Computer Science in Early Education

Jaydon Smith
Division of Science and Mathematics
University of Minnesota, Morris, Minnesota, USA

October 31, 2020

Computer Science

Was there a lot of opportunities in school before college to study Computer Science?

Computer Science

Was there a lot of opportunities in school before college to study Computer Science?

Have you noticed how people perceive Computer Science to be such an advanced and difficult field?

The Problem

Can younger students comprehend computer science concepts?

The Problem

Can younger students comprehend computer science concepts?

What methods are available to teach these students computer science concepts?

The Problem

Can younger students comprehend computer science concepts?

What methods are available to teach these students computer science concepts?

Are there limitations to being able to teach these students?

Exploring the Problem

Computer science concepts and methods

Two methods:

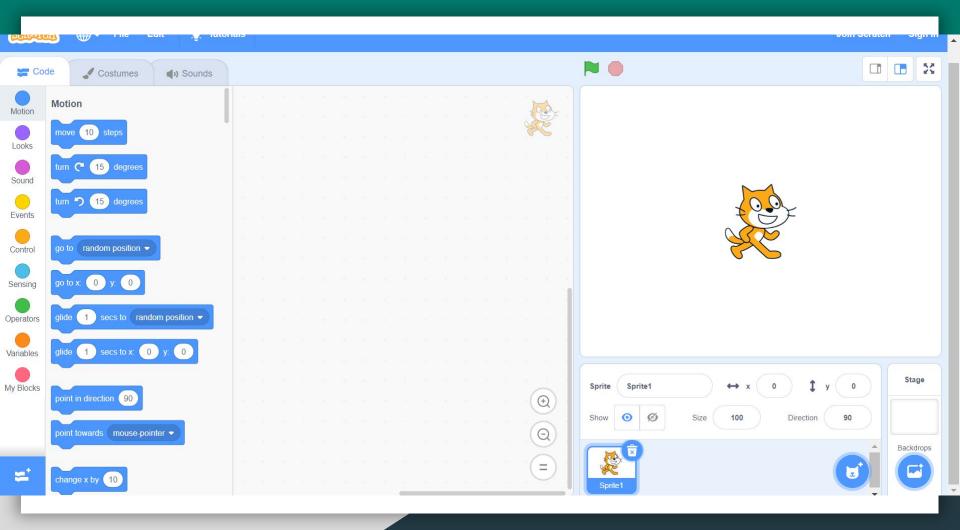
- Using Scratch and metaphors (Students aged 9 12)
- Using ScratchJr (Students aged 5 8)

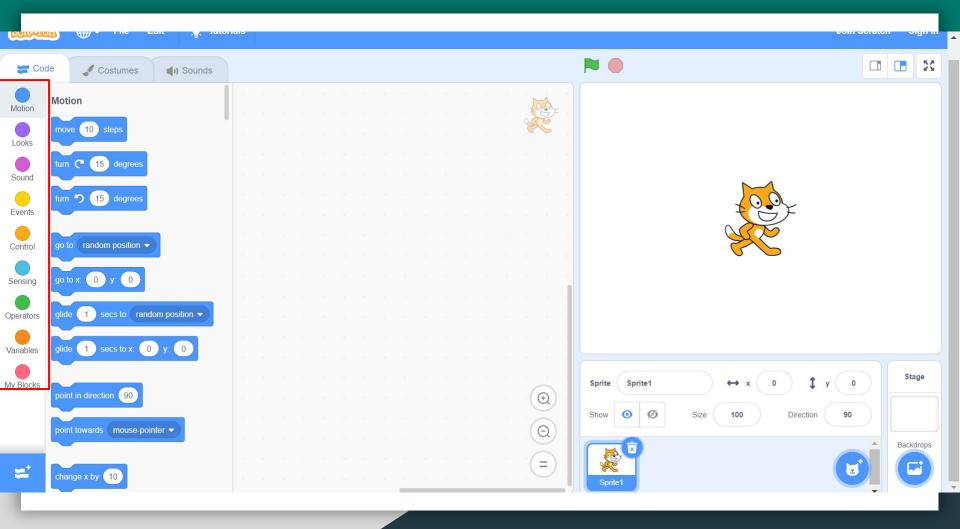
Professional training camps for teachers

