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ABSTRACT
Breast cancer is a prevalent cause of death for women across
the globe. Survival rates of breast cancer are directly linked
to how early a possible case is detected and treated. This is
especially important in less developed countries that don’t
always have sophisticated testing methods to diagnose possi-
ble breast cancer patients. This paper looks at the use of var-
ious machine learning algorithms, namely k-nearest neigh-
bors and support vector machines, to assist with breast can-
cer diagnosis using data regarding patient’s tumors, along
with other factors, to hopefully provide doctors a better way
to properly diagnose cancerous tumors. This will allow pa-
tients to be treated in the early stages of cancer, lowering
their risk significantly.
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1. INTRODUCTION
Significant research is being done on applications and ef-

fectiveness of machine learning algorithms in the classifica-
tion of tumors for breast cancer diagnosis. They will hope-
fully be used to help doctors improve their current diagnos-
tic methods and minimize potential errors. These algorithms
evaluate different features of a tumor collected through biop-
sies to predict whether it is malignant or benign.

In this paper, two machine learning algorithms will be
looked at: k-nearest neighbours and support vector ma-
chines. We will evaluate both algorithms examining their
performance at predicting the classification of tumors.

We will review several papers that compare multiple ma-
chine learning algorithms but we will be focusing on k-nearest
neighbors and support vector machines as they seemed to
be the most accurate based on the data from these papers.
Some of the other algorithms analyzed in these papers in-
clude decision trees, random forest, and logistic regression.

We will begin this paper in section 2 by going over some
background on cancer and machine learning techniques. Sec-
tion 3 will look at how the data and machine learning algo-
rithms are set up and evaluated for correctness. In section
4 we will discuss the studies featured in this paper. Finally,
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in section 5 we will look at the results from these papers
and how k-nearest neighbors and support vector machines
compare.

2. BACKGROUND
In this section, we will go over some background informa-

tion that will be used throughout the paper. We will begin
with some breast cancer background, talk about some basics
of machine learning, and go over the two machine learning
algorithms we will be discussing in this paper: k-nearest
neighbors and support vector machine.

2.1 Breast Cancer Background
Abnormal production of cells that form in large clumps

are known as tumors. Tumors can be benign, meaning that
the cells in the tumor are normal and are generally not very
worrisome. However, if these cells grow uncontrollably they
are known as malignant tumors and the cells are known as
cancerous cells. These can often become life threatening
when they spread to other parts of the body through metas-
tasis. Malignant tumors are very challenging to treat but it
is much easier if the tumor is detected and treated early.

The first step to cancer diagnosis is detecting a tumor.
This can sometimes be done by actually seeing or feeling a
lump, but, often a tumor is only detectable through imag-
ing such as mammograms or MRIs. If a tumor is detected,
it needs to be analyzed to determine if it is benign or ma-
lignant. This is typically done through a biopsy, taking a
small sample of the tumor which is then analyzed in a lab.
With the information from the biopsy, a doctor determines
whether it is malignant or not and what actions need to be
taken. The machine learning approach being explored here
is specifically looking to improve the effectiveness of deter-
mining whether a tumor is benign or malignant.

2.2 Machine Learning
Machine learning is a subset of artificial intelligence or AI.
There are several types of machine learning. Classification

is one in which a label is given to whatever data point is
being examined. In the case of breast cancer a tumor would
be classified either as benign or malignant.

Training in machine learning is where you take a section
of a dataset and give it to the algorithm to learn from. This
is done by giving the algorithm the data point as well as
what classification it belongs to. Given enough data, the
algorithm should ‘learn’ what in the data means it is more
likely to be a certain classification over others. For example,
if many of the tumors in the test set that were above a



Figure 1: An example of KNN [3]

certain size were found to be malignant, then the algorithm
would be more likely to think that other tumors above that
size would be malignant. The algorithm is then able to use
what is learned from in the data to classify future unknown
data points.

Dimensionality is how many features are being looked at.
For example, a two-dimensional space might have a tumor’s
radius and texture. While a three-dimensional space would
have another feature like radius, texture, and compactness.
The number of dimensions being considered can be quite
high and can affect the performance of machine learning
algorithms. To combat this, it is possible to reduce the
number of dimensions while keeping most of the important
data through methods like Principle Component Analysis,
which will be discussed in section 3..

