assist researchers.
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The rest of the paper will be as follows. Section 2 details
the sources and various structures of data in the medical
field as well as challenges they present for Watson. Sec-
tion 3 breaks down and explain Watson’s cognitive analytics
in four subsequent procedures. Section 4 explains how Wat-
son summarizes those analytics to output numerical values
to researchers. Section 5 discusses Watson’s performance as
presented in a comprehensive study [1]. Section 6 discusses
the challenge of bias followed by my conclusions.

2. UNDERSTANDING DATA
To further understand how Watson can help researchers,

we need to understand data formats present in published
medical research. Some provide challenges to Watson while
others make Watson’s computations easier.

One challenge of understanding text in medical research
papers is the numerous representations or synonyms of a
term in chemical nomenclature. For example, Valium is the
brand name of the generic drug Diazepam. Apart from those
two names, there are 148 other names Valium could be ref-
ereed by in a paper. Sections 3 and 5 include examples of
chemical nomenclature and how Watson handles them in.

Another data format are Medical Subject Headings or
MeSH. It is a series of vocabulary terms, manually curated
by the Nation Library of Medicine [3], assigned to articles to
help index, catalog and search health information across ma-
jor medical database and catalogs. Examples of how Watson
uses MeSH are given in Section 3.3.

3. HOW WATSON WORKS
The very first step in replicating human learning is the

observation of data. Humans observe data by reading, lis-
tening, watching and other sensory inputs. They also use
their pre-existing knowledge to understand the context for
these observations. The new observations are then added to
the set of pre-existing knowledge. Similarly, in order to make
observations Watson must first have volumes of pre-existing
or foundational knowledge from its prior learning.

3.1 Foundational Knowledge
The foundational knowledge used by Watson is aggregated

by IBM from external, public, licensed and private sources of
content. The data is then stored in a single repository called
the Watson corpus. Just like humans heading out of college
have collected knowledge on their specific area of study, a
unique corpus is established for Watson depending on the
domain it’s applied to. The corpus for Watson application
in the field of law or finance would have a uniquely different



corpus and foundational knowledge compared to Watson’s
corpus applied to medicine. To learn domain-specific knowl-
edge, a corpus needs to contain dictionaries of names and
synonyms of entity types.

For life science, the key concepts that Watson is trained on
are genes, drugs, diseases, symptoms, and chemicals. These
are referred to as entity types and any individual gene, drug,
etc is referred to as a single entity. The foundational knowl-
edge provided by the corpus might contain various informa-
tion about each entity such as the list of proteins associated
with each gene or approval status of various drugs. Fur-
thermore, there are several dictionaries of entities and their
synonyms allowing Watson to recognize multiple represen-
tation of entities.

Once Watson has the relevant foundational knowledge,
it extracts the key concepts through a set of annotators.
A chemical structure annotator is able to extract chemical
names and convert them to unique chemical structures while
a gene or protein annotator can extract gene and protein
names and resolve to a unique gene identity. Annotators
can also identify the relationships among genes, drugs and
diseases [2]. The following sections will explain how these
operations are performed using examples Watson would en-
counter in published medical research.

3.2 Named Entity Recognition
The step after observation is recognition. Humans also

understand knowledge based on the context it’s presented
in. Most people don’t know what ‘1,3,7-trimethylpurine-
2,6-dione’ or “CHEMBL113” is, but if they read “. . . the
oral administration of CHEMBL113 was observed to. . . ” in
a paragraph which previously discussed the effects of caf-
feine, they could recognize CHEMBL113 is potentially a
compound identifier for caffeine. Recognition of entities
found in research papers is performed through rule-based
approach.

The rule-based approach to extract compounds is based
on using dictionaries of compound names and synonyms as
well as context rules. Common names like ‘caffeine’ are lim-
ited in number, so they can be identified if they are provided
in a dictionary as a part of foundational knowledge. Simi-
larly, compound names likes ‘CHEMBL113” can be looked
for in the dictionary of synonyms mentioned in Section 3.2
or identified with regular expression.

