Computer Science in Early Education

Jaydon Smith
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
smit9025@morris.umn.edu

ABSTRACT

Recently, research in the field of computer science educa-
tion has been gaining attention. Computer science is be-
ing taught more at the college level than in high schools
and middle schools, but should expand more within the lat-
ter. Compared to the mathematics and science field in high
schools, there isn’t a similar amount of coverage for com-
puter science. A few issues come with trying to bring it to
younger students: whether younger students can compre-
hend computer science at their level, what methods exist
to teach younger students computer science, and the avail-
ability of teachers with the proper knowledge to teach these
students. Recent research to test computer science compre-
hension with younger students has surfaced. I examine two
research methods used on a younger audience ranged from
five to twelve years old. One uses ScratchJr, and the other
uses Scratch and metaphors to teach computer science con-
cepts. Based on the results gathered from these methods, it
can be inferred that there was a positive effect on the knowl-
edge of the students who took part in these studies. For the
issue of teachers having proper knowledge, a possible solu-
tion found was having a training camp that teaches more
advanced material. The results from this study showed an
increase in confidence toward the material for the teachers
that participated.

Keywords

Computer Science, Computer Science Education, K12 Edu-
cation, Scratch, Limitations of Teaching

1. INTRODUCTION

We currently live in the digital age that is moving on
from the industrial age. This has led to a high demand in
workers who are able to use computers and develop tech-
nology related to computers. More demand for computer
science related workers requires more students to be taught
computer science. In the United States, computer science is
being taught more at the college and university level than at
the high school level, unlike fields such as science and math.
Early teaching of computer science would allow students to
be better equipped for future courses in college and in their
careers.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

Senior Seminar Paper, October 2020 Morris, MN.

In Burgiel et al. [2], students who were able to take computer
science classes in earlier education had higher grades in col-
lege computer science education. In order to teach computer
science in early education, one must overcome several limita-
tions. These limitations are lack of knowing what methods
we can use to teach younger students computer science, and
having available teachers who have the proper knowledge to
teach these classes. Two methods will be introduced that
have been tested and show promising results for computer
science concepts comprehension. These methods use a form
of the educational program Scratch to teach computer con-
cepts to children. It’s been found that through the use of
a program like Scratch, children are able to have an easier
time moving onto programming languages like Python and
Java.

In Pérez-Marin et al. [8], the researchers used metaphors
and Scratch to teach elementary students computer science.
They collected data through the use of a pretest-posttest de-
sign. In Strawhacker and Bers [9], the researchers only used
ScratchJr and collected data based on the Solve It tasks
that they created in ScratchJr. Both methods found pos-
itive results for showing that the children participating in
their experiments were able to learn and retain very basic
computer science concepts.

For methods like these to be implemented into schools with
a set curriculum, there needs to be more teachers who are
able to confidently teach computer science. In Leyzberg and
Moretti [6], a study was conducted that had current com-
puter science teachers attend a week long professional de-
velopment training camp for teaching them more advanced
computer science knowledge. The results from this study
found that the professional development had a positive im-
pact on the teachers and that they felt more prepared to
teach their students.

Section 2 goes over some background information of what
Scratch and ScratchJr is, and how it is used to teach com-
puter programming concepts. Section 3 details measuring
student comprehension of computer science. Section 4 ex-
pands on the advantages that early computer science com-
prehension has for students and their future.

2. BACKGROUND
2.1 Scratch and Scratch]Jr

A crucial part of the methods explored in this paper is
the use of the educational product Scratch and ScratchJr.
Scratch and ScratchJr are visual programming languages
that were created to help children learn how to code as seen

£ Scratch Project Editor - Im... % | 4

9 (€)M @ scrotch mitedu/projects/editor/Mip_bar=getstarted ¢l &%~ @-

GEBRE © fev v Tos Abont

) (Unied
50 when dicked
< say TR
Q>
G this script
x 10 y: 180
Newsprte: & / @ K
Q= Q
—

Figure 1: The Scratch interface.

in Figures 1 and 2. Scratch has been used to allow students
to work creatively, and be collaborative [4]. One of the key
aspects that makes Scratch popular for educational purposes
is its versatility. Students have the ability to create games,
tutorials, greeting cards, music videos, and other projects
through the use of Scratch.