Different algorithms can have different advantages and
disadvantages depending on the data evaluated. Across the
papers examined, algorithms k-nearest neighbors and sup-
port vector machine generally performed the best on aver-
age.

2.2.1 K-Nearest Neighbors
K-Nearest Neighbors, or KNN, is a commonly used ma-

chine learning algorithm that is classified as using ‘lazy learn-
ing’. When using a lazy learning method, the training data
is processed during runtime, instead of processing the train-
ing data and then handling queries at a later time. KNN
predicts the classification of a data point by looking at the
classification of its k nearest neighbors, with k being a value
the user chooses. Because of this, KNN’s performance is
directly related to the k value chosen, so multiple k values
should be tested to find the most accurate one for a given
dataset.

An example of KNN in two dimensions can be seen at Fig-
ure 1. If we take the blue squares to represent data points
from the test data that were identified as benign tumors and
the red triangles to represent data points of malignant tu-
mors, we are then able to use this to predict the classification
of the point we are looking at, in this case, the green circle.
If k=3, the algorithm would look at the 3 closest points to
the one being classified, in this case, the points inside the
solid line. The KNN classifier would then predict that the
point belongs to the red triangle class, or is a malignant tu-
mor, as there are more red triangles then other classes in the
nearest k neighbors. If k=5, it would take a look at the 5
closest points, in this case being the points inside the dotted
line, and would predict the point belongs to the blue square,
or the benign class.

KNN performs much better on datasets with lower di-

Figure 2: An example of SVM [9]

mensionality and, therefore, works well when paired with
techniques that reduce dimensionality. As dimensions in-
crease, the distance between the closest point and distance
between the average point decreases. When the closest point
isn’t much closer to the point we are considering then the
average point, KNN’s predictive power is reduced. [2]

2.2.2 Support Vector Machines
Support Vector Machines, or SVMs, are another machine

learning algorithm. SVMs predict classification by fitting a
hyperplane in a high-dimensional space. The hyperplane is
set one dimension lower than the one currently being exam-
ined. If we are looking in three dimensions, for example, a
hyperplane is a 2-d plane. This gets harder to visualize in
high dimensions, but a hyperplane will always split whatever
you’re looking at into two parts. If you have two clusters of
data, the best way to separate them is to find the hyperplane
that is furthest away from any data point. The hyperplane
is then used for classification in that it is a divider between
the two classes, so anything on one side is predicted to be-
long to class x and anything on the other is predicted to
belong to class y.

An example of SVM in two dimensions can be seen in
Figure 2. If we take the black circles to be data points
belonging to the benign tumor class from our test dataset
and white circles belonging to the malignant tumor class,
then the red line is the hyperplane that best divides the
data into its respective classes by being the furthest from
any given point. The green line does not divide the data
into the classes we want as it groups black circles with white
circles and doesn’t keep all the black circles together. The
blue line does divide the data into the correct classes but
not very well. If we wanted to classify the green circle, I
think most people would predict it to belong to the black
circle group based on distance, but if we went off the blue
line it would belong to the white circle class.

3. METHODOLOGY
In this section, we review the methodology used in the

experiments being examined. We begin talking about the
dataset that they use, how they set up the data for the al-
gorithms to effectively use the data, and how the algorithms
will be evaluated so that they can be compared.

3.1 Dataset
The datasets looked at for different experiments vary in

the number of samples, as well as what features are in-
cluded in them. Naveen et al. [5] used the breast cancer
dataset from the University of California, Irvine, or UCI
(UCID). This dataset included 116 samples of tumors which



Figure 3: Graph on UCID’s feature variance [5]

included nine features: Age (years) how old the patient is,
BMI (kg/m2) mass divided by body height squared, which
is a rule of thumb measurement typically used to determine
underweight/overweight, Glucose (mg/dL) blood sugar lev-
els, Leptin (ng/mL) a hormone that controls appetite and
energy level and relates to the amount of fat tissue in the
body, Adiponectin (ug/mL) a protein hormone that regu-
lates glucose levels and is used to measure risk of type 2
diabetes, Resistin (ng/mL) a hormone which is related to
cholesterol levels, Insulin (Uu/mL) a hormone that regu-
lates metabolism, HOMA a measure of insulin resistance,
and MCP-1 (pg/dL) a protein that is involved in inflamma-
tion.