Context rules prevent a compound string such as “nitric
oxide” from being extracted if it occurs in the context of
“nitric oxide synthase” that suggest the noun in question
is a more specific noun denoted by a longer, overlapping
phrase. Another example of context rules is the identifica-
tion of contextual abbreviations and acronyms. Acronyms
cannot be reliably identified based on dictionaries due to the
vast number of words that have the same acronyms and the
meaning of an acronym can change from one document to
another. In the medical domain, alone ‘DA’ might refer to
‘descending aorta’, ‘digital angiography’, ‘diabetic acidosis’
or simply ‘dopamine’. To resolve the meaning of acronyms,
Watson identifies an acronym the first time it’s defined in
a paper and then persists that information across that doc-
ument and only that document. This results in other uses
of the same acronym being consistently interpreted across a
single document, but being discarded when Watson analyzes
the next document in the corpus.

Canonical gene names DNM1L DARPK2 DENR

PINK1 0.192771 0.036145 0
Parkin 0.37671 0 0
promote 0.000680 0 0.00068
Drp1-dependent 0.222222 0 0
mitochondrial 0.017527 0.008238 0.002665
fission 0.089744 0.028340 0.016869
Animals 0.000432 0.000235 0.000135
COS cells 0.002001 0.000858 0.000250
Dynamins/metabolism 0.106719 0.079051 0.015810
Protein Binding 0.000386 0.000303 0.000052
Signal Transduction 0.000127 0.000381 0.049282
. . .
Total 0.730355 0.200110 0.049282

Table 1: Predictive context model scores between
possible canonical forms of Drp1 and each context
word, bolded, from the example sentence as well as
MeSH terms, shown in italics, from example doc-
ument. The gene with the highest score is most
likely to be the canonical form of the ambiguous
gene Drp1. [3]

3.3 Named Entity Resolution
The recognition step is followed by the interpretation step.

After Watson has recognized the relevant strings, it performs
named entity resolution which is the process of mapping the
recognized strings to an entity. Each entity has a canon-
ical form which is used to store and query all data asso-
ciated with that entity. This allows any single entity and
the various string referring to it across a set of documents
to be grouped and identified in a search query where the
user might use any these representations. Watson uses a
hybrid approach to named entity resolution with different
normalization techniques for different types of entities. As
an example, I will cover the normalization technique used
for two of these types; chemical compounds and genes.

3.3.1 Chemical Compound Normalization
In compound normalization, each compound’s canonical

form is a simplified molecular input line entry system or
SMILES string. A compound string like “1,3,7-trimethyl-
purine-2,6-dione” is converted into a 2D chemical structure
using name-to-structure, N2S, software which systematically
decomposes the compound using chemical name formats and
internal dictionary lookups [3]. Strings that fall outside the
scope of N2S dictionary are queried for in Watson’s founda-
tion knowledge. There are also numerous string modifica-
tions such as removal of quotations and parentheses, as well
as spelling correction performed throughout the process of
dictionary lookups.

Part A of Figure 1 shows the 2D representation of chemical
compounds generated by N2S. Part B breaks the cycles in
the graph, so the resulting structure is a tree. The edges of
each cycle are numbered, so the chemical representation can
be reconstructed. In part C, each of the colored branches
off the main green branch is traversed first in a depth-first
traversal of the entire tree. Part D shows the generation of
a SMILES string by printing the nodes in the order they
are traversed. Carbon atoms are not labelled in chemical
diagrams used here, but they are represented in the SMILES
string. See [7] for additional details.



Figure 1: SMILES generation algorithm for
Ciprofloxacin: break cycles, then write as branches
off a main backbone [7].

3.3.2 Gene Normalization
The canonical form of a gene is typically stated in the

foundational knowledge and often dictionary lookup can be
used to map a synonym of a gene with that gene’s canonical
name. However, there are quite a few cases of ambiguous ref-
erence to a gene found in literature, therefore gene normal-
ization process often involves building a predictive context
model using other words surrounding the extracted string,
referred to as context words, as well as the metadata of the
document. An example of metadata would be the MeSH
mentioned in Section 2.

While analyzing a research paper, Watson could comes
across a sentence like: “We show that PINK1 and Parkin
promote Drp1-dependent mitochondrial fission by mecha-
nisms that are at least in part independent”. Watson recog-
nizes Drp1 as an entity, but cannot map it a canonical form.
This means Drp1 is an ambiguous gene name that could re-
fer to various gene canonical names provided in Watson’s
foundational knowledge.