Scratch works through piecing together command blocks to
control sprites that move on a background (called the stage).
These command blocks are simplified versions of code com-
mands such as “move x steps” which is the same as changing
the x coordinate of a sprite. The sprites are objects that
store variables and scripts. There exist many different blocks
that mirror programming language such as loop blocks that
can be used within the program to repeat commands just
like loops in programming languages. These “programmed”
sprites allow the user the freedom to create what they want
to make such as a game or music video. Scratch runs in a way
that requires no compilation step or run mode, this allows
users to click on any command fragment and see its action.
Users then stay more engaged during the process of creating
their projects. Through the use of this program users are
able to visually learn computer science programming skills
that are translatable to actual programming languages [7].
ScratchJr is an even more simplified version of Scratch that
is aimed at children aged five to seven. This version of
Scratch features less options and a simpler user interface.
The command blocks have been replaced with image blocks,
as seen in Figure 2 [3].

Both versions support problem-solving in a way that a goal
can be identified and a solution can be created step-by-step
and tried out. Not only can users explore problem-solving
through their own creativity, puzzle projects can also be cre-
ated for the users to solve. This is explored in Strawhacker
and Bers’s method using Solve Its.

3. COMPREHENSION
3.1 Computational Thinking

According to Pérez-Marin et al. [§], computational think-
ing is defined as “the skill of solving problems, designing
systems, and understanding human behavior based on com-
puter science concepts.” By finding positive evidence for this
skill in children, computer science education should be able
to be brought to younger students in the same way that

BoFESCIFERREREE o

Ry S

Figure 2: The ScratchJr interface.

advanced math and science concepts have been brought to
younger students. In order to test the possibility of com-
putational thinking in younger students, multiple different
programs and methods have been implemented in various
studies. The program Scratch will be focused on.
Pérez-Marin et al. [8] designed an experiment that took 132
Spanish Elementary Students. These students were nine
to twelve years old and lived in Spain. The researchers
had them follow a methodology called MECOPROG. This
methodology uses metaphors on top of programming blocks
in Scratch to teach basic programming concepts seen in Fig-
ure 3. The researchers turned these concepts into metaphors:
Loops with a hand mixer, conditionals with an intelligent
fridge, input and output with mouth and rectum, and pro-
gram, sequence, memory, and variables with recipe, pantry,
and box.

This allows a lower abstraction level and helps students to
learn through benefits found by using metaphors. The re-
searchers covered a variety of concepts, practices, and per-
spectives using MECOPROG. The students where first in-
troduced to a concept through metaphor, and then practiced
with Scratch to learn the concept. The researchers devel-
oped a drag-and-drop visual interface companion app for the
study that was called CompThink App. This app was used
for the improvement of the children’s computational think-
ing, and covered seven aspects: loops, algorithms, patterns,
conditionals, steps, instructions, and automation. This app
was used occasionally while working on the three blocks of
MECOPROG. The students went through a six week course
using the MECOPROG method.

In order to measure the students computational thinking,
the researchers used a pretest-posttest design. Three tests
where used called ROMT, CONT, and PCNT. Unfortu-
nately, what these names stand for couldn’t be found in
the study. ROMT is a validated test for measuring children
over age 10’s computational thinking considered the ROM
variable. CONT is a concept test that was created ad-hoc
for the experiment that tests knowledge of programming,
sequence, memory and variables, input and output, condi-
tionals, and loops, considered the CON variable. PCNT
is a test for measuring computational thinking similar to
CONT, but for children under 10 years old, considered the
PCN variable. An example of what a question from one of
these tests would be “Which directions should a character

Block 3 Hand mixer
(loops)
s)

S — =
@ secs

v e |

Block 1 Scratch Block 2 Scratch

Figure 3: The three MECOPROG blocks. The top
row is the concepts and the second row is sample
script in Scratch relating to the concepts.

Block 3 Scratch

take to reach the goal?”, with the directions listed individu-
ally in a sequence for the answer. The students took these
tests before the six week course, participated in the course,
then took the tests again. During the pre-tests, questions
from the students weren’t answered to avoid giving solutions
to the post-test.