Sharma et al. [8], Chakradeo et al. [1], Saoud et al. [7],
and Kaklamanis et al. [4] all used the Wisconsin Breast
Cancer dataset (WBCD). This has two datasets, the diag-
nostic dataset and the prognostic dataset. The diagnostic
dataset has 569 entries with 357 benign tumors and 212
malignant tumors. The prognostic dataset has 198 entries
with 151 benign tumors and 47 malignant tumors. These
datasets include nine features: radius of the tumor, area of
the tumor, perimeter of the tumor measured by counting
the number of pixels, texture is a measurement of the vari-
ance in the grey-scale intensity of pixels, smoothness or the
distance between lengths of the tumor, compactness which
is the perimeter squared divided by area, concavity which is
a measure of the number and severity of indentations, con-
cave points which is only the number and not the severity
of indentations, symmetry is the length difference between
the two smallest sides of the tumor, and fractal dimension
is a measure of how detail changes with scale.

3.2 Data Preprocessing
Data preprocessing is very important in machine learn-

ing as it can substantially improve the performance of the
algorithms.

Feature importance gives weights to the different features
being analyzed; this is very important as different features
impact the chance of a tumor being benign or malignant by
a different amounts. If feature importance is not considered
all the features would be seen as equally as impactful by
the algorithm, which would skew its results. An example
of why this is important can be seen on the graph of the
Naveen et al. dataset’s variance on Figure 3. MCP-1 varies
much more than the other features and, therefore, would
overshadow them if scaling wasn’t done.

Different features can also vary in their scale and units.
In order to combat this, features can be normalized with
methods like standard scaling or min-max normalization.
Standard scaling [5] is accomplished by subtracting a value
by its mean and then dividing that by its standard deviation
as seen here:

y =
x− mean(x)

Stdev(x)

Standard scaling scales all feature so that they have a
mean value of 0 and a standard deviation of 1. This reduces
the variance between features, making it so one feature can’t
overshadow others by having a larger variance.

An example of min-max normalization [8] can be seen
here:

y =
x− min(x)

max(x) − min(x)

where x is the original value and min and max are the
smallest and largest values of that feature. Min-max nor-
malization rescales all features so that the range is between
0 and 1. This removes the issue of different features varying
wildly in ranges.

Entries with missing values, something referred to as N/A
values, can be dealt with by simply removing those entries
from the dataset or filling the missing value using the mean
or mode of the feature.

Standardization is generally preferred as it is not affected
by outliers as much as min-max normalization. However,
min-max normalization can lead to smaller standard devia-
tion, which can be useful in certain situations.

A form of preprocessing commonly used across these ex-
periments was a correlation matrix. A correlation matrix
seeks to compare how closely different features of a given
data set correlate to each other. This information can then
be used to help in reducing dimensionality with highly corre-
lated features through methods such as principal component
analysis.

Principal component analysis , or PCA, is used to reduce
the dimensionality of data. Dimensions in data refer to how
many inputs, in this case features, are in the data. Re-
ducing the dimensions in data is often important because
more dimensions will mean the data points will be ‘further’
from each other, increasing the amount of noise in the data.
While reducing dimensions is useful in this regard, by re-
moving inputs you lose some amount of data. PCA seeks
to reduce the amount of data lost by merging highly cor-
related inputs together into new composite variables. An
example of highly correlated data would be something like
a person’s height and weight; while it’s not always true that
as height increases, weight increases, it is generally the case.
PCA might then merge most of the data that is correlated
between the two variables into one variable. Merging the
highly correlated data together results in most of the ‘im-
portant’ or ‘unique’ data being concentrated in fewer vari-
ables and can remove some of the less ‘important’ variables
to reduce dimensions. This is especially helpful for KNN as
it behaves less accurately in higher dimensions.