Table 1 shows the score describing how often each context
word or MeSH term appears together with a gene synonym
that is normalized to the corresponding canonical name.
Higher scores indicate higher probability of that gene name
being the canonical form of the ambiguous gene. In this
case, Drp1 is normalized to the canonical name with the
highest score: DNM1L.

Figure 2: An example of Watson extracting relation-
ships between terms from scientific literature [2].

3.4 Semantic Relationship Extraction
The last step is extraction of relationships. A relation-

ship is generally defined as two distinct entities, an agent
and a target/object, linked through a domain relevant verb,
called a trigger word occurring in the same sentence. The list
of trigger words are curated from multiple domain-specific
databases as well as user feedback. In the sentence: “The re-
sults show that ERK2 phosporylated p53.”, the trigger word
would be ‘phosporylated’ with ‘ERK2’ being the agent and
‘p53’ being the target/object. Just like entities, the trigger
words are also normalized so ‘phosporylated’ is normalized
to ‘phosporylate’. Trigger words that are more general such
as ‘bring’ and ‘overlap’ are normalized to high-level relation-
ships such as ‘association’.

Some relationships also have a residue. If we expand the
previous example sentence to “The results show that ERK2
phosporylated p53 at Thr55.” an extra argument, ‘Thr55’ is
identified as the residue, specifically a location, and normal-
ized as threonine at position 55. The extraction of semantic
relationship is shown in Figure 2.

Relationship consisting of non-entity nouns are captured
as well. For a phrase such as “smoking increases the risk
of lung cancer”, Watson captures the relationship between
smoking and lung cancer even though smoking is not recog-
nized as an entity.

3.4.1 Document Vectors
At this point, Watson has the canonical form of all entities

appearing in any of the documents it has analyzed. Watson
then looks at how frequently these entities appear in a sin-
gle document and creates a document vector. Entities that
don’t appear in a document have a frequency value of zero
in its respective document vector. Once every document is
represented as a document vector, those vectors can be av-
eraged to create an average document vector which encodes
the average frequency of each entity across all documents.

3.4.2 Entity Vector
Watson also represents each entity with an entity vector.

An entity vector contains the average frequency of all enti-
ties across only the documents containing the entity being
represented as an entity vector. Thus an entity vector rep-
resents that entity’s literature distance to every other entity.



Algorithm 1: Create an n-ary similarity tree from a
set of entities, based on [5].

Input: entities, n
Output: n-ary similarity tree

1 mostTypicalFV = average(entities)
2 root=closestTo FV(entities, mostTypical FV)
3 entities.remove(root)
4 candidates = root
5 while not entitites.isEmpty() do
6 (e, c) = closestPairs(entities, candidates)
7 c.addChild(e)
8 if c.numChildren() == n then
9 candidates.remove(c)

10 end
11 candidates.add(e)
12 entities.remove(e)

13 end
14 return root

4. RANKING
To properly rank entities based on their similarity to an-

other entity or a set of entities, Watson first creates a sim-
ilarity tree and then applies a graph diffusion technique it.
Each node in the similarity tree represent an entity and an
edge represents the relationships between the two entities
attached to that edge. There are two parts to creating the
similarity tree: choosing an entity as the root node and gen-
erating the rest of the tree from that root node.

4.1 Generating the tree
Algorithm 1 shows the pseudocode for creating the simi-

larity tree. The algorithm takes the set of all entities as well
as an integer n as inputs. The first step is choosing an entity
as the root node of the tree. To do this, Watson compares
which entity vector is the closest to the average document
vector. That entity is the most typical entity and the most
reflective of the relationship between different entities and
their frequencies for an average document [5]. Lines 3 and
4 show the removal of the root entity from the entities set
and it’s placement in the candidates set. Out of the entities
set, the closest entity to the root node, based on literature
distance, is added as its child node. This also results in the
newly added node being removed from the entities set and
added to the candidates set. New nodes are added to the
tree by looking at which entity from the candidate set, al-
ready on the tree, is the closest to an entity from the entities
set.

