Application of IBM Watson in the Medical Field

Utkarsh Kumar 2020 CSCI Senior Seminar Division of Science and Mathematics University of Minnesota Morris

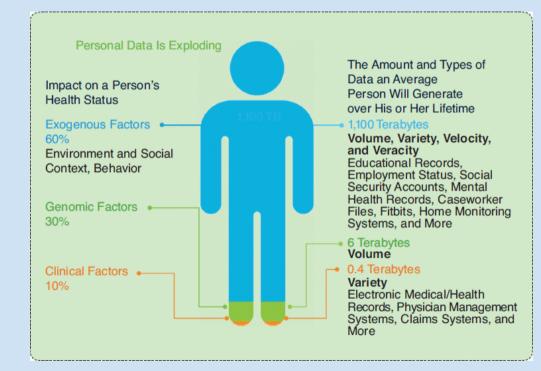
What is Watson?

- Question Answering (QA) computing system
- Open domain datasets
 - Wikipedia
 - Twitter
 - Online Research Datasets

- The Problem
- Data in published medical research
- How Watson works
- Case Study
- Conclusions

The Problem

- Drug Discovery [1]
 - Massive Investment
 - 80% fail to gain approval of FDA.
- Pressure on Researchers
- A lot more data
 - Limitation: Scalability

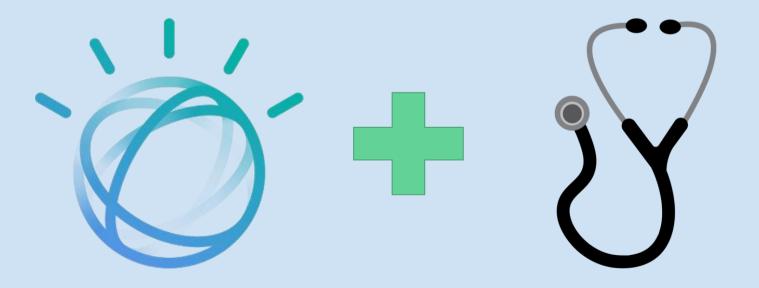


Limitation: Scalability

- MEDLINE Corpus
 - U.S National Library of Medicine
 - 28 million+ abstracts
 - 5000+ journals
 - **1.8** million abstracts published annually
- Average Researcher
 - 250-300 articles in a given year
 - Time factors limit this

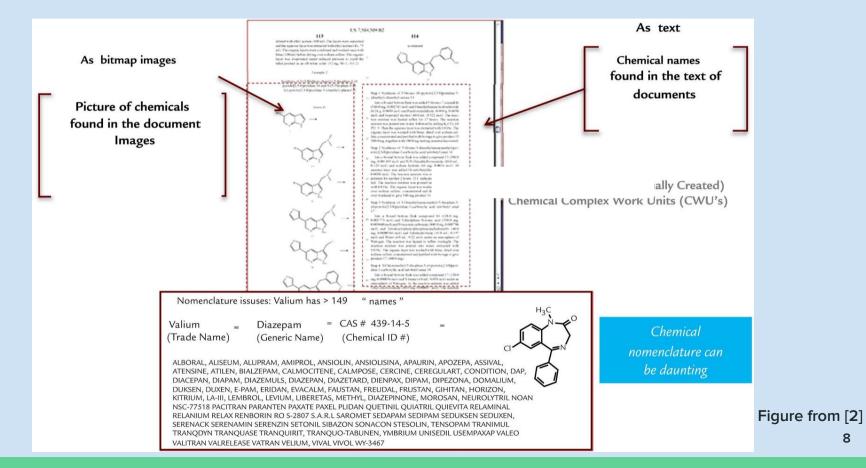
The Need: Solution!!

Let Watson do (most of) the Work



- The Problem 🗸
- Data in published medical research
- How Watson works
- Case Study
- Conclusion

Understanding Data: Chemical Nomenclature



Understanding Data: MeSH

- Medical Subject Headings
- Manually curated series of vocabulary terms
 - National Library of Medicine

• Assigned to articles and books

- Index citations
- Facilitate Search health information

MeSH heading and definition: The definition describes how the term is used for indexing.

