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The Big Picture

Survival rates of breast cancer are closely related to how early it can
be effectively detected and treated

Machine learning can be used to improve effectiveness of detecting
whether tumors are cancerous or not
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Typical breast cancer diagnosis

Detecting a tumor

Analyze the tumor

Classify the tumor

Treat the tumor as necessary
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What is machine learning?

Machine learning is an application of artificial intelligence (AI) that lets
systems automatically learn and improve.
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Classification

Type of machine learning

Sorts data points into classes
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Training

Give algorithms data that has already been classified

Learns what in the data makes it more likely to belong to one class
over another

Uses that information to classify future unknown data
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Dimensionality

Number of variables being looked at, e.g. tumor radius and texture

Algorithms will ’plot’ these points on a graph to compare them

Can have very high numbers of dimensions which can affect
algorithms in different ways

There are ways to reduce dimensions, but some information is lost
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Algorithms

Many different machine learning algorithms
They all have different advantages and disadvantages depending on that
data being looked at

k-Nearest neighbors

Support vector machine
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k-Nearest Neighbors (KNN)

Machine learning algorithm that classifies data points by looking at a
number (k) of that points closest neighboring points
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k-Nearest Neighbors (KNN)
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k-Nearest Neighbors (KNN)
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Support Vector Machine (SVM)

Machine learning algorithm that classifies data points by separating classes
with a hyperplane

A hyperplane is a space that is one dimension less then the one being
dealt with

The hyperplane that best separates the classes is furthest hyperplane
from any given point
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Support Vector Machine (SVM)
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Data Preprocessing

Improves performance of algorithm on a dataset

Feature importance

Reducing dimensionality
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Feature importance

Different variables vary in scale and units
If this isn’t taken into account results will be skewed
Examples include:

Standard scaling

Min-max normalization
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Standard scaling

Scales all feature so they have a mean value of 0 and a standard deviation
of 1 which makes them easier to compare

y =
x − mean(x)

Stdev(x)
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Min-max normalization

Rescales all features so they range between 0 and 1

y =
x − min(x)

max(x) − min(x)
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Reducing dimensionality

Principle component analysis (PCA) can be used to reduce dimensionality

Variables that are highly correlated, like a person’s height and weight,
can be combined into one variable

Concentrates most ‘unique’ data in a few variables

This allows other variables to be ignored, reducing dimensions while
losing the least amount of ‘important’ data
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Algorithm Evaluation

There are many different ways algorithms can be evaluated to understand
how effective they were
Different evaluations tell you different things about the performance of the
algorithm

Confusion Matrix

Sensitivity

Specificity

Accuracy

Area under curve

Cohen’s kappa
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Confusion Matrix

Visually compares true positive and negative vs false positive and negative

Prediction
Benign Malignant

True Benign 105(TP) 6(FN)
Malignant 2(FP) 58(TN)

Table: Kaklamanis et al. SVM Confusion matrix [2]
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Sensitivity

Measure of true positive rate, ranges from 0 to 1

Sensitivity = 0 means no positives were predicted as positives

Sensitivity = 1 means all positives were predicted as positives

sensitivity =
number of true positives

number of total positives in data set
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Specificity

Measure of true negative rate, ranges from 0 to 1

Specificity = 0 means no negatives were predicted as negatives

Specificity = 1 means all negatives were predicted as negatives

specificity =
number of true negatives

number of total negatives in data set
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Accuracy

Measure of rate of data points identified correctly, ranges from 0 to 1

Accuracy = 0 means nothing was predicted correctly

Accuracy = 1 means everything was predicted correctly

accuracy =
true positives + true negatives

total number of data points
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Area under curve

Area under curve (AUC) more directly represents the probability of
classifying a true positive vs a false positive, ranges from 0 to 1
Developed by radar engineers

AUC = 0.5 means its as good as random guessing

AUC = 1 means predictions are 100% correct
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Cohen’s kappa

Calculation on values from confusion matrix, ranges from -1 to 1

Cohen’s kappa takes into account random chance into its evaluation

Kappa = 0 means the algorithm is performing as well as randomly
guessing

Kappa = 1 means it is perfectly categorizing the data

Kappa = -1 means it is categorizing everything incorrectly
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Cohen’s kappa

Prediction
Benign Malignant

True Benign 105(TP) 6(FN)
Malignant 2(FP) 58(TN)

Table: Kaklamanis et al. SVM Confusion matrix [2]

TD = total data points
TB = number of data points that are actually benign
PB = number of data points that are predicted to be benign
TM = number of data points that are actually malignant
PM = number of data points that are predicted to be malignant
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Cohen’s kappa

expected accuracy =
(TB∗PB)

TD + (TM∗PM)
TD

TD

κ =
accuracy − expected accuracy

1 − expected accuracy
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Cohen’s kappa

Prediction
Benign Malignant

True Benign 105(TP) 6(FN)
Malignant 2(FP) 58(TN)

Table: Kaklamanis et al. SVM Confusion matrix [2]

κ =
0.9532 − 0.5375

1 − 0.5375

κ = 0.8988
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Cohen’s kappa

Prediction
Benign Malignant

True Benign 85(TP) 30(FN)
Malignant 22(FP) 34(TN)

Table: SVM Confusion matrix

κ =
0.6959 − 0.5434

1 − 0.5434

κ = 0.3340
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Papers

Wisconsin breast cancer dataset, looks at 9 features of the tumor itself,
including radius, area, perimeter, texture

Sharma et al., 2017 [4]

Kaklamanis et al., 2019 [2]

Chakradeo et al., 2019 [1]

Saoud et al., 2019 [3]
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k-Nearest Neighbors (KNN)

KNN performs well on large datasets

KNN benefits strongly from reducing dimensionality

Metric k-nearest neighbor support vector machine
Specificity 94.7% 84.9%
Sensitivity 90.09% 88.2%
Accuracy 93.06% 89.55%

AUC 92.39% 86.55%

Table: Results on Sharma et al. diagnostic dataset [4], 699 entries
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Support Vector Machine (SVM)

SVM is comparatively better then KNN on smaller datasets

SVM deals with higher dimensions better than KNN

Metric k-nearest neighbor support vector machine
Specificity 61.2% 79.7%
Sensitivity 40.89% 41.2%
Accuracy 82.56% 89.73%

AUC 51.045% 60.45%

Table: Results on Sharma et al. prognostic dataset [4], 199 entries
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Kaklamanis et al. results

Metric k-nearest neighbor support vector machine
Accuracy 96.49% 95.32%

Kappa 0.8145 0.8988

Table: Results from Kaklamanis et al. data [2]
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Conclusion

Machine learning techniques can be used to improve current breast cancer
diagnosis so patients can begin treatment as soon as possible
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Questions
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