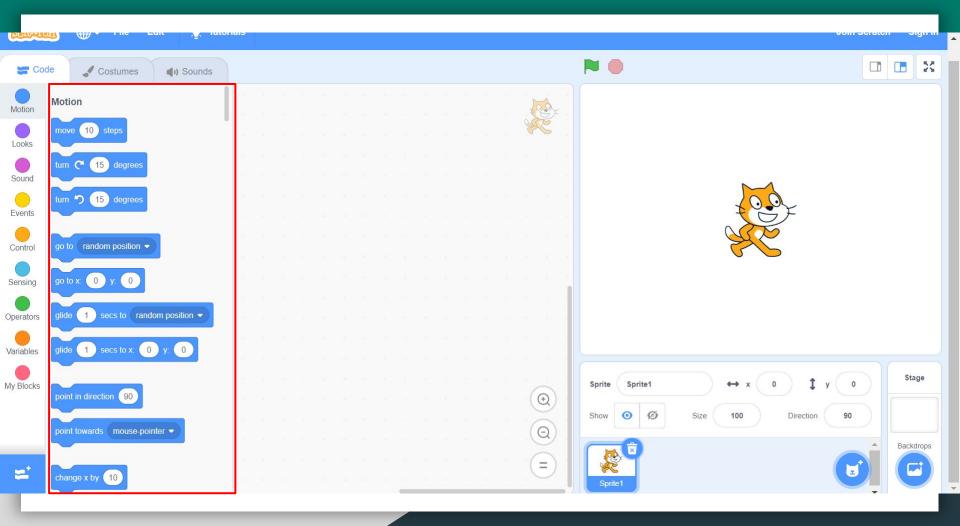
Outline

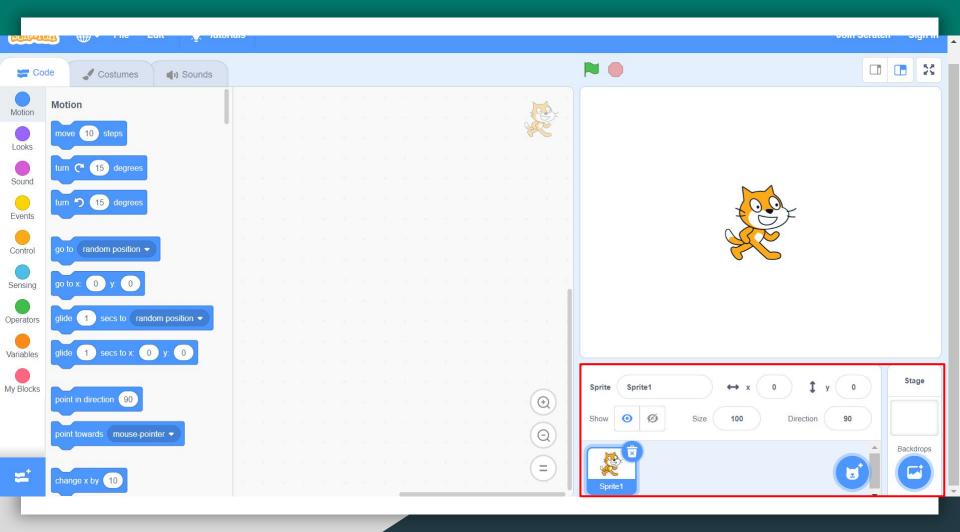
- 1. Scratch and ScratchJr
- 2. Computational Thinking
- 3. Methods and their results
- 4. Advantages
- 5. Limitations
- 6. Conclusion

