
Exploring Category-Theoretic Approaches to Databases

Aaron J. Walter
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

walte774@morris.umn.edu

ABSTRACT
As organizations are formed, split up, merge, or collaborate,
they must often work to integrate different database struc-
tures. Database migration accounts for a substantial por-
tion of information technology (IT) budgets, and database
migration failure is common. This paper explores how to
avoid database migration failure. Concepts from category
theory, a branch of mathematics, can help.

Keywords
Relational database, database migration, category theory

1. INTRODUCTION
Database migration accounts for approximately 40% of

IT budgets, and it is believed that over half of database mi-
grations fail [1]. This motivates a framework for databases
that allows us to guarantee correctness of translations be-
tween database schemas. Category theory serves as the basis
of this framework, which is primarily concerned with rela-
tional databases. Category theory is a branch of mathemat-
ics which focuses on the relationships between objects and
the structures of those relationships. In Section 2 I pro-
vide the mathematical and computer science background of
the paper – relations, relational databases, graphs, and the
building blocks of category theory. In Section 3 I describe
the category-theoretic formulation of relational databases
proposed by Spivak and Wisnesky. In Section 4 I draw
conclusions about the practicality and applicability of this
framework.

2. BACKGROUND
I will give background on relations, which are the mathe-

matical foundation for relational databases. I will describe
graphs as a foundation for categories. I will discuss the basic
elements of category theory – categories, functors, natural
transformations, and adjoints.

2.1 Relations

Definition 1. An n-tuple is an ordered list of n elements.

The ordered pair (0, 0) is a tuple with n = 2.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, October 2020 Morris, MN.

An n-tuple is a generalization of an ordered pair – n el-
ements given in order from left to right, enclosed in paren-
theses.

Definition 2. Given setsX1, X2, ..., Xn, the Cartesian prod-
uct X1×X2× ...×Xn is the set of all n-tuples (x1, x2, ..., xn)
such that each xi is in Xi.

If X is the set {apple, ham} and Y is the set
{pie, burger}, the Cartesian product X × Y is the set
{(apple, pie), (apple, burger), (ham, pie), (ham, burger)}.

Definition 3. A relation over sets X1, X2, ..., Xn is a sub-
set of the Cartesian product X1 ×X2 × ...×Xn.

The set {(apple, pie), (ham, burger)} is a relation overX,Y .
More often than describing a relation by explicitly giving

its members, we will describe a relation by giving the rule or
property that its members satisfy. For example, we might
define a relation R to be the following set:

R := {(x, y) ∈ Z× Z : x < y}

Here, Z is the set of integers: {...,−2,−1, 0, 1, 2, ...}. The
Cartesian product Z × Z is the set of all ordered pairs of
integers, and the relation R is the set of all of those ordered
pairs such that the first integer in the pair is less than the
second. So the ordered pair (1, 2) belongs in R, but the
ordered pairs (2, 1) and (1, 1) do not. If the ordered pair
(a, b) is in R, we might write this as aRb, and say “a is
related to b (by R)”. It can be helpful to think of a relation
as having a short verb phrase. For R, that phrase might be
“is less than”.

It’s important to recognize that relations can be defined
on the iterated Cartesian product of a single set with itself
(for example, Z × Z above) or on the Cartesian product of
several distinct sets. For example, we might define a relation
S on the set X × Y ×Z, where X is the set of students who
have attended the University of Minnesota Morris, Y is the
set of professors who have taught a course at Morris, and Z is
the set of semesters where Morris has held courses. We could
define S to be the set of all 3-tuples (x, y, z) – each with one
student x, one professor y, and one semester z – such that x
took a course with y in z. For example, if the author took a
course with David Roberts in the spring of 2020, the 3-tuple
(Aaron Walter, David Roberts, spring 2020) would belong
in S. We call a relation n-ary if its objects are n-tuples. For
example, R above is a binary (2-ary) relation, while S is a
ternary (3-ary) relation.