PCA does have one big downside which is its interpretabil-
ity. While PCA calculates what in the data should be im-
portant for results, it doesn’t provide information on HOW
it arrived at the new variables that it has. This makes it



Prediction
Benign Malignant

True Benign 100(TP) 10(FN)
Malignant 5(FP) 50(TN)

Table 1: Example confusion matrix

quite difficult for medical professionals to use it, as they
would want to know how PCA arrived at its conclusion.
Understanding WHY certain variables are deemed impor-
tant would help to compare the results with current knowl-
edge on classifying tumors. This knowledge could be used to
enhance current techniques, find flaws in the algorithms, or
better understand how the algorithms themselves are work-
ing. It is hard to fully trust AI, especially in potentially
life-threatening situations like breast cancer, when it is un-
known how the AI arrived at its conclusion.

3.3 Algorithm Evaluation
There are many different ways in which algorithms can be

evaluated to understand how effective they were, as well as
metrics to measure them by. Some of the metrics used that
we will be looking at here are confusion matrix, sensitivity,
specificity, accuracy, area under curve, and Cohen’s kappa.

First off, all of our classifications can be grouped into four
categories: true positives, true negatives, false positives, and
false negatives. True positives are when positives in the data
are properly predicted as positives, in our case when a tu-
mor is that benign is properly predicted as benign. True
negatives are when negatives, or in our case malignant tu-
mors, are predicted as malignant. False positives and nega-
tives then are when the algorithm predicts incorrectly, with
a false positive being when a malignant tumor was improp-
erly predicted as benign and a false negative being a benign
tumor that was predicted by the algorithm as malignant.

A confusion matrix is a table layout that shows visually
the performance of an algorithm. It shows true positive and
negatives vs false positives and negatives and gives a visual-
ization of the accuracy of an algorithm, showing what kind
of errors might be happening. Examples of confusion matri-
ces can be seen at Table 1. The visual nature of confusion
matrices often makes it an easier way to analyze data com-
pared to other numerical methods. For example, if there’s
a large value in the bottom left, the algorithm is predicting
many false positives, meaning the algorithm is missing many
malignant tumors.

Sensitivity, also known as recall, is a measure of true posi-
tive rate, in this case, the percentage that the algorithm cor-
rectly classifies a benign tumor as benign. Sensitivity ranges
from 0 to 1 with 0 meaning no positives were predicted as
positives and 1 meaning all positives were predicted as pos-
itives.

sensitivity =
number of true positives

number of true positives + false negatives

Specificity in this case is measured as the percent of ma-
lignant tumors correctly identified as malignant. Specificity
ranges from 0 to 1, with 0 meaning no negatives were pre-
dicted as negatives and 1 meaning all negatives were pre-
dicted as negatives.

specificity =
number of true negatives

number of true negatives + false positives

Having a good balance between specificity and sensitivity
is important. You could have an algorithm that classifies ev-
erything as positive, giving you a sensitivity of 1 every time.
But in this case, with positives being a malignant tumor,
you would be predicting all tumors that are actually benign
to be malignant, causing more tests to be performed on the
patient costing them time and money, and in the worst case
causing them to undergo harsh treatments for cancer when
they don’t have it to begin with. On the other side of this,
you don’t want to sacrifice sensitivity for specificity as that
means more malignant tumors would go untreated. Because
of this, a balance needs to be struck between predicting pos-
itives vs negatives.

Accuracy combines specificity and sensitivity into one per-
centage. This is the metric used by most of the experiments
looked at here. Accuracy ranges from 0 to 1 with 0 meaning
that all negatives were predicted as positives and all posi-
tives were predicted as negatives. A value of 1 means that
everything was predicted correctly.

accuracy =
true positives + true negatives

total number of data points

Area under curve, or AUC, is another comparison of sen-
sitivity and specificity. It is more of a direct comparison of
the trade-off between true positive rate and false positive
rate. Because of this, in certain situations this can provide
much more meaningful data than other metrics. It is cre-
ated using an ROC curve which is a graph of true positive
rate, or sensitivity, vs false positive rate, or (1− specificity).
One is then able to find the probability that the algorithm
correctly classifying tumors with a value of 1, or 100%, be-
ing correctly classifying a value of 0.5, or 50%, being equal
to a model that just classifies randomly. More can be read
about AUC from Sharma et al. [8] and Wikipedia [6].