Table 1 shows the results from the PCNT, CONT, and
ROMT tests that were taken by the students and the tests’
variables. Using Spearman’s rank correlation coefficient, the
researchers found a significant correlation between pre and
post-test for all variables. The researchers also used the
Wilcoxon signed-rank test that is specifically for compar-
ing two related samples, and found statistically significant
difference between the pre and post-tests for all variables.
For each variable measured in the tests, we can see that the
score increased in both the median and mean in post-test.
This result shows that the students’ computational thinking
scores increased from the course that they attended. This
confirms that the skill of computational thinking in children
exists and can be cultivated through a teaching method di-
rected at improving computational thinking.

The researchers further discuss how they found that the chil-
dren that participated in the study thought learning to pro-
gram was engaging. All children payed attention through-
out the course. There is basis here that children are already
drawn to and enjoy computers, and by allowing them to
learn more about the computers they are using, they are
allowed to explore a field that interests them.

In Strawhacker and Bers [9], children from kindergarten
through 2nd grade in the US took part in a six-week course
using ScratchJr. A total of 57 students participated. A
post-test was used to collect data based on the children’s
responses. Lessons introduced foundations ideas of com-

PCN CON ROM

Mdn M v Mdn M 5D Mdn M 5D

Pre B.57 .37 125 269 277 132 428 4.23 136
Post 028 8.09 105 5 5.08 158 464 477 1.56

Table 1: Pre and post-test PCN, CON, and ROM
median, mean, and standard deviation.

puter science, and comprised of three modules: interactive
collage, animated story, and interactive game. During the
course the students were tasked to solve Solve It tasks that
were developed by the researchers. These Solve It tasks were
open-ended tasks that the students had to reverse engineer a
program corresponding with a finished project projected on
the screen. These tasks measured the ability of observation,
memory, and reasoning, and stimulated the development
of computational thinking. The researchers recorded errors
made on the Solve Its to measure evidence of children’s pro-
gramming strategies. It was found that kindergarteners had
an average of 3 errors per question, first graders had an av-
erage of 1.8 errors per question, and second graders had an
average of 1.4 errors per question. There was another find-
ing through Solve It Task 2 where two characters on screen
took turns doing actions. Students in kindergarten found
this concept to be too advanced because it hadn’t been cov-
ered yet. A single solution to this Solve It was to use a Wait
block which is similar to parallel programming. Only 13% of
first graders used a Wait block, while 40% of second graders
used a Wait block. This shows that a trend exists for the
higher a grade, the less errors made, as well as students be-
ing able to form possible solutions based on new knowledge.
With the domain of programming being a new area of study,
this finding allows us to see that improvement over increas-
ing grade is a viable pattern within the field of computer
science.

It was found that all students where able to master simple
Motion commands within ScratchJr. This shows that the
children were able to draw on existing knowledge domains.
Icon-based thought is a skill that is still developing within
early childhood, an example being connecting the letter “A”
with its sound. With some prior experience of learning the
alphabet, being able to connect Motion blocks with what
they would do is easy for the students to accomplish.

4. ADVANTAGES

4.1 Future Education and Careers

Early programming introduction has been shown to help
young children with cognitive skills, visual memory, and
language skills [3]. Teaching computational thinking early
also has the benefits of allowing students to manage uncer-
tainty, assess problem difficulty, and use modularization [2].
Through early computer science education, students will be
able to learn more advanced computer science concepts dur-
ing their post-secondary education and will have an easier
time with their computer science courses. These students
will also bring more knowledge into their careers allowing
the development of greater technologies.