Relations often have useful properties, such as symmetry,
transitivity, and reflexivity. A relation that has all of these



properties is called an equivalence relation. A reader who is
unfamiliar with these concepts can refer to an undergraduate
textbook on set theory, such as [5].

2.2 Relational databases
The relational model of databases was proposed by Codd

in 1970 and later refined by Darwen and Date in 1995 [3].
It provides “a simple and intuitive method for defining a
database, storing and updating data in it, and submitting
queries of arbitrary complexity to it” [3]. A query is a
structured request for information. If we built a relational
database of information about the University of Minnesota,
Morris, it might have a record (Abstract Algebra, David
Roberts, spring 2020). This record is a tuple. A record be-
longs to a collection of similar records, called a table. For
example, this table might also include the records (CSci Se-
nior Seminar, Elena Machkasova, fall 2020) and (Algorithms
and Computability, Peter Dolan, fall 2020). If all the records
in this collection can be read as “Course x was taught by y
in z”, we could think of this collection as representing an
analogous relation. So in relational databases, tables (col-
lections of records) are relations, records (rows in a table)
are tuples, and attributes (the columns in a table) are the
underlying sets of the relation that table represents. Every
attribute in a table is associated to a particular table (when
its entries are foreign keys) or to a particular type of raw
data.

An ideal relational database adheres to four key princi-
ples [3]:

1. Every row/column intersection has exactly one value.
In terms of relations, we might say “every record is
an n-tuple”, where n is the number of columns in the
table.

2. The order of rows in a table doesn’t matter. This
reflects the fact that a relation is a set, and the order
of elements in a set doesn’t matter.

3. The order of columns in a table doesn’t matter, as long
as each column is associated with the correct attribute
name.

4. Rows in a table are unique. This reflects the fact that
duplicate elements in a set don’t matter.

A database schema is a description of the structure of a
database – its tables, the attributes of those tables (other
tables or data types) and any “business logic” that goes with
them. As an example of business logic, a schema might
specify that a worker’s next pay check amount is equal to
their pay rate times the amount of hours they’ve worked over
the last pay period. A schema is a blueprint for a database
instance.

An instance of a database schema is a presentation of data
that obeys the structure of that schema.

2.3 Structured Query Language
Structured Query Language (SQL) is a programming lan-

guage used to manage database systems. While SQL has
historically been used mostly in the context of relational
database management systems (RDBMS), its use has ex-
panded in recent years, for example to databases designed
for processing “big data” [7]. SQL has three core compo-
nents: a database definition language (DDL) which allows

for the specification of database schemas, a data manipula-
tion language (DML) which allows for the access and mod-
ification of stored data, and a data control language (DCL)
which allows for the configuration of security protocols for
a database [7]. The database definition language functions
essentially the same way as we will see later in the category-
theoretic framework. The data control language is outside
the scope of the question of database migration. So, for our
purposes we will focus on the data manipulation language,
which has features which violate the four principles from
Section 2.2.

Darwen and Date condemn SQL as a “perversion” of the
relational model of data [4]. They note that SQL has cer-
tain properties which are forbidden by the relational model.
For example, SQL-managed relational databases allow for
duplicate rows in a table and allow null values in columns
rather than requiring every entry correspond to the attribute
name of its column. Further, SQL can operate on relations
in a “tuple-at-a-time” level rather than handling them as a
set. These properties can be problematic for data migration.
Graph theory will serve as our foundation for a category-
theoretic treatment of relational databases, as a potential
alternative to SQL.

2.4 Graph theory

Definition 4. A graph

G := {V,A, s, t}

has a set of vertices V , a set of arrows A, and functions
s, t : A→ V which take arrows in A to vertices in V . s can
be thought of as sending each arrow to its source vertex, and
t can be thought of sending each arrow to its target vertex.