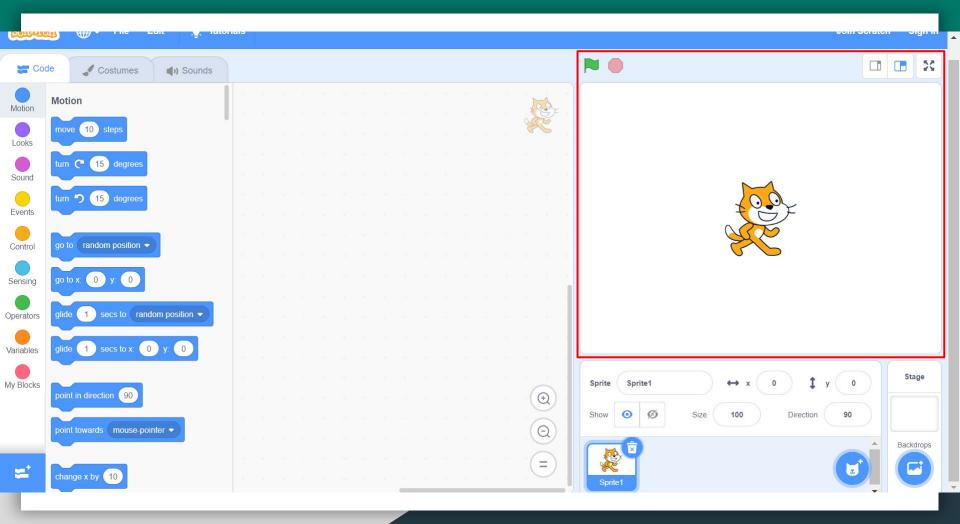
Scratch and ScratchJr

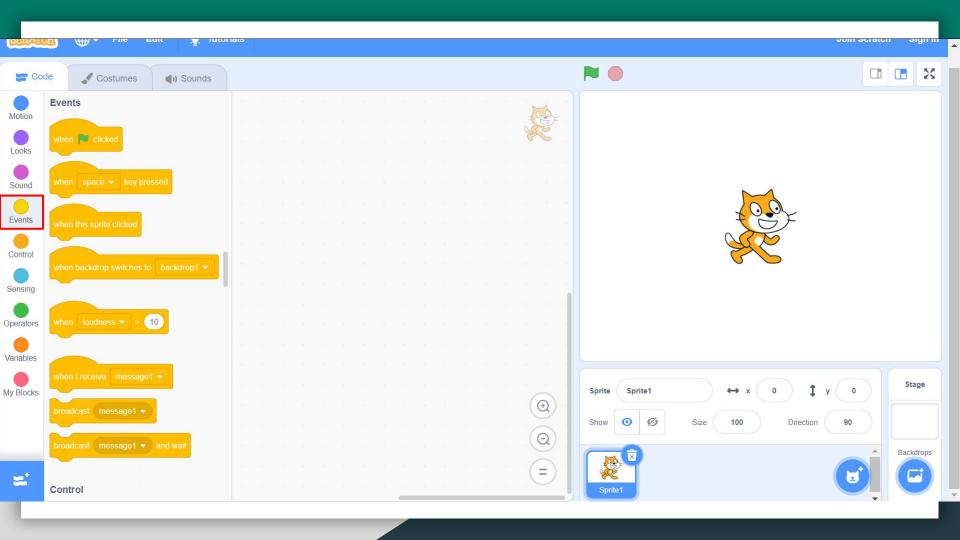

Scratch and ScratchJr

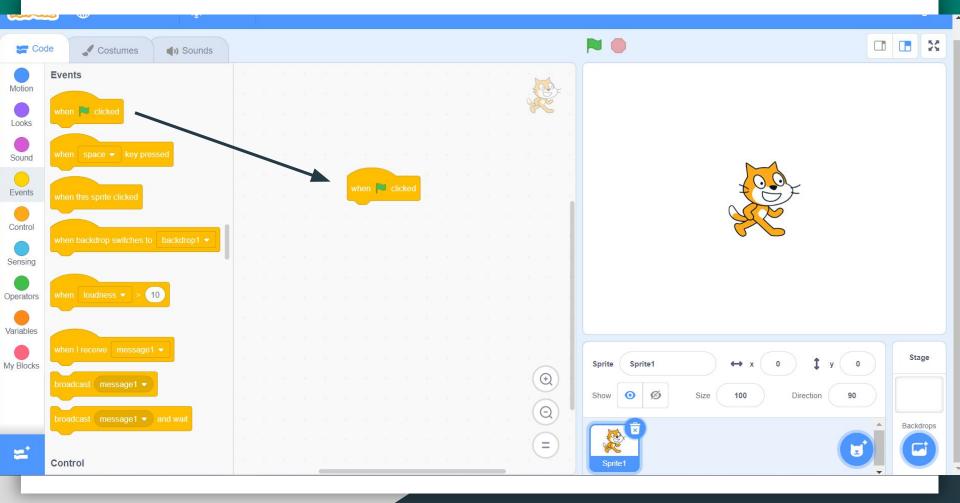

Similarities:

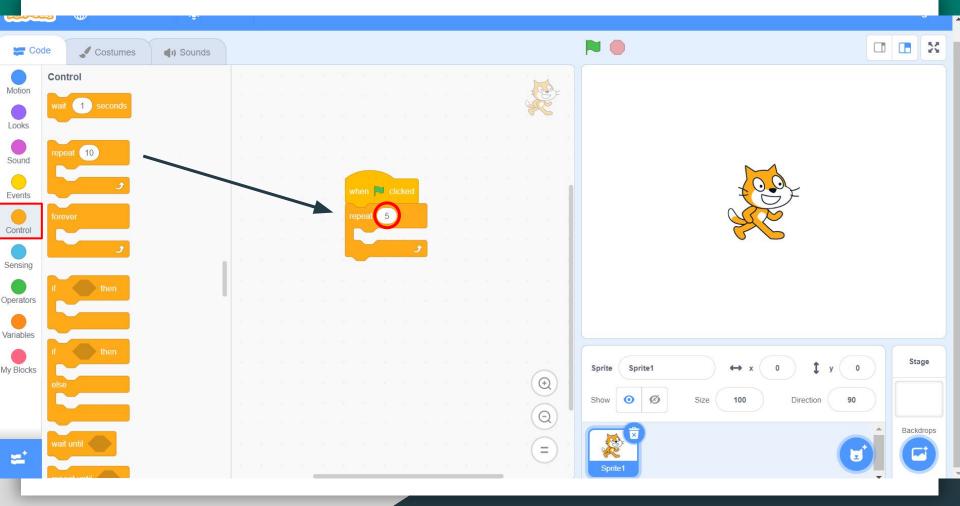

- Simple user interface
- Command blocks instead of code
- Sprites on a "stage"
- Creativity