An evaluation technique known as Cohen’s kappa can also
be used as a way to evaluate the information from a confu-
sion matrix. It compares the observed accuracy, in this case

observed accuracy =
true benign + true malignant

total number of data points

with the expected accuracy or the accuracy a random clas-
sifier would be expected to have which, in this case, is cal-
culated with taking the probability that the algorithm cor-
rectly predicts benign (CPB) tumors at random and adding
it to the probability that the algorithm correctly predicts
malignant (CPM) tumors at random.

CPB =
TP + FN

total data points
∗ TP + FP

total data points

CPM =
FP + TN

total data points
∗ FN + TN

total data points

expected accuracy = CPB + CPM

This is sometimes the preferred evaluation technique as it
takes into account random chance. This is beneficial because
things like accuracy can be misleading in some situations.
Imagine if you have 100 patients and 2 of them are sick. An



algorithm could get a 98% accuracy just by classifying every
patient as healthy and giving no useful information. Cohen’s
kappa ranges from -1 to 1, with a value of 0 meaning the
algorithm is as good as random guessing, -1 meaning it was
categorizing everything incorrectly, and a value of 1 meaning
it was categorizing everything correctly.

The formula for κ is:

κ =
observed accuracy − expected accuracy

1 − expected accuracy

If we look at Table 5 and compute kappa, the observed accu-
racy = 0.965 and the expected accuracy = 0.537, therefore:

κ =
0.965 − 0.537

1 − 0.537
= 0.924

These are just the evaluation methods used most com-
monly across the experiments looked at in this paper, many
others can be used.

4. FEATURED STUDIES
In this section, we will look at several papers that apply

machine learning to the problem of breast cancer diagnosis,
including what algorithms they look at, what preprocessing
they used, and how they evaluated their algorithms. We will
be focusing on KNN and SVM as they typically performed
well. Other algorithms were tested across these studies, how-
ever we will not be going into detail about them here.

Kaklamanis et al. [4] compared four different machine
learning algorithms using the same preprocessing and eval-
uations. They looked at CART, KNN, Näıve Bayes, and
SVM and used standard scaling and PCA on their data. The
evaluation techniques looked at were accuracy and kappa.

Naveen et al. [5] looked at six different machine learn-
ing algorithms: decision tree, SVM, multilayer perceptron,
KNN, logistic regression, and random forest. They were
specifically comparing the performance of machine learning
algorithms using different models. They used standard scal-
ing on the data and evaluated for accuracy, a confusion ma-
trix, precision, sensitivity, and F1-score.

Saoud et al. [7] examined six algorithms comparing su-
pervised vs unsupervised learning techniques. Supervised
learning takes a set of already classified data, and learns
from that, to categorize future unknown data. Unsuper-
vised learning, on the other hand, does not use a training
dataset and learns as it classifies; this is useful in situations
where you don’t have pre-classified data. For this compari-
son, they looked at SVM, KNN, and random forest for their
supervised algorithms and expectation-maximization, sim-
ple K means, and filtered clustering for their unsupervised
algorithms. They used an environment called WEKA to
preprocess the data and run their algorithms but did not
mention what preprocessing techniques were used. Algo-
rithms were only evaluated for accuracy.

Sharma et al. [8] evaluated 3 machine learning algorithms:
logistic regression, KNN, and SVM. They used min-max nor-
malization on their data and evaluated for sensitivity, speci-
ficity, accuracy, and AUC.

Information on these studies’ datasets and scaling meth-
ods cab be found at Table 2.

5. RESULTS

Paper Dataset Scaling # of ML algorithms
Kaklamanis et al. [4] WBCD Standard 4

Naveen et al. [5] UCID Standard 6
Saoud et al. [7] WBCD N/A 6
Sharma et al. [8] WBCD Min-max 3

Table 2: Featured works and their properties

Metric KNN SVM
Specificity 94.7% 84.9%
Sensitivity 90.09% 88.2%
Accuracy 93.06% 89.55%

AUC 92.39% 86.55%

Table 3: Results on WBCD diagnostic dataset from Sharma
et al. [8]

Looking at various experiments using these algorithms
gives some insight into the benefits of using K-Nearest neigh-
bor or Support Vector Machine and why one might be used
over another for breast cancer diagnosis.