Readers familiar with graphs might recognize that Defi-
nition 4 describes a directed multigraph. This paper is not
concerned with other types of graphs, so the distinction is ig-
nored here. Further, note that what we call arrows are often
called edges by graph theorists. We choose the term arrow
to emphasize the idea of movement, or transition between
states. Arrow is also the term that Spivak and Wisnesky
use [9].

Table 1 describes a graph G.

Table 1: An example graph G

V
1
2
3
4

A s t
a 1 1
b 1 2
c 2 1
d 2 3
e 4 2
f 4 3
g 4 4

Here, G is a graph with four vertices (1 through 4) and
seven arrows (a through g). The entries in the s and t
columns describe the source and target, respectively, of the
arrow in the corresponding row. For example, arrow c starts
at vertex 2 and goes to vertex 1.

Definition 5. Given a graph G, a path in G is a sequence
of arrows a1,a2,...,an in G such that the target of each ar-
row in the sequence is the source of the next arrow in the



Figure 1: the Graph G

1 2

34

a

b

c

de

f
g

sequence. We say that the length of the path is the number
of arrows composed this way. We also allow the trivial path
of length 0 on each vertex, denoted idv for a vertex v. Here,
id stands for identity.

2.5 Category theory fundamentals
The mathematical field of category theory is concerned

with relationships between structures. The subsections be-
low define important terms. Definitions are taken or adapted
from [6].

2.5.1 Categories
Below we give the formal definition of a category. The

intuition behind the definition is this: a category is a graph
(see Definition 4) with an additional bit of expressive power:
we can declare any two paths to be equivalent. This power
will allow us to inject “business logic” directly into a descrip-
tion of a database. By “business logic” we mean rules that
ensure the integrity of our data. For example, we might
want to guarantee that, in a workplace database, a man-
ager works in the same department as the employees they
manage. When we represent a category with a diagram, the
objects of that category are the vertices, and the morphisms
are the arrows. A morphism is a structure-preserving map
between objects in a category. We will see that morphsisms
are the key to understanding path equivalences categorically.

Definition 6. A category C has

1. A collection of objects called Ob(C).

2. A set of morphisms for every pair of objects c,d called
C(c,d). We call C(c,d) a hom-set.

3. An identity morphism idc : c → c for every object
c ∈ Ob(C).

4. For every three objects c, d, e ∈ Ob(C) and two mor-
phisms f ∈ C(c, d), g ∈ C(d, e), a morphism f ; g ∈
C(c, e) called the composite of f and g.

Note: we normally write function compositions with the
outermost function on the left, and the innermost on the
right. We use a different convention to denote composition
of morphisms: the left morphism is the first arrow in the
path and the right morphism is the last. This motivates
the use of ; as our symbol to denote morphism composition
rather than #.

We will sometimes write c ∈ Ob(C) as simply c ∈ C, and
f ∈ C(c, d) as f : c→ d. When we do this, we say that c is
the source of f and that d is the target of f.

The components of C must obey the following conditions:

a. unitality : For any morphism f : c → d, composing
with the identities at c or d does not change the re-
sulting morphism: idc; f = f ; idd = f .

b. associativity : For any three morphisms f : c0 → c1,
g : c1 → c2, h : c2 → c3, the following are equal:
(f ; g);h = f ; (g;h). We simply write this as f ; g;h.

The objects of a category C can be anything we can rep-
resent with a mathematical construct. Morphisms are one-
way connections between objects. Importantly, every object
is connected to itself (for an object c, that self-connecting
morphism is idc). An object can be connected to many other
objects, or just itself. Condition 4 of the definition ensures
that when two objects are connected indirectly, we name a
connection between them by composing the morphisms that
create that indirect connection.

Composing morphisms in a cateogry can be thought of
as concatenating arrows in a graph. If we want to compose
morphisms f and g, the ’target’ of f must match the ’source’
of g, and we get f ; g.