There is a check, shown on lines 8-10, to make sure no
nodes have greater than n number of child nodes. For Wat-
son, n=10 was chosen through cross-validation. This bal-
ances the tree between the extremes of having all other en-
tities as the child of the root node or having a really tall
tree with every node only having 2-4 children at most. The
similarity tree is considered finished, shown on line 5, when
there are no entities left in the entities set. [5]

4.2 Graph Diffusion
Once the similarity tree is built, we would like to know

which entities, out of a candidate set, are most likely related
to some known set of entities. To do this, Watson labels
each node with 1 or 0. The value is 1 if that entity is in

scheme is needed in order to prioritize the kinases for further 
experimentation. To provide such a scheme, our initial prototype 
uses graph diffusion [34]. Graph diffusion is a semi-supervised 
learning approach for classification based on labeled and 
unlabeled data. It takes known information (initial labels) and then 
constrains the new labels to be smooth in respect to a defined 
structure (e.g. a network). In our case, we know which kinases 
phosphorylate p53 (initial labels); we would like to know which 
other proteins phosphorylate p53 (final labels). The distance 
matrix based on the literature gives us the structure of our kinase 
network. The initial labels are extracted from current knowledge 
found in review articles [8; 12; 15; 23]. 

5.1 Graph Construction and Diffusion 
Graph diffusion propagates information among network nodes 
following the edges between them (Figure 2A). Here, human 
kinases are the nodes and the distance matrix of literature 
similarity between each kinase provides the edges. To formulate 
the kinase network, we defined edges between each kinase and the 
top ten most closely related kinases. This cutoff was determined 
empirically by cross-validation performance.  

We can represent our knowledge of protein function as y, a fixed 
binary vector of labels with yi representing whether protein i 
phosphorylates p53. We seek to identify a new set of continuous 
labels, f (i.e. how likely a kinase is to phosphorylate p53) by 
diffusing the known information in a network. We can solve for f 
by minimizing the sum of the loss and smoothing functions [3]:  

 

The first term, the loss function, represents the difference between 
initial y and final labels f. During diffusion, this function regulates 
and prevents the loss of the initial labels. The second term, the 
smoothing function, represents the smoothness of the new labels f 
in the context of the Laplacian matrix L. The Laplacian matrix [5] 

is the matrix representation of the kinase network and defined 
L = D − A . The adjacency matrix, denoted A, specifies if kinase i 
is connected to kinase j where A(i, j) = 1  if the entities are 
connected and A(i, j) = 0  otherwise. The degree matrix, D, is a 
diagonal matrix given by 

Dii = A(i, j)
j
∑  

The diffusion coefficient µ balances the loss of the initial labels 
against the smoothness. The previous equation has a closed form 
solution [3]: 

 

where I is the Identity matrix. We set the diffusion coefficient µ to 
the inverse of the Laplacian’s norm 

! = 1
max!( |!!"|)!

!!!
 

This value insures that the Hessian is positive definite and the 
above function is convex [20]. In order to identify new kinases, 
we then look at the new labels f where the labels with the largest 
increase will be our targets. 

5.2 Computational Validation of Performance 
Leave-one-out cross-validation eliminates an observation from the 
original data set, and then tests whether predictions based on the 
remaining information can recover the observation that was 
removed. Each one of the known p53 kinases was relabeled as an 
unknown and the performance of the prediction method was 
evaluated by whether it could recover the information. Due to the 
limited availability of negative information in biology, those with 
no known p53 activity were treated as negatives for the purposes 
of computational validation. 

f − y( )T f − y( )+µ f TLf

( ) yLIf 1−+= µ

 
Figure 2 A) Example of graph diffusion on a network.  Given a set of edges and labeled nodes, information is diffused to find 
additional candidate nodes for the annotation in question.  B) Retrospective validation of literature vector models with graph 
diffusion to predict p53 kinases.  Using only papers from before 2003, predictions were made for 64 other kinases, 9 of which are 
now known to be true positives but were not known in 2003. 
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Figure 3: Example of graph diffusion on a similarity
tree. (Left) Dark nodes, labeled 1, represent known
entities. Light nodes, labeled 0, represent candidate
entities. (Right) The darker nodes with GD values
closer to 1 indicate more information in a node than
the lighter nodes with values closer to 0. [5]

the known set and 0 if it’s in the candidate set. Figure 3
shows an example of a graph diffusion algorithm applied to
measure the flow of information between the nodes. The left
graph in the figure visually represents nodes with value 1 as
black and nodes with value 0 with a question mark.