Naveen et al. [5] showed KNN could perform very well
even reaching 89.9% accuracy in prediction of breast cancer
patients and healthy individuals when the training dataset
is much larger than the test set, 9:1 in this case. When
the training to test dataset ratio is brought to 8:2 KNN’s
accuracy drops to 87.5%. A major part of the success of
KNN is finding an optimal k value for the algorithm to use.
The accuracy of KNN fluctuated below 85% with various
K values between 1 and 7 with the optimal K value being
found to be 5 for this data set. SVM was found to have an
accuracy of 83.33%.

KNN typically performed better for larger data sets across
various experiments. Sharma et al. [8] found that KNN re-
sulted in having a stronger accuracy than SVM when used
on a larger data set. This can be seen when looking at the
researcher’s diagnostic data set, which contained 699 entries
(It wasn’t clear if they meant the Breast Cancer Wisconsin
(Diagnostic) Data Set here or the Breast Cancer Wiscon-
sin (Original) Data Set). The results for this dataset can
be seen on Table 3. In particular, KNN performed much
better, 94.7% vs 84.9%, on specificity, meaning it was much
better at correctly predicting negatives as negatives in this
case. On the other hand, SVM typically has higher accu-
racy on smaller datasets like their prognostic data set, which
contained 199 entries, as seen in Table 4.

Both of these data sets were tested using a 7:3 training to
testing ratio. [8] In this case, SVM performed much better
in specificity, 79.7% vs 61.2%.

Kaklamanis et al. [4] used a 7:3 training to testing data
ratio. The confusion matrix for KNN can be seen at Table 5
and the confusion matrix for SVM can be seen at Table 6.
KNN was found to have an accuracy of 96.49% while SVM
was found to have an accuracy of 95.32%. However, SVM

Metric KNN SVM
Specificity 61.2% 79.7%
Sensitivity 40.89% 41.2%
Accuracy 82.56% 89.73%

AUC 51.045% 60.45%

Table 4: Results on WBCD prognostic dataset from Sharma
et al. [8]



Prediction
Benign Malignant

True Benign 106(TP) 5(FN)
Malignant 1(FP) 59(TN)

Table 5: Kaklamanis et al. KNN Confusion matrix [4]

Prediction
Benign Malignant

True Benign 105(TP) 6(FN)
Malignant 2(FP) 58(TN)

Table 6: Kaklamanis et al. SVM Confusion matrix [4]

had a kappa value of 0.8988, while KNN had a kappa of
0.8145. This shows the importance of using multiple evalu-
ation metrics because ,while KNN’s accuracy was higher in
this case, SVM had a higher kappa value. Using different
evaluations of evaluating the algorithms can lead to different
conclusions, so it’s important to look at as many as possible
to understand the performance of the algorithm as best as
possible.

Saoud et al. [7] looked at a dataset with 569 different en-
tries and found SVM to have a higher accuracy of 97.8% and
incorrectly identified 12 different entries, both false positives
and negatives. KNN, on the other hand, had an accuracy of
96.13% and incorrectly identified 22 different entries. [7]

6. CONCLUSION
While it is difficult to directly correlate different experi-

ments due to a multitude of factors, my comparison of the
data from these experiments suggests that the tipping point
between KNN outperforming SVM is somewhere close to
being between 569-699 entries of data using similar testing
ratios and evaluation methods to these experiments. KNN
also performs much better in lower dimensions so the dimen-
sion reducing techniques used in many experiments likely
benefited KNN more than SVM in these tests.

Breast cancer is a prevalent issue worldwide. By using
methods like machine learning to improve the current di-
agnosis of breast cancer, we can hope to lessen the impact
of the disease. Experiments like these help show what the
advantages are of using machine learning for medical diag-
nosis. They can help doctors better understand how to im-
prove current diagnostic methods by taking a different look
at how different features correlate to a tumor being cancer-
ous. Both k-nearest neighbours and support vector machine
are strong options in classifying tumors and can hopefully
be used to improve cancer diagnosis in the future.
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