For example, let’s say for some category C we have Ob(C) =
{a, b, c}. So C has three objects. We know that each has an
identity morphism. Let’s say that there are also four mor-
phisms e : a → b, f : b → c, g : c → b and h : c → c.
Because of the unitality and associativity conditions, cer-
tain composite morphisms must exist. e; f : a→ c is one of
them.

Definition 7. We say a morphism f : A → B is an iso-
morphism if there exists a morphism g : B → A such that
f ; g = idA and g; f = idB . We say that f and g are inverses,
and that A and B are isomorphic.

In category, we will sometimes say a category is small.
The distinction is not important for our purposes – we will
deal with categories described by diagrams, which will al-
ways have a finite number of vertices. Hence, all of our
schemas and instances we represent as categories will be
small.

Definition 8. Later on we will make use of these special
categories:

• A discrete category has only the identity morphisms
as its morphisms. Graphically, a discrete category is a
collection of vertices with no nontrivial paths.

• Given a category C, its opposite category denoted Cop

is C with all of its morphisms reversed. Graphically, it
is the graph of C with the directions of all the arrows
switched.

• Set, the category of sets, has sets as its objects and
functions between sets as its morphisms. For example,
for sets A and B, Set(A,B) is the set of all functions
from A to B.

• Cat, the category of small categories, has small cate-
gories as its objects and functors as its morphisms. For
example, for categories C and D, Cat(C,D) is the set
of all functors from C to D.



2.5.2 Functors

Definition 9. Let C,D be categories. A functor F : C →
D is a map of objects in C to objects in D and morphisms
in C to morphisms in D such that

1. For every object c ∈ Ob(C), we specify an object
F (c) ∈ Ob(D).

2. For every morphism f : c1 → c2 in C, we specify a
morphism F (f) : F (c1)→ F (c2) in D.

These constituents must satisfy two properties:

a. For every object c ∈ Ob(C), we have F (idc) = idF (c).

b. For every three objects c1, c2, c3 ∈ Ob(C) and two
morphisms f ∈ C(c1, c2), g ∈ C(c2, c3), the equation
F (f ; g) = F (f);F (g) holds in D.

Condition a says that a functor sends each object c’s iden-
tity morphism to the identity morphism in D that belongs
to the same object that F sends c to.

Condition b says that when composing morphisms, it doesn’t
matter whether we do so before or after sending them through
F . This can be thought of as being a structure-preserving
property.

2.5.3 Natural transformations

Definition 10. Given two categories C and D, and two
functors F,G : C → D, to specify a natural transformation
α : F ⇒ G,

• For each object c ∈ C, we specify a morphism αc :
F (c)→ G(c) in D called the c-component of α.

• These components must satisfy the naturality condi-
tion, which states that for every morphism f : c → d
in C, the equation F (f);αd = αc;G(f).

Natural transformations can be thought of as being higher-
order objects in category theory. While functors are a way of
translating from one category to another, natural transfor-
mations are a way of translating from one functor to another.

We use functors and natural transformations to determine
when two categories are equivalent.

Definition 11. Given categories C,D, we say C and D
are equivalent if there is a functor L : C → D and a func-
tor R : D → C such that L;R and R;L are both natural
transformations.

2.5.4 Adjoints

Definition 12. Given C,D categories and L : C → D,
R : D → C functors, we say L is left adjoint to R (and R is
right adjoint to L if for any c ∈ C and d ∈ D, there is an iso-

morphism of hom-sets αc,d : C(c,R(d))
∼=−→ D(L(c), d) that

is natural in c and d. In the database context, our hom-sets
will simply be sets, so all that is required for isomorphism
is that those sets are the same size.

Given a morphism f : c → R(d) in C, its image g :=
αc,d(f) is called its mate. Similarly, the mate of g : L(c)→ d
is f .

To be natural in c and d, our isomorphism αc,d must be
such that for all morphisms f : c′ → c in C and g : d →
d′ in D, going from C(c,R(d) to D(L(c′), d′ by the path
αc,d;D(L(f), g) is the same as taking the path C(f,R(g);αc′,d′ .