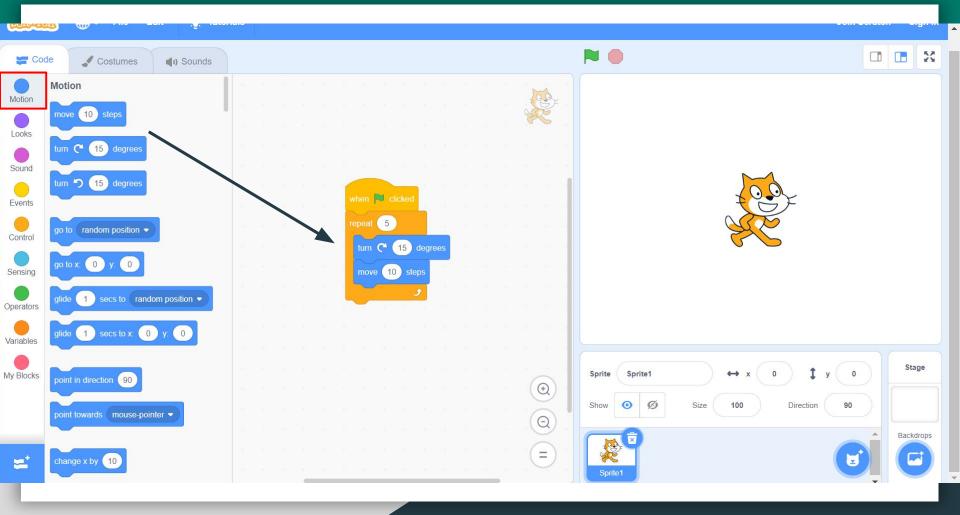

Differences:

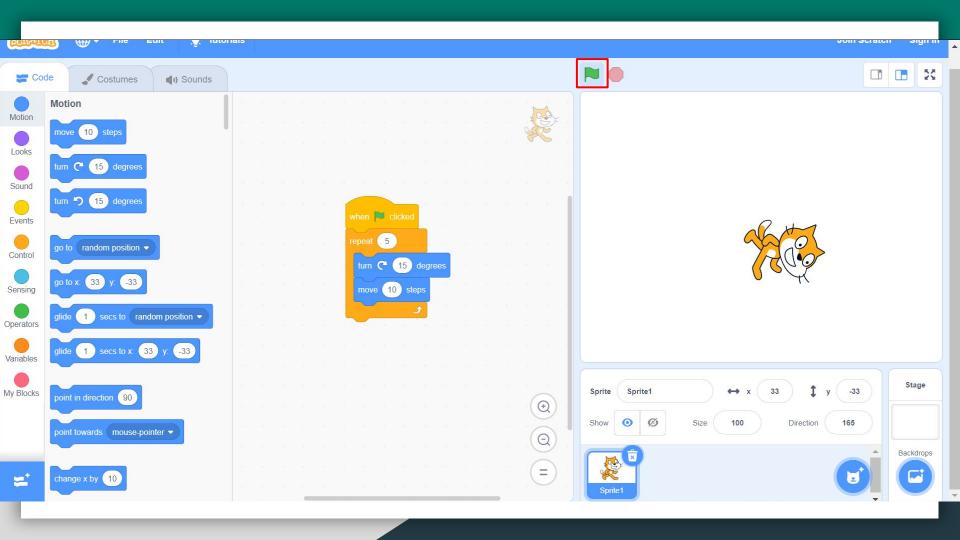

- ScratchJr has an even simpler user interface
- ScratchJr uses image blocks for command blocks
- ScratchJr has less features











Computational Thinking

Computational Thinking

Considered the skill of solving problems, designing systems, and understanding human behavior based on computer science concepts.

Positive evidence answers first problem of comprehension.

Two methods

Methods using Scratch and ScratchJr

Scratch and Metaphors

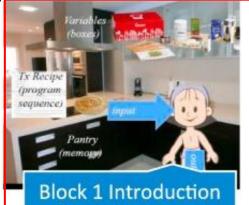
MECOPROG

Example: Loops with hand mixer, conditionals with intelligent fridge

132 elementary students

ROMT, CONT, and PCNT tests

Block 1 Scratch


fridge (conditionals)


Block 3 Hand mixer (loops)

```
number to 0
        number >
say Mixing for 2 secs
wait (1) secs
set number to number + 1
    Block 3 Scratch
```

Block 2 Scratch

Block 1 Introduction (program,...,I/O)

Block 1 Scratch

Block 2 Intelligent fridge (conditionals)

Block 3 Hand mixer (loops)

```
set family to 4

set fruits to 3

if family > fruits then

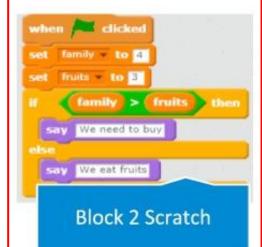
say We need to buy

else


say We eat fruits

Plack 2 Scratch
```