In Burgiel et al., a study was formed to examine what affect
early computer science courses had on student performance
in college computer science. Using a sample of 2,871 in-
troductory college computer science students from a wide
variety of different colleges and universities in the US, a sur-
vey was conducted at the beginning of their introductory
college science courses. After the course was over, the in-
structors entered final course grades. The survey consisted
of questions asking about content and pedagogy in computer
science courses taken before college. Sample mean grade in
college computer science was 85.4 out of 100. Based on data
gathered from the survey and course grades, the researchers
used a two-level HLM (Hierarchical linear model) to predict

college computer science grades. Table 2 shows the corre-
lation data based on the HLM. Variables observed in the
study are listed on the left side of the table such as aver-
age parent education, whether students had help at home,
if the student was male, other race which means non-white,
etc.. The word “innovative” is based on whether a profes-
sor described their course as innovative and not on whether
the course is actually scientifically innovative. “N” is the
amount of classes or students per model. Variables under
“Interactions” are based on how to variables interact with
each other. Such as with the interaction between getting
more help at home and increased frequency of coding prac-
tice is correlated with lower college grades.

On the top of the table the three models in the HLM are
listed. Model 1 contains all significant control variables ob-
served. Significant variables having a p-value that is less
than .05. The p-value measures the probability that an ob-
served difference could have occurred by random chance, a
low p-value can tell us that the results are significant to us.
Model 2 consists of all pedagogical variables of interest ex-
cluding all non-significant variables of interest. Model 3 is
based on significant interactions. These models show the
variance in student grades with model 1 being 9% of the
variance, model 2 being 10% of the variance, and model 3
being 11% of the variance. The numbers to the right of the
variables on the left is the data calculated based on the three
models.

We can see that higher math SAT scores are correlated with
better grades according to a 0.74 to 1.16 increase in grade
points over 0. More coding practice in high school computer
science courses correlated with higher grades in introductory
college computer science, from 0.88 to 1.05 increase over 0.
Higher frequencies of non-coding computer use corresponded
to lower grades in college computer science from -0.67 to -
0.65 decrease under 0.

Model 1: Controls Model 2: Main Effects Model 3: Interactions

b (se) b (se) b (se)
Intercept 77.5577 (1.53) 7848 (1.56) 8057 (1.71)
Student-level variables
Avg parent education 0.39 (0.22) 0.34 (0.22) 033 (0.22)
Help at home 0.38 (0.65) 0.33 (0.65) 046 (0.65)
Voeabulary —0.04 (0.21) —0.11 (0.21) 0.23 (0.25)
Male 106" (D50) —1.19° (0.50) —1.22* (0.49)
Hispanic —-1.08 (0.73) -111 (0.73) —1.02 (0.73)
Black -5.01°*" (D.87) —4.95%° (0.87) —4.82" (0.87)
Asian —0.67 (0.57) —0.60 (0.57) —0.68 (0.56)
Other race —1.59% (0.75) —1.47° (0.74) —161" (0.74)
SAT Math/100 LI6* (D24) 1077 (D.29) 074 (0.27)
Freshman 1417 (D47) 113" (0.47) 1.09* (0.47)
Coding 0.887"7 (0.24) 1057 (0.25)
Non-coding computer use —0.67" (0.22) —0.65" (0.22)
Class-level variable
Innovative college CS 175 (0.91}) 1.81" {0.91) —7.28" (3.04)
Interactions
Help at home X coding —1.85" (0.67)
Innovative X SAT math/100 1.46* (0.47)
Innovative X vocabulary —1.22" (0.46)
N (classes) 177 177 177
N (students) ZRT1 2871 2871
Pseudo-R* 9.0% 10.0% 11.0%

Note: Significant p-values indicated by " (p = .05). ™ (p £ .01). and ™" (p < .001). Parentheses indicate standard errors.

Table 2: Table of Models Predicting College Com-
puter Science Grade

Drawing from this, we can infer that having computer sci-
ence classes within high school has the potential for students
to do better in college computer science. Having more cod-
ing based classes has the potential for the students to do
better in college computer science than they would just con-
cept based classes in high school. The table also shows that

there are some race and gender correlations that need to be
further explored.

5. LIMITATIONS
5.1 Teachers

Participants reported high levels of
engagement with the material

1 -
3
2
1
0

Manday Tuesday Wednesday Thursday Friday
Day

Self-Reported Engagement

Figure 4: Levels of engagement with the material

A challenge that comes up with teaching early education
students about computer science is having teachers available
who are confident enough to teach these students. With this
field of education being relatively new, there is a high de-
mand for computer science teachers and not a large supply
that is available [10]. Schools often address this problem by
taking teachers who aren’t knowledgeable about computer
science and having them go through a training camp to learn
what they need to know to teach computer science to stu-
dents. This leads to teachers not feeling confident enough
in their knowledge in the field to teach students.