Year introduced: The term is searchable back to the earliest date shown.

Subheadings: Lists subheadings that have been used with this heading. Select subheadings for searching using the checkboxes.

Ventilation-Perfusion Ratio

The ratio of alveolar ventilation to simultaneous alveolar capillary blood flow in any part of the lung. (Stedman, 25th ed Year introduced: 1970(1968)

PubMed search builder options

Subheadings:

drug effects
 etiology
 immunology

Restrict to MeSH Major Topic.

instrumentation
 methods
 physiology

radiation effects
 veterinary

9

- The Need 🗸
- Data in published medical research \checkmark
- How Watson works
- Case Study
- Conclusion

How Watson works

How Watson Humans reason

- Observation
 - reading, listening, watching and other sensory inputs.

• <u>Pre-existing</u> <u>knowledge</u>

How Watson Humans reason

• Observation

• reading, listening, watching and other sensory inputs.

• <u>Pre-existing</u> <u>knowledge</u>

How Watson Humans reason

- Observation
 - reading, listening, watching and other sensory inputs.

• <u>Pre-existing</u> <u>knowledge</u>

Foundational Knowledge

- *Establish a unique corpus
 - Dictionaries of domain-specific knowledge
- Key Concepts in the medical field
 - Genes
 - Drugs
 - Diseases
 - Symptoms
 - Chemicals

• Entity Types and Entity

Examples

- List of proteins associated with each gene.
- Approval status of drugs.
- Synonyms

- The Need \checkmark
- Data in published medical research \checkmark
- How Watson works
 - Foundational Knowledge
 - Named Entity Recognition
 - Named Entity Resolution
 - Semantic Relationship Extraction
- Case Study
- Conclusion

Named Entity Recognition

- 1,3,7-trimethyl-purine-2,6-dione
- CHEMBL113
- "Caffeine is the world's most widely consumed psychoactive drug.....the oral administration of

CHEMBL113 was observed to. . . "

Dictionaries

- $\circ \quad \text{compound names} \quad$
- o synonyms
- Rule-based approach

Rule based-approach

Context Rules

- Prevent subterms to be extracted
 - "Carbon" in context of "Carbon Dioxide"
- Acronyms
 - Numerous
 - Lack of consistency
 - Temporary definition

- The Need \checkmark
- Data in published medical research \checkmark
- How Watson works
 - \circ Foundational Knowledge \checkmark
 - \circ Named Entity Recognition \checkmark
 - Named Entity Resolution
 - Semantic Relationship Extraction
- Case Study
- Conclusion

Named entity Resolution

- General Normalization
 - Case normalization
 - Carbon, carbon, CARBON → carbon
 - Accent normalization
 - é → e
- Canonical form
- Normalization based on entity types
 - Chemicals, Compounds, Genes

Gene Normalization

- "We show that PINK1 and Parkin promote Drp1dependent mitochondrial fission by mechanism that are least in part independent"
- Context terms
- MeSH terms
- Frequency of normalization