Block 2 Scratch

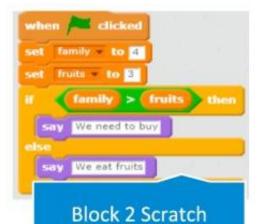


Block 1 Scratch

fridge (conditionals)

Block 3 Hand mixer (loops)

```
set number to 0
repeat until number >
  say Mixing for 2 secs
 wait (1) secs
 set number - to number + 1
      Block 3 Scratch
```



Block 1 Introduction (program,...,I/O)

Block 1 Scratch

fridge (conditionals)

Block 3 Hand mixer (loops)

```
set number to 0
repeat until ( number >
 say Mixing for 2 secs
 wait (1) secs
 set number to number + 1
      Block 3 Scratch
```

Study 1 Results

	PCN			CON			ROM		
	Mdn	M	SD	Mdn	М	SD	Mdn	M	SD
Pre	8.57	8.37	1.25	2.69	2.77	1.32	4.28	4.23	1.36
Post	9.28	8.99	1.05	5	5.08	1.59	4.64	4.77	1.56

Study 1 Results

	PCN			CON			ROM		
	Mdn	M	SD	Mdn	M	SD	Mdn	M	SD
Pre	8.57	8.37	1.25	2.69	2.77	1.32	4.28	4.23	1.36
Post	9.28	8.99	1.05	5	5.08	1.59	4.64	4.77	1.56

ScratchJr and Solve Its

57 kindergarten through 2nd grade students

Lessons introduced computer science ideas

Three modules: Interactive collage, animated story, and interactive game

Solve Its

Measured: observation, memory, and reasoning

Recorded errors made

Study 2 results

Errors:

- Kindergarteners: 3 per question
- First Graders: 1.8 per question
- Second Graders: 1.4 per question

Study 2 results cont.

Solve It Task 2: Two characters take turns doing actions

Kindergarteners couldn't solve

13% of first graders found solution

40% of second graders found solution

Higher grade = better problem grasping and solving

Advantages

Advantages

Early introduction helps:

- Cognitive skills
- Visual memory
- Language skills
- Manage uncertainty
- Assess problem difficulty
- Use of modularization

- Easier time with advanced courses later on
- More knowledgeable in careers

Study 3

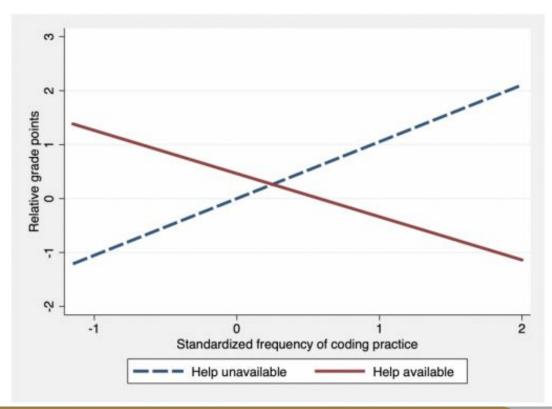
2,871 introductory college computer science students

Survey students about content and pedagogy of computer science courses before college

College professors shared final grades with researchers

	Model 1: Controls		Model 2: Main Effects		Model 3: Interaction	
	b	(se)	ь	(se)	b	(se)
Intercept	77.55***	(1.53)	78.48***	(1.56)	80.57***	(1.71)
Student-level variables		100		55 10		A. No. 1
Avg. parent education	0.39	(0.22)	0.34	(0.22)	0.33	(0.22)
Help at home	0.38	(0.65)	0.33	(0.65)	0.46	(0.65)
Vocabulary	-0.04	(0.21)	-0.11	(0.21)	0.23	(0.25)
Male	-1.06*	(0.50)	-1.19*	(0.50)	-1.22*	(0.49)
Hispanic	-1.08	(0.73)	-1.11	(0.73)	-1.02	(0.73)
Black	-5.01***	(0.87)	-4.95***	(0.87)	-4.82***	(0.87)
Asian	-0.67	(0.57)	-0.60	(0.57)	-0.68	(0.56)
Other race	-1.59*	(0.75)	-1.47*	(0.74)	-1.61*	(0.74)
SAT Math/100	1.16***	(0.24)	1.07***	(0.24)	0.74**	(0.27)
Freshman	1.41**	(0.47)	1.13*	(0.47)	1.09*	(0.47)
Coding			0.88***	(0.24)	1.05***	(0.25)
Non-coding computer use			-0.67**	(0.22)	-0.65**	(0.22)
Class-level variable						
Innovative college CS	1.75	(0.91)	1.81*	(0.91)	-7.28*	(3.04)
Interactions						1
Help at home X coding					-1.85**	(0.67)
Innovative X SAT math/100					1.46**	(0.47)
Innovative X vocabulary					-1.22**	(0.46)
N (classes)		177		177		177
N (students)		2871		2871		2871
Pseudo-R ²		9.0%		10.0%		11.0%