In Leyzberg and Moretti [6] a study was conducted on teach-
ers in the US who were first learning computer science to
teach students. The researchers developed a week-long sum-
mer professional development workshop in order to further
teach these teachers and help build their confidence in the
subject. The workshop curriculum focused on material be-
yond the depth of AP curricula for computer science. This
curriculum included recursion, analysis, machine language,
and theoretical computer science topics. Twenty-five teach-
ers participated in the workshop. What the researchers
found is that the participants had very positive feedback
about the workshop overall and that they came out of it
feeling more confident about the material. There was a high
amount of engagement from all participants that didn’t de-
crease during the workshop according to figure 4. This can
then show that in order for the demand to be met for teach-
ers to teach early education computer science, workshops
can be made to teach these teachers the material that they
need in order to teach their students.

In Yadav et al. [10], the researchers discuss that with the
push for computer science education around the globe such
as CS for All in the US and Computing at School in the
United Kingdom, there is a critical need for training a large
amount of computing teachers. Currently within the United
States, the computer science teacher field is flawed, this is
causing a challenge for training and retaining computer sci-

ence teachers. A limited number of programs offer com-
puter science teacher certifications as primary licensure ar-
eas. Those responsible for creating these programs don’t
have an understanding of what constitutes computer sci-
ence. This then leaves the teachers who do go through these
programs with little actual knowledge of the material that
these teachers should be teaching. [5]

57% of teachers that teach computer science also teach other
content areas. It is also shown that these teachers reported
that computer science is being taught through the mathe-
matics, business, or technology department in their schools.
This requires that teachers who want to teach computer sci-
ence have to meet certification requirements in another field.
The researchers created a study that observed twenty-four
high school computer science teachers within the United
States. This study had these teachers complete an online
background questionnaire for collecting demographic infor-
mation. They then held an interview with the researchers
such that the researchers can better understand just what
challenges these computer science teachers faced in the class-
room. The interview was semi-structured, and was pilot
tested on two computer science teachers for clarity and mod-
ification of the interview. The pilot interviews were not in-
cluded in the data.

The researchers used a qualitative analysis software called
Dedoose to analyze the data they collected. Dedoose is a
web application for mixed methods research. This allowed
the researchers to find eight conceptual themes related to the
teachers’ experiences in computer science classrooms. These
themes were then categorized into three categories.

The first category being challenges of teaching in the class-
room. Within the category, three themes are shown; con-
tent challenges, pedagogical challenges, and assessment chal-
lenges. The content challenge talks of how the teachers
struggled with their limited content knowledge, and how
they would be learning concepts alongside trying to teach
their students. The pedagogical challenge talks of teach-
ers concern of keeping students engaged and focused in the
course, and meeting students’ needs. The assessment chal-
lenge talks of how teachers have concern on evaluating stu-
dent learning when not having proper tools or methods to
evaluate student learning.

The second category is compounding factors that influence
teaching. The first theme is lack of computer science teacher
preparation. Teachers within the study discussed that there
was a lack of preparation programs in their own background
and that they learned to teach computer science mostly on
their own. The second theme is isolation. The teachers
talked about how unlike other content areas, computer sci-
ence teachers don’t have much of a support group of other
computer science teachers with how few there are. The third
theme was information technology challenges. Teachers dis-
cussed how they needed reliable support from the I'T teams
in their school district, and that they don’t always have the
resources for the latest technology.

The final category is supporting computer science teachers.
The first theme being organized repository. The teachers
discussed a need for better organization of online resources
so that they can have an easier time finding what they need
to be effective in the classroom. The second theme being
community of practice. The teachers discussed a need for a
community of computer science teachers in order to solve an
issue of isolation. This would allow more computer science

teachers to share ideas, tools, and approaches.