3. CATEGORY THEORY IN DATABASES
When applying category theory to databases, there are

two key aspects of databases that we would like to be able
to represent: database schemas and instances on database
schemas. Both of these can be treated as categories. When
thinking of a schema as a category, its objects (vertices)
are the schema’s tables, and its morphisms (arrows) are the
schema’s columns [8].

Because relational databases are based on the mathemat-
ics of relations, it makes sense to define path equivalences
as a special kind of equivalence relation.

Definition 13. Given a graph G and the set PathG of
paths in G, a categorical path equivalence relation is an
equivalence relation' on PathG that has the following prop-
erties:

• Given paths p, q, If p ' q, then src(p) = src(q) and
tgt(p) = tgt(q). Recall that src and tgt are the source
and target functions of G.

• Given paths p, q : a → b and arrows m : z → a and
n : b→ c, mp ' mq and pn ' qn.

The first property says that our equivalence relation must
respect the sources and targets of paths. The second prop-
erty says that when we have equivalent paths, applying some
arrow to both paths results in paths that are equivalent.

Definition 14. A categorical schema C is a pair C :=
(G,') of a graph G with a categorical path equivalence re-
lation ' on G.

Definition 15. Given a categorical schema C := (G,') on
a graph G:=(V ,A,s,t) an instance on C, denoted I, has the
following:

• For every vertex v ∈ V , a set I(v).

• For every arrow a : v1 → v2 ∈ A, a function I(a) :
I(v1)→ I(v2).

• For every path equivalence p ' q, the equality I(p) =
I(q) holds.

Because of how we’ve defined instances, we can see that
an instance on C is a functor from C to Set.

Definition 16. Given categorical schemas C := (G,'C)
on a graph G:=(VG,AG,sG,tG) and D := (H,'D) on a graph
H:=(VH ,AH ,sH ,tH), a translation F from C to D, written
F : C → D consists of

• a function VF : VG → VH which maps vertices in C’s
graph to vertices in D’s graph.

• a function AF : AG → PathH which maps arrows in
C’s graph to paths in D’s graph.

We require that AF preserves sources, targets, and path
equivalences.

Definition 17. Sch is the category with categorical schemas
as its objects and translations between categorical schemas
as its morphisms.

For every database schema S, there is a category S−Inst
of instances on that schema [8]. Its objects are instances on
S (which are functors from S to Set) and its morphsisms
are natural transformations between those instances.



3.1 Functorial data migration
We’ve seen that database schemas are essentially cate-

gories, and we’ve seen that instances on schemas and trans-
lations between schemas are essentially functors. Now we
need a way to convert an instance on one schema to an
instance on another schema. This is the problem of data
migration, and we solve it with the following special func-
tors.

Definition 18. Given a translation F : S → T from a
schema S to a schema T and an instance I on T , the follow-
ing data migration functors are induced:

• ∆F : T−Inst→ S−Inst is defined to be ∆F (I) = F ; I

• ΣF : S − Inst→ T − Inst is the left adjoint of ∆F .

• ΠF : S − Inst→ T − Inst is the right adjoint of ∆F .

We call ∆F the“pullback”data migration functor. It takes
instances of T and returns instances of S. If we have an
instance of T , applying ∆F to it recovers that instance in
the structure of S.

We call ΣF and ΠF the “push-forward” data migration
functors, although they push S-instances to T -instances in
different ways. In some sense, ΣF unites tables and ΠF

multiplies tables. How exactly ΣF and ΠF behave depends
on the source and target schema and the choice of translation
F .

We provide a concrete example that illustrates schemas,
instances, a translation between schemas, and the applica-
tion of the data migration functors.

Figure 2: A translation F between schemas S and T

In Figure 3.1, the translation F maps the tables P1 and
P2 in S to the table P2 in T. It maps the tables Name,
Year, and StudentID in S to their analogues in T. With this
mapping of objects, there is no choice of how to map our
arrows. The arrow from P1 to Name in S must go to the
arrow from P to Name in T, because our translation must
respect arrow sources and targets. The other arrows are
mapped in an analogous way.