	Model 1: Controls		Model 2: Main Effects	Model 3: Interactions		
	b	(se)	b	(se)	b	(se)
Intercept	77.55***	(1.53)	78.48***	(1.56)	80.57***	(1.71)
Student-level variables		100		100		100
Avg. parent education	0.39	(0.22)	0.34	(0.22)	0.33	(0.22)
Help at home	0.38	(0.65)	0.33	(0.65)	0.46	(0.65)
Vocabulary	-0.04	(0.21)	-0.11	(0.21)	0.23	(0.25)
Male	-1.06*	(0.50)	-1.19*	(0.50)	-1.22*	(0.49)
Hispanic	-1.08	(0.73)	-1.11	(0.73)	-1.02	(0.73)
Black	-5.01***	(0.87)	-4.95***	(0.87)	-4.82***	(0.87)
Asian	-0.67	(0.57)	-0.60	(0.57)	-0.68	(0.56)
Other race	-1.59*	(0.75)	-1.47*	(0.74)	-1.61*	(0.74)
SAT Math/100	1.16***	(0.24)	1.07***	(0.24)	0.74**	(0.27)
Freshman	1.41**	(0.47)	1.13*	(0.47)	1.09*	(0.47)
Coding			0.88***	(0.24)	1.05***	(0.25)
Non-coding computer use			-0.67**	(0.22)	-0.65**	(0.22)
Class-level variable						
Innovative college CS	1.75	(0.91)	1.81*	(0.91)	-7.28*	(3.04)
Interactions						
Help at home X coding					-1.85**	(0.67)
Innovative X SAT math/100					1.46**	(0.47)
Innovative X vocabulary					-1.22**	(0.46)
N (classes)		177		177		177
N (students)		2871		2871		2871
Pseudo-R ²		9.0%		10.0%		11.0%


•	Model 1: Controls		Model 2: Main Effects		Model 3: In	nteractions
	b	(se)	b	(se)	b	(se)
Intercept	77.55***	(1.53)	78.48***	(1.56)	80.57***	(1.71)
Student-level variables		100		1 20 00		All New York
Avg. parent education	0.39	(0.22)	0.34	(0.22)	0.33	(0.22)
Help at home	0.38	(0.65)	0.33	(0.65)	0.46	(0.65)
Vocabulary	-0.04	(0.21)	-0.11	(0.21)	0.23	(0.25)
Male	-1.06*	(0.50)	-1.19*	(0.50)	-1.22*	(0.49)
Hispanic	-1.08	(0.73)	-1.11	(0.73)	-1.02	(0.73)
Black	-5.01***	(0.87)	-4.95***	(0.87)	-4.82***	(0.87)
Asian	-0.67	(0.57)	-0.60	(0.57)	-0.68	(0.56)
Other race	-1.59*	(0.75)	-1.47*	(0.74)	-1.61*	(0.74)
SAT Math/100	1.16***	(0.24)	1.07***	(0.24)	0.74**	(0.27)
Freshman	1.41**	(0.47)	1.13*	(0.47)	1.09*	(0.47)
Coding			0.88***	(0.24)	1.05***	(0.25)
Non-coding computer use			-0.67**	(0.22)	-0.65**	(0.22)
Class-level variable						8.0
Innovative college CS	1.75	(0.91)	1.81*	(0.91)	-7.28*	(3.04)
Interactions						17
Help at home X coding					-1.85**	(0.67)
Innovative X SAT math/100					1.46**	(0.47)
Innovative X vocabulary					-1.22**	(0.46)
N (classes)		177		177		177
N (students)		2871		2871		2871
Pseudo-R ²		9.0%		10.0%		11.0%