The graph diffusion algorithm is heavily mathematical [5],
but it can be thought of as observing heat transfer along
metal pipes. After graph diffusion is applied to the similar-
ity tree, the nodes closely surrounded by one or more known
entities tend to have a greater amount of heat or informa-
tion, which diffused from known entities, than nodes located
at a farther distance from known entities.

The right graph in figure 3 shows information diffused
from f1, f2 to f3, f4 and through them to the rest of the
graph. The darker nodes, f3 and f4, have higher graph
diffusion (GD) scores than lighter nodes f5 − f7, suggesting
f3 and f4 are more similar to f1 and f2 than the other nodes.

The similarity tree in figure 3 is quite small. In practice
these trees may have thousands of entities including dozens
of known entities labeled as 1 in the tree.

5. IDENTIFYING ALS MUTATIONS
In a 2017 study, Bakkar et al [1] used Watson to iden-

tify potential candidates for RNA-binding proteins altered
in ALS, described in Section 5.1. I will describe their us-
age of Watson and the results without going in depth into
biological aspects of the study.

5.1 Background
ALS is a disease that affects nerve cells in the brain and

spinal cord causing loss of muscle control. There are no
effective treatments, however numerous RNA binding pro-
teins, or RBP, have been shown to alter in ALS. There are
at least 1,542 RBP-encoding genes in the human genome,
11 of which have shown to have a mutation causing a fa-
miliar, genetically inherited, form of ALS. There are also 6
other RBPs shown to be altered in ALS patients, but the
gene producing them has not yet been linked to any known
mutation that causes ALS. These still make less than 1% of
RBPs studied and linked to ALS. It has been hypothesized
that additional RBPs contribute to ALS and Bakar et al
used Watson to predict potential candidates to study.



Protein Rank

TARDBP 1
FUS 5
SETX 11
MATR3 12
TAF15 13
ATXN2 21
HRNPA2B1 60
ARHGEF28 61
HNRNPA1 106
GLE1 107
ANG 713

Table 2: Rank of known RBPs when removed from
known set and placed into the candidate set. RBPs
in bold ranked in the first 15 places out of 1,468
while another 3, italicized, ranked in the top 4.1%
of candidates. Data from [1].

Since Watson uses text-based information from published
research, the researchers could only use the 1,478 RBPs men-
tioned in at least one abstract published prior to 2016 in this
study rather than 1,542 they knew existed.

5.2 Validating Watson
The researchers performed a leave-one-out cross validation

(LOOCV) where an algorithm is applied multiple times with
a different item being moved from the training set into the
testing set to test the accuracy of the model. Watson applied
the graph diffusion algorithm 11 times with a different RBP
with known gene mutation placed into the candidate set
alongside the other 1,478 RBPs each time. If the model is
accurate, then the RBP placed into the candidate set should
rank high based on the model built from the other 10 known
RBPs. Indeed, the results of the LOOCV showed 5 of the
11 RBPs, bolded in table 2, ranking in top 15 out of 1,478
RBPs with three more ranking in the top 4.%1 italicized in
Table 2.

The LOOCV also provided a point of reference for where
to expect relevant RBPs. The results, provided in Table 2,
can be extrapolated to determine that since 10 out of the
11 known RBPs ranked within top 8% of all RBPs, approx-
imately 90% of RBPs possibly altered in ALS will appear in
the top 8% of the rankings in subsequent analysis. [1]

5.3 Retrospective Analysis
The researchers then performed a retrospective analysis

where the corpus of data analyzed by Watson was restricted
to literature published up to the end of 2012. Only the 8
known RBPs with mutations linked to ALS in 2012, rather
than the 11 known in 2017, were provided in the positive
known set. Out of the currently known 1,478 RBPs being
used in the candidate set, only 1,439 were mentioned at least
once in the MEDLINE corpus of abstracts up to the end of
2012 thus those 1,439 RBPs were chosen as the candidate
set for the retrospective analysis.

Table 3 shows Watson ranking of RBPs linked to ALS.
MATR3 was identified as the top candidate while ARHGEF28
and GLE1 are ranked 89 and 165, respectively. Two of the
six other RBPs, RBM45 and hnRNPA3, shown to have al-
teration but not linked to a mutation were also ranked highly
with rank 8 and rank 45 respectively.