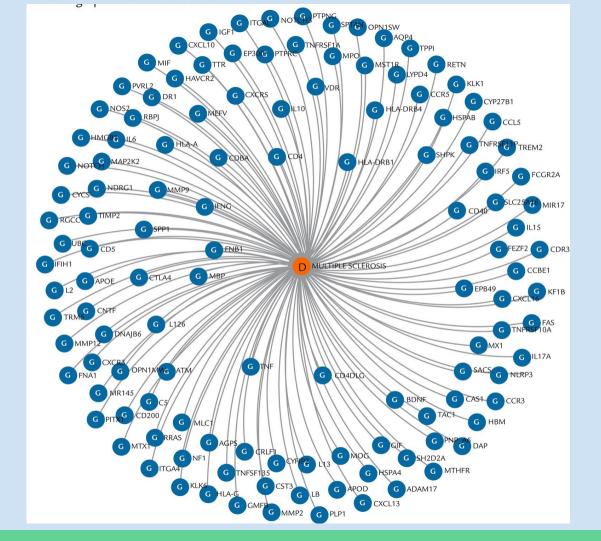
Candidate gene canonical name	DNM1L	DAPK2	DENR	CRMP1	UTRN
PINK1	0.192771	0.036145	0	0	0
Parkin	0.037671	0	0	0	0
promote	0.000680	0	0.00068	0.001134	0
Drp1-dependent	0.222222	0	0	0	0
mitochondrial	0.017527	0.008238	0.002665	0.000162	0
fission	0.089744	0.028340	0.016869	0	0
Animals	0.000432	0.000235	0.000135	0.000435	0.000466
COS cells	0.002001	0.000858	0.000250	0.000465	0.000071
Cercopithecus aethiops	0.002371	0.000677	0.000452	0.000339	0.000113
Dynamins/metabolism	0.106719	0.079051	0.015810	0	0
Humans	0.000222	0.000249	0.000174	0.000297	0.000202
Mitochondria/metabolism	0.015716	0.004208	0.001460	0	0
Mitochondrial Degradation	0	0.020202	0	0	0
Mitochondrial Dynamics	0	0.017341	0.005780	0	0
Mitochondrial Proteins/metabolism	0.027596	0.002581	0.003971	0	0
Mutation/genetics	0.000771	0.000514	0.000043	0	0.000043
Parkinson Disease/genetics	0.010508	0	0.000876	0	0
Phosphorylation	0.000298	0.000613	0.000033	0.001043	0.000215
Protein Binding	0.000386	0.000303	0.000052	0.000564	0.000230
Protein Kinases/metabolism	0.000942	0	0	0	0
Signal Transduction	0.000127	0.000174	0.000032	0.000681	0.000317
Ubiquitin-Protein Ligases/metabolism	0.001651	0.000381	0	0	0
TOTAL	0.730355	0.200110	0.049282	0.005120	0.001662

- The Need \checkmark
- Data in published medical research \checkmark
- How Watson works
 - Foundational Knowledge
 - \circ Named Entity Recognition \checkmark
 - \circ Named Entity Resolution \checkmark
 - Semantic Relationship Extraction
- Case Study
- Conclusion

Semantic Relationship Extraction

Relationship

- Two distinct entities
 - Agent
 - Target
- Domain-relevant verb or Trigger word
- Example
 - "The results show that ERK2 phosphorylated p53".
- Normalization
 - • "phosphorylated" → "phosphorylate"
 - "bring" or "overlap" → "association"



- The Need \checkmark
- Data in published medical research \checkmark
- How Watson works 🗸
 - \circ Foundational Knowledge \checkmark
 - \circ Named Entity Recognition \checkmark
 - \circ Named Entity Resolution \checkmark
 - \circ Semantic Relationship Extraction \checkmark
- Case Study
- Conclusion

Case Study

- Artificial intelligence in neurodegenerative disease research:use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis
 - 2017 study
 - Identifying proteins altered in ALS
- What is ALS?
 - Disease
 - loss of muscle control
 - No effective treatment
 - Linked to RNA binding proteins(RBPs) in patients

Background

• RBPs

- 1542 RBPs-encoding genes in human genome
- 11 genes have shown mutations related to ALS
- 6 other RBPs with alterations related to ALS
 - Gene hasn't been linked to a mutation
- Less than 1% of RBPs have yet to be linked to ALS
- Hypothesis:
 - Additional RBPs contribute to ALS
- Predict potential candidates
- Limitation
 - Only **1,478 RBPs** were mentioned at least once in published abstracts

Validating Watson

- Leave-one-out cross validation (LOOCV)
 - Applied an algorithm 11 times
 - A different RBP from known gene mutation is moved into the candidate set alongside the other 1,478 RBPs
- 90% of the known proteins ranked are in top 7 %

	Protein	Rank
ĺ	TARDBP	1
	FUS	5
	SETX	11
ĺ	MATR3	12
	TAF15	13
ĺ	ATXN2	21
	HRNPA2B1	60
ĺ	ARHGEF28	61
	HNRNPA1	106
	GLE1	107
	ANG	713

Retrospective Study

• Literature published up to 2012

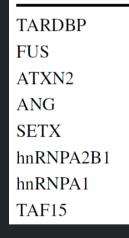
- 8 known RBPs linked to mutations
- **1,439 out 1,487 RBPs**