In Figure 3.1, the T -instance I is in the top right corner of
the figure. The pullback ∆F splits the table P into the tables
P1 and P2 we would expect to have in an S-instance. The
push-forward functors ΣF and ΠF turn this new S-instance
back into T -instances, but in different ways. We can see how
ΠF behaves like multiplication: the records in the new P are
all the possible combinations of records from the tables P1
and P2 in the pullback. We can see how ΣF unites tables:

Figure 3: Applying the data migration functors
P Name Year StudentID

pAlpha Ahmed Junior 37829109

pBeta Rachel Senior 92837465

pGamma Jo Freshman 12231428

𝚫F
P1 Name Year

p1 Ahmed Junior

p2 Rachel Senior

p3 Jo Freshman

P2 StudentID

pA 37829109

pB 92837465

pC 12231428

𝚺F 𝜫F

P Name Year StudentID
p11 Ahmed Junior null_1
p12 Rachel Senior null_2
p13 Jo Freshman null_3
p14 null_4 null_5 37829109
p15 null_6 null_7 92837465
p16 null_8 null_9 12231428

P Name Year StudentID
p11 Ahmed Junior 37829109
p12 Rachel Senior 37829109
p13 Jo Freshman 37829109
p14 Ahmed Junior 92837465
p15 Rachel Senior 92837465
p16 Jo Freshman 92837465
p17 Ahmed Junior 12231428
p18 Rachel Senior 12231428
p19 Jo Freshman 12231428

the records in the new T -instance are all of the records from
the tables P1 and P2 put into P, with unknown information
left null.

We’ve seen three distinct but closely related data migra-
tions. The definitions from Section 2 guided us in our con-
struction of an appropriate translation F and the adjoints of
∆F . The structure-preserving properties of these constructs
guarantee data migration that obeys the specifications of the
source and target schema.

Now consider the possible consequences of data migra-
tion gone wrong. For example, if a university tries to re-
format how it stores records of which courses students have
taken and the grades students got in those courses, incor-
rect migration might result in mismatched foreign keys (e.g.
the new instance claims a student has taken a course they
haven’t actually taken). Such an outcome may result in
chaos if the university has not backed up its old database
beforehand. In contexts like healthcare and engineering,
faulty data migration might result in loss of human life and
resources.

3.2 Databases with controlled vocabularies as
categories

In one of Spivak’s foundational works on CT in databases,
he considers only databases where variable values come from
controlled vocabularies [8]. A controlled vocabulary restricts
possibilities for the value of a variable. For example, a
database where the strings for the Name column in the
table Employees must come from the list “Abdul, Rachel,
William” is using a controlled vocabulary for that field. This
approach is restrictive, but we will discuss how it’s expanded
on in 3.3. Spivak shows that the category Sch of database
schemas is equivalent to Cat, the category of small cate-
gories [8]. We’ve been thinking of categories as graphs with
path equivalences, so we can see why Sch and Cat are equiv-
alent: objects in categories are vertices in schemas, mor-
phisms in categories are paths in schemas, path equivalences
in categories are path equivalence relations in schemas, and
functors between categories are translations between schemas.

This means that every theorem about small categories be-
comes a theorem about databases using controlled vocabu-
laries. Spivak uses graphs to represent database schemas,
like we’ve seen in Figure 3.1. Graphs are commonly used
to represent databases, but Spivak treats these schemas in a



category-theoretic way. The additional bit of power that CT
gives to these representations is the ability to declare rules
about path equivalences. These path equivalences usually
have a clear translation to “business logic” in a real-life ap-
plication. For example, in a university database, we might
declare that an undergraduate student’s academic advisor
must be part of the faculty for that student’s major. We can
represent this rule as a path equivalence: Student.major =
Student.advisor.discipline.