	Model 1: Controls		Model 2: Main Effects		Model 3: Interactions	
	b	(se)	ь	(se)	b	(se)
Intercept	77.55***	(1.53)	78.48***	(1.56)	80.57***	(1.71)
Student-level variables		100		55 10		All 1000 1
Avg. parent education	0.39	(0.22)	0.34	(0.22)	0.33	(0.22)
Help at home	0.38	(0.65)	0.33	(0.65)	0.46	(0.65)
Vocabulary	-0.04	(0.21)	-0.11	(0.21)	0.23	(0.25)
Male	-1.06*	(0.50)	-1.19*	(0.50)	-1.22*	(0.49)
Hispanic	-1.08	(0.73)	-1.11	(0.73)	-1.02	(0.73)
Black	-5.01***	(0.87)	-4.95***	(0.87)	-4.82***	(0.87)
Asian	-0.67	(0.57)	-0.60	(0.57)	-0.68	(0.56)
Other race	-1.59*	(0.75)	-1.47^{*}	(0.74)	-1.61*	(0.74)
SAT Math/100	1.16***	(0.24)	1.07***	(0.24)	0.74**	(0.27)
Freshman	1.41**	(0.47)	1.13*	(0.47)	1.09*	(0.47)
Coding			0.88***	(0.24)	1.05***	(0.25)
Non-coding computer use			-0.67**	(0.22)	-0.65**	(0.22)
Class-level variable						
Innovative college CS	1.75	(0.91)	1.81*	(0.91)	-7.28*	(3.04)
Interactions						1
Help at home X coding					-1.85**	(0.67)
Innovative X SAT math/100					1.46**	(0.47)
Innovative X vocabulary					-1.22**	(0.46)
N (classes)		177		177		177
N (students)		2871		2871		2871
Pseudo-R ²		9.0%		10.0%		11.0%

	Model 1: Controls		Model 2: Main Effects		Model 3: Interactions	
	b	(se)	ь	(se)	b	(se)
Intercept	77.55***	(1.53)	78.48***	(1.56)	80.57***	(1.71)
Student-level variables		100		55 10		A2 No. 1
Avg. parent education	0.39	(0.22)	0.34	(0.22)	0.33	(0.22)
Help at home	0.38	(0.65)	0.33	(0.65)	0.46	(0.65)
Vocabulary	-0.04	(0.21)	-0.11	(0.21)	0.23	(0.25)
Male	-1.06*	(0.50)	-1.19*	(0.50)	-1.22*	(0.49)
Hispanic	-1.08	(0.73)	-1.11	(0.73)	-1.02	(0.73)
Black	-5.01***	(0.87)	-4.95***	(0.87)	-4.82***	(0.87)
Asian	-0.67	(0.57)	-0.60	(0.57)	-0.68	(0.56)
Other race	-1.59*	(0.75)	-1.47*	(0.74)	-1.61*	(0.74)
SAT Math/100	1.16***	(0.24)	1.07***	(0.24)	0.74**	(0.27)
Freshman	1.41**	(0.47)	1.13*	(0.47)	1.09*	(0.47)
Coding			0.88***	(0.24)	1.05***	(0.25)
Non-coding computer use			-0.67**	(0.22)	-0.65**	(0.22)
Class-level variable						
Innovative college CS	1.75	(0.91)	1.81*	(0.91)	-7.28*	(3.04)
Interactions						
Help at home X coding					-1.85**	(0.67)
Innovative X SAT math/100					1.46**	(0.47)
Innovative X vocabulary					-1.22**	(0.46)
N (classes)		177		177		177
N (students)		2871		2871		2871
Pseudo-R ²		9.0%		10.0%		11.0%

	Model 1: Controls		Model 2: Main Effects		Model 3: Interactio	
	b	(se)	b	(se)	b	(se)
Intercept	77.55***	(1.53)	78.48***	(1.56)	80.57***	(1.71)
Student-level variables		100		55 10		- No. 1
Avg. parent education	0.39	(0.22)	0.34	(0.22)	0.33	(0.22)
Help at home	0.38	(0.65)	0.33	(0.65)	0.46	(0.65)
Vocabulary	-0.04	(0.21)	-0.11	(0.21)	0.23	(0.25)
Male	-1.06*	(0.50)	-1.19*	(0.50)	-1.22*	(0.49)
Hispanic	-1.08	(0.73)	-1.11	(0.73)	-1.02	(0.73)
Black	-5.01***	(0.87)	-4.95***	(0.87)	-4.82***	(0.87)
Asian	-0.67	(0.57)	-0.60	(0.57)	-0.68	(0.56)
Other race	-1.59*	(0.75)	-1.47*	(0.74)	-1.61*	(0.74)
SAT Math/100	1.16***	(0.24)	1.07***	(0.24)	0.74**	(0.27)
Freshman	1.41**	(0.47)	1.13*	(0.47)	1.09*	(0.47)
Coding			0.88***	(0.24)	1.05***	(0.25)
Non-coding computer use			-0.67**	(0.22)	-0.65**	(0.22)
Class-level variable						
Innovative college CS	1.75	(0.91)	1.81*	(0.91)	-7.28*	(3.04)
Interactions						1
Help at home X coding					-1.85**	(0.67)
Innovative X SAT math/100					1.46**	(0.47)
Innovative X vocabulary					-1.22**	(0.46)
N (classes)		177		177		177
N (students)		2871		2871		2871
Pseudo-R ²		9.0%		10.0%		11.0%