• Goal:

- How would Watson rank the other three ?
 - MATR3, ARGHEF28 and GLE1
 - Found 2013 2017

Protein	Rank
TARDBP	1
FUS	5
SETX	11
MATR3	12
TAF15	13
ATXN2	21
HRNPA2B1	60
ARHGEF28	61
HNRNPA1	106
GLE1	107
ANG	713

Known Gene set



29

Retrospective Study Results

• Blue Box

- Proteins with known gene mutations
- Red Box:
 - Altered proteins without known gene mutation
- Ranked in top 165 (11%) of candidate gene set
- What if Watson was used in 2012 ?
 - MATR3 → May 2014

Candidate Gene set	Score (GD)	Rank
MATR3	0.00204078	1
NUPL2	0.00181635	2
SRSF2	0.0017781	3
SYNCRIP	0.00175763	4
hnRNPU	0.00174455	5
RBM6	0.00161879	6
IGHMBP2	0.00154716	7
hnRNPA3	0.00154361	8
hnRNPC	0.00153549	9
hnRNPM	0.00151568	10
_		
RBM45	7.79E-04	43
TIA1	7.76E-04	50
ARHGEF28	3.95E-04	89
GLE1	3.85E-04	165

Prospective Study

• 1478 RBPs and 11 known genes

Candidate Gene set	Score (GD)	Rank
hnRNPU	0.002914	1
SYNCRIP	0.002747	2
RBM45	0.00268	3
RBMS3	0.002494	4
SRSF2	0.002459	5
hnRNPH2	0.002255	6
NUPL2	0.002152	7
CAPRIN1	0.002109	8
RBM6	0.001915	9
MTHFSD	0.00191	10
_		
hnRNPA3	0.001534	18
_		
SMN2	7.72E-04	63
EWSR1	7.71E-04	66

Altered proteins without known gene mutation

Validation and Results

• Validation

- Positive control: 8 of the top 10 candidates
- Negative control: Bottom 3 candidates (rank 1476-1478)
- 4 different biological methods
 - Show significant difference in at least two methods
- Results
 - 5/8 RBPs showed significant alterations.
 - No alternations in bottom RBPs

- The Need \checkmark
- Data in published medical research \checkmark
- How Watson works \checkmark
 - \circ Foundational Knowledge \checkmark
 - \circ Named Entity Recognition \checkmark
 - \circ Named Entity Resolution \checkmark
 - \circ Semantic Relationship Extraction \checkmark
- Case Study 🗸
- Conclusion

Conclusion

- Powerful tool
 - Analyzing published literature at a scale
 - Better selection of candidates for further examination
- Widespread Adoption ?

Acknowledgements

Thanks to Nic Mcphee and Elena Machkasova for their advice.

Questions

References

[1] N. Bakkar, T. Kovalik, I. Lorenzini, S. Spangler, A. Lacoste, K. Sponaugle, P. Ferrante, E. Argentinis, R. Sattler, R. Bowser, and et al. Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in Amyotrophic Lateral Sclerosis. Acta Neuropathologica, 135(2):227–247, 2017

[2] Y. Chen, J. Elenee Argentinis, and G. Weber. IBM Watson: How cognitive computing can be applied to big data challenges in life sciences research.Clinical Therapeutics, 38(4):688 – 701, 2016.

[3] The MeSH database.

https://www.nlm.nih.gov/bsd/disted/meshtutorial/themeshdatabase/index.html.

References

[4] M. N. Ahmed, A. S. Toor, K. O'Neil, and D. Friedland.Cognitive computing and the future of healthcare cognitive computing and the future of healthcare: The cognitive power of ibm watson has the potential to transform global personalized medicine.IEEE Pulse,8(3):4–9, 2017.

[5] Wikipedia. Watson (computer) — Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Watson\%20(computer)&oldid=982177596

[6] Malnutrition - clip art stethoscope png transparent png- full size clipart (265149) - pinclipart. https://www.pinclipart.com/maxpin/iRhRTR/

[7] C. Graham. How much caffeine in a cup!!!! https://halatreecoffee.com/konacoffee-blog/how-much-caffeine-in-a-cup/, Jul 2019