3.3 CT in databases with data types
Spivak and Wisnesky build on the work discussed in 3.2

to expand the kinds of databases we can consider categor-
ically [9]. They extend the data migration functors to be-
have appropriately with schemas with data types. They use
a construct called a typing, the specifics of which we will
not go into here. The important thing to note about a typ-
ing is that it uses a natural transformation to ensure that
records’ typed entries have the appropriate data type after
migration.

3.4 Categorical data integration
In later work, Brown, Spivak, and Wisnesky address data

integration with category theory [2]. Data integration is
the process of unifying database schemas and instances. For
example, if two hospitals with different database systems are
united by a merger, bringing their database systems together
would be an exercise in data integration. It is beyond the
scope of this paper to discuss the mathematical background
behind this technique, but it serves as an example of the
wider practical applicability of CT to databases.

3.5 Functorial query language
Functorial query language (FQL) is a programming lan-

guage that allows for the creation of queries to a relational
database built using the category-theoretic framework. Al-
most any relational query can be written in the form ∆F ΠGΣH

for some functors F,G,H [8]. Categorical Query Language
(CQL) is the successor project to FQL. We note the exis-
tence of these languages here as evidence that the category-
theoretic approach to databases works in real-life contexts,
but we will not discuss their implementation.

4. CONCLUSIONS
The category-theoretic approach to relational databases

has potential as a replacement for SQL in RDBMS (in the
form of FQL or its successor CQL) and as a pedagogical
tool – both to introduce category theory to programmers
and computer science students, and to introduce relational
database principles to mathematicians. Representing cate-
gories as graphs with path equivalences is straightforward,
and allows for the construction of functors, natural transfor-
mations, and common database operations just by drawing
pictures. More importantly, the structure-preserving prop-
erties of our category-theoretic objects help ensure correct
data migration. Since faulty data migration can result in
mismatched keys, raw data of incorrect typing, and instances
that violate business logic, correct data migration is essential
to protecting human life and resources.

Acknowledgments
This paper would not have been possible without the time
and effort of others. In no particular order, I’d like to thank
Elena Machkasova for providing feedback and facilitating
our senior seminar course meetings, Peter Dolan for advis-
ing me on this project, Nic McPhee for being my second fac-
ulty reviewer, my alumni reviewer Nathan Beneke for their
feedback, the other students in the course for providing feed-
back and sharing their own scholarship, and my supportive
friends and family.

5. REFERENCES
[1] P. A. Bernstein and L. M. Haas. Information

integration in the enterprise. Commun. ACM,
51(9):72–79, Sept. 2008.

[2] K. Brown, D. I. Spivak, and R. Wisnesky. Categorical
data integration for computational science. CoRR,
abs/1903.10579, 2019.

[3] H. Darwen. Relational Database, page 1519–1524. John
Wiley and Sons Ltd., GBR, 2003.

[4] H. Darwen and C. J. Date. The third manifesto.
SIGMOD Rec., 24(1):39–49, Mar. 1995.

[5] H. B. Enderton. Elements of set theory. Academic
press, 1977.

[6] B. Fong and D. I. Spivak. An invitation to applied
category theory: seven sketches in compositionality.
Cambridge University Press, 2019.

[7] Y. N. Silva, I. Almeida, and M. Queiroz. Sql: From
traditional databases to big data. In Proceedings of the
47th ACM Technical Symposium on Computing Science
Education, SIGCSE ’16, page 413–418, New York, NY,
USA, 2016. Association for Computing Machinery.

[8] D. I. Spivak. Functorial data migration. Information
and Computation, 217:31 – 51, 2012.

[9] D. I. Spivak and R. Wisnesky. Relational foundations
for functorial data migration. In Proceedings of the 15th
Symposium on Database Programming Languages,
DBPL 2015, page 21–28, New York, NY, USA, 2015.
Association for Computing Machinery.