Graph of Interactions

	Model 1: Controls		Model 2: Main Effects		Model 3: Interaction	
	b	(se)	ь	(se)	b	(se)
Intercept	77.55***	(1.53)	78.48***	(1.56)	80.57***	(1.71)
Student-level variables		100		55 10		- AT 1000 1
Avg. parent education	0.39	(0.22)	0.34	(0.22)	0.33	(0.22)
Help at home	0.38	(0.65)	0.33	(0.65)	0.46	(0.65)
Vocabulary	-0.04	(0.21)	-0.11	(0.21)	0.23	(0.25)
Male	-1.06*	(0.50)	-1.19*	(0.50)	-1.22*	(0.49)
Hispanic	-1.08	(0.73)	-1.11	(0.73)	-1.02	(0.73)
Black	-5.01***	(0.87)	-4.95***	(0.87)	-4.82***	(0.87)
Asian	-0.67	(0.57)	-0.60	(0.57)	-0.68	(0.56)
Other race	-1.59*	(0.75)	-1.47*	(0.74)	-1.61*	(0.74)
SAT Math/100	1.16***	(0.24)	1.07***	(0.24)	0.74**	(0.27)
Freshman	1.41**	(0.47)	1.13*	(0.47)	1.09*	(0.47)
Coding			0.88***	(0.24)	1.05***	(0.25)
Non-coding computer use			-0.67**	(0.22)	-0.65**	(0.22)
Class-level variable						
Innovative college CS	1.75	(0.91)	1.81*	(0.91)	-7.28*	(3.04)
Interactions						1
Help at home X coding					-1.85**	(0.67)
Innovative X SAT math/100					1.46**	(0.47)
Innovative X vocabulary					-1.22**	(0.46)
N (classes)		177		177		177
N (students)		2871		2871		2871
Pseudo-R ²		9.0%		10.0%		11.0%

Limitations

Limitations

Limitations

- Availability of confident computer science teachers
- Proper resources for teachers

Two studies: Using workshops and interviewing current computer science teachers

Workshop study: 25 teachers, week long workshop

Curriculum: Recursion, analysis, machine language, and theoretical computer science topics

Teachers came out more confident and ready

Push for computer science education around the globe

Need a large amount of computer science teachers

United States computer science teacher field flawed

Certification programs

57% of computer science teachers teach other content areas

Interviewing study: 24 high school computer science teachers

Interview gathered information on challenges faced by teachers in classroom

Interviewing study: 24 high school computer science teachers

Interview gathered information on challenges faced by teachers in classroom

Challenges found:

- Teaching in the classroom
 - Content
 - Pedagogy
 - Assessment

Interviewing study: 24 high school computer science teachers

Interview gathered information on challenges faced by teachers in classroom

Challenges found:

- Teaching in the classroom
 - Content
 - Pedagogy
 - Assessment
- Compounding factors
 - Lack of teacher prep.
 - Isolation
 - Information technology

Interviewing study: 24 high school computer science teachers

Interview gathered information on challenges faced by teachers in classroom

Challenges found:

- Teaching in the classroom
 - Content
 - Pedagogy
 - Assessment
- Compounding factors
 - Lack of teacher prep.
 - Isolation
 - Information technology
- Support
 - Organized repository
 - Community

Possible Solutions:

- Professional workshops
- More proper certification programs
- Support community
- Online tool repository

New, developing field

New, developing field

Young children can grow skill of computational thinking through visual programming languages with or without metaphors

Early education of computer science holds many advantages

New, developing field

Young children can grow skill of computational thinking through visual programming languages with or without metaphors

Early education of computer science holds many advantages

Overhaul of computer science certification programs and more available resources

Questions?

References

Images:

- Myself
- https://www.scratchjr.org/learn/interface
- https://www.teachhub.com/teaching-strategies/2019/09/5-teaching-strategies-to-keep-class-interesting/
- Sources

References

Sources:

- D. D. Bowman. Declining talent in computer related careers. Journal of Academic Administration in Higher Education, 14(1):1–4, 2018
- H. Burgiel, P. M. Sadler, and G. Sonnert. Theassociation of high school computer science content andpedagogy with students' success in college computer science. ACM Transactions on Computing Education (TOCE), 20(2):1–21, 2020
- D. Leyzberg and C. Moretti. Teaching cs to cs teachers: Addressing the need for advanced content in k-12professional development. InProceedings of the 2017ACM SIGCSE technical symposium on ComputerScience Education, pages 369–374, 2017
- D. P´erez-Mar´ın, R. Hij´on-Neira, A. Bacelo, and C. Pizarro. Can computational thinking be improved by using a methodology based on metaphors and scratch to teach computer programming to children? Computers in Human Behavior, 105:105849, 2020
- A. Strawhacker and M. U. Bers. What they learn whenthey learn coding: investigating cognitive domains and computer programming knowledge in young children. Educational Technology Research and Development, 67(3):541–575, 2019.
- A. Yadav, S. Gretter, S. Hambrusch, and P. Sands. Expanding computer science education in schools:understanding teacher experiences and challenges. Computer Science Education, 26(4):235–254, 2016