Through these three categories and their themes, we can
identify the different kind of challenges that computer sci-
ence teachers in the United States might be experiencing.
Albeit, with a low sample size, not all computer science
teachers will be experiencing these kinds of problems. With
better certification programs, a way for computer science
teachers to be able to connect with each other for support,
a repository of teaching tools, assessment tools, and mate-
rial, and professional computer science workshops, computer
science teachers will be better able to teach computer science
to their students.

6. CONCLUSION

The field of computer science is being explored through

many different methods and has been gaining a lot of atten-
tion. Through the resources used in this paper, it is shown
that young students do have the ability to develop the skill
of computational thinking through the use of teaching with
the programs Scratch and ScratchJr. With this proof, we
should be moving toward a future where more computer sci-
ence classes are being provided before college in order to
allow students to acquire more background that fits into the
digital age. Through availability of computer science courses
in early education, students will then be able to proceed to
post-secondary education with confidence that they will be
able to do well in their computer science courses and build
upon the knowledge that they have gained. These students
would then have a better time getting into their careers in
computer science and companies would have more experi-
enced workers to handle current and further development
of technology. There is currently a talent gap within the
United States for computer science related careers because
the growth of these jobs has been larger than the amount
of declared computer science majors coming out of college
each year [1].
By increasing the exposure of the computer science field to
younger students, more interest will develop for the field
and there will be growth in computer science majors. If
more classes are to be offered before college, then teach-
ers are going to be required to teach these classes. More
programs need to be offered that teach upcoming computer
science teachers what they need to know for these courses.
All current computer science certification programs need to
be redone in order to properly accommodate the knowledge
needed for computer science teachers to properly teach their
classes. There needs to be a push to separate computer
science in schools to its own area so that computer science
teachers don’t have to also meet the requirements of another
discipline in order to teach computer science. Through the
use of developed workshops catered toward teaching teachers
computer science content, these teachers will be available for
these new classes while more computer science only teachers
become available in the future.

7. ACKNOWLEDGMENTS

I want to thank Hussam Ghunaim, Elena Machkasova,
KK Lamberty, and my peers for feedback and advice.

8. REFERENCES

[1] D. D. Bowman. Declining talent in computer related
careers. Journal of Academic Administration in Higher
Education, 14(1):1-4, 2018.

[2] H. Burgiel, P. M. Sadler, and G. Sonnert. The
association of high school computer science content
and pedagogy with students’ success in college
computer science. ACM Transactions on Computing
Education (TOCE), 20(2):1-21, 2020.

[3] L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U.
Bers, P. Bontd, and M. Resnick. Designing ScratchJr:
Support for early childhood learning through
computer programming. In proceedings of the 12th
international conference on interaction design and
children, pages 1-10, 2013.

[4] K. Hayat, N. A. Al-Shukaili, and K. Sultan. Alice in
oman. Fducation and Information Technologies,
22(4):1553-1569, 2017.

[5] K. Lang, R. Galanos, J. Goode, D. Seechorn, F. Trees,
P. Phillips, and C. Stephenson. Bugs in the system:
Computer science teacher certification in the us. The
Computer Science Teachers Association and The
Association for Computing Machinery, 2013.

[6] D. Leyzberg and C. Moretti. Teaching cs to cs
teachers: Addressing the need for advanced content in
k-12 professional development. In Proceedings of the
2017 ACM SIGCSE technical symposium on
Computer Science Education, pages 369-374, 2017.

[7] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The Scratch programming language and
environment. ACM Transactions on Computing
Education (TOCE), 10(4):1-15, 2010.

[8] D. Pérez-Marin, R. Hijén-Neira, A. Bacelo, and
C. Pizarro. Can computational thinking be improved
by using a methodology based on metaphors and
Scratch to teach computer programming to children?
Computers in Human Behavior, 105:105849, 2020.

[9] A. Strawhacker and M. U. Bers. What they learn
when they learn coding: investigating cognitive
domains and computer programming knowledge in
young children. Fducational Technology Research and
Development, 67(3):541-575, 2019.

[10] A. Yadav, S. Gretter, S. Hambrusch, and P. Sands.
Expanding computer science education in schools:
understanding teacher experiences and challenges.
Computer Science Education, 26(4):235-254, 2016.