Candidate gene set Score (GD) Rank

MATR3 0.00204078 1
NUPL2 0.00181635 2
SRSF2 0.0017781 3
. . .
hnRNPA3 0.00154361 8
RBM45 7.79E-04 43
ARHGEF28 3.95E-04 89
GLE1 3.85E-04 165

Table 3: Result of retrospective study. Watson
ranked each gene based on semantic similarity of
the candidate to the 8 known gene. The bold genes
have been linked to ALS. Data from [1].

This retrospective analysis demonstrates that Watson, when
given only literature published up to the end of 2012, could
identify in top 11% of potential candidates every RBP linked
to a mutation in ALS that would be found in the next 4 years
between 2013 and 2017. If this technology was available and
used in 2012, the researchers would have been able to iden-
tify those RBPs even sooner.

5.4 Prospective Analysis
Once the retrospective analysis established the perfor-

mance capability of the model, the researchers performed
a prospective analysis. 1,478 RBPs, 39 more than the retro-
spective analysis, were mentioned at least once in MEDLINE
abstracts prior to 2016 and used as the candidate set for the
prospective analysis. The known set includes all 11 known
RBPs, identified prior to 2016, shown to mutate in ALS.

Only two proteins, underlined in Table 4, of the top ten
candidates genes ranked by Watson had previously shown
to be altered in ALS patients. Validation studies were per-
formed with the other eight as positive control to see if they
are altered in ALS. For negative control, three RBPs from
the bottom of the the rankings were chosen with expectation
of not seeing any alteration in those proteins.

Four different biological tests were carried out on these
RBPs to check for alternation. These tests are purely bio-
logical so I won’t cover them. It is significant that an RBP
had to show statically significant difference between ALS
and controls groups in at least two of these biological tests
to be considered valid.

The tests’ results showed that five out of the eight RBPs
previously unlinked to ALS showed significant alterations.
No alternation was found in the three RBPs from the bottom
of Watson rankings indicating they are, as expected, not
linked to ALS. Watson guided researchers to further examine
8 candidates out of 1,478, and five RBPs never linked to ALS
before were discovered as a result.

6. THE CHALLENGE OF BIAS
As mentioned in section 5.1, the study could only use

1,478 RBPs mentioned in online published abstracts. This
indicates that remaining 64 RBPs hadn’t had the same level
of research or discussion around them. Further research us-
ing Watson that builds only upon the results of Bakkar et
al. [1] will similarly lack online published data on those 64
RBPs. If the usage of Watson becomes widespread, there is
a danger of ignoring data represented in formats incompat-
ible with Watson.



Candidate gene set Score (GD) Rank

hnRNPU 0.002914 1
SYNCRIP 0.002747 2
RBM45 0.002680 3
RBMS3 0.002494 4
SRSF2 0.002459 5
hnRNPH2 0.002255 6
NUPL2 0.002152 7
CAPRIN1 0.002109 8
RBM6 0.001915 9
MTHFSD 0.001910 10

Table 4: Top 10 candidates after the prospective
study. Only the two underlined proteins, RBM45
and MTHFSD, have shown prior links to ALS. Data
from [1].

Additionally, bias inherently present in published research
can be further propagated by Watson. Especially in the
medical field, the patient’s race and ethnicity can be im-
portant predictors of trial outcomes, but only a small frac-
tion of studies include the race or ethnicity of patients.
Among trials that report demographic race or ethnicity data,
the inclusion of minority patients is substantially lower ex-
pected based on the census demographics leading to de-
creased generalizability of trial conclusions across clinical
populations. [4, 6].

The challenge doesn’t necessarily needs to be addressed
by Watson, but at least acknowledged that Watson’s has
potential to increase propagation of bias in the field.

7. CONCLUSIONS
Despite the challenges mentioned in the previous section,

Watson is a powerful cognitive computational tool for ana-
lyzing published literature. As shown in Bakkar et al. [1],
its application can lead to better selection of candidates
for further examination significantly accelerating the pace
and accuracy of research in the medical field. With fur-
ther improvements in the field of cognitive computation as
well as the exponential increase of data, we can expect to
see widespread adoption of Watson and other similar cogni-
tive computing tools by researchers looking to overcome the
scalability limitations of human cognition.
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