
Machine learning and Adversarial Attacks

Vantou Xiong
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267

xion1547@morris.umn.edu

ABSTRACT
Machine learning (ML) has developed over the years through
applications like image processing for uses such as facial
recognition, image searching, and text recognition. It has
shown promising results and the field is becoming popu-
lar. As people try to increase the security in their systems,
there are still room for potential attacks against ML mod-
els and Deep Neural Networks (DNN) such as Adversarial
Attacks. These attacks are known as Adversarial Attacks
because they use adversarial examples which are false inputs
to attack the machine learning models. Adversarial attacks
has to do with crafting data so that the target ML model will
misclassify it as something else. There are multiple meth-
ods which can be used to attack the model, to try and fool
the model to misclassify data. Two methods mentioned are
Evasion attacks and Poison attacks. Evasion attacks work
by directly attacking through perturbed inputs, while poi-
son attacks inject perturbed inputs into the training process
of a machine learning model for future misclassifications. In
this paper we will look at how these attacks work.

Keywords
Machine Learning, Deep Neural Network, Black Box, White
Box, Adversarial Attacks

1. INTRODUCTION
Machine learning is the process of using algorithms to

learn from a set of data called the training set, and then
make predictions or classifications on previously unobserved
data. One section of machine learning that’s been develop-
ing over the years is Deep Neural Networks. Deep Neural
Networks has been used in a large variety of applications
such as speech recognition, healthcare, and image classifica-
tion like facial recognition [5]. Specifically, image classifiers
have been widely used to provide many services, the most
easily noticeable one is Google. However as convenient as
these appliances of machine learning classification may be,
they are shown to potentially be vulnerable to adversarial
attacks which affect how machine learning models classify
inputs. We will mainly focus on image classifier DNN mod-
els and the security risks it comes with. We will also look at
how classifiers are given adversarial inputs to falsely classify

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.
UMM CSci Senior Seminar Conference, November 2020 Morris, MN.

images.
It is important to understand how the ML model classifies

data. When a ML model is able to classify data without any
output knowledge, it is known as unsupervised learning. In
unsupervised learning the ML model is able to find patterns
in data by itself, such as determining which images belong to
which category. If the ML model is able to learn to predict or
classify data by examples, it’s known as supervised learning.
It has an expected output, and a way to map the input to the
output. We will discuss supervised image classifiers in our
examples. Image classifiers are ML models that are able to
recognize images they receive, and assign the probability of
the image belonging to a certain category. One primary use
of image classifications is through Google, Google uses image
classifiers which allows us to search for photos we desire [2].
If you wanted to see pictures of dogs or cats, they first have
to be classified by Googles ML model. Google even has a
reverse image search, which allows you to input photos, and
then it gives you results of anything relating to that photo.
The ability to classify images through machine learning has
served multiple purposes like entertainment, shopping, and
quite recently autonomous vehicles (AV).

Image recognition plays an important role in the decisions
of autonomous vehicles which allows the vehicle to drive
safely. Many self driving collect data of their surrounding
environment through LiDAR (Section 3.1). Previous works
has shown that these DNN’s can be susceptible to adversar-
ial attacks [9]. There are two potential adversarial attacks
that we will discuss: an Evasion attack and a Poison at-
tack. When attacking, the adversary chooses an image and
slightly changes the image pixels so that it will look the same
to humans. This will eventually lead to a misclassification
from the DNN and is called perturbing data. In the Evasion
attack, data inputs to a trained DNN is perturbed until the
DNN misclassifies the data. For the Poison attack, the ad-
versary perturbs training examples in the training data in
order for the DNN to misclassify future unmodified inputs.
This is how the image classification relates with AV.

LiDARs (Light Detection and Ranging) is a commonly
used choice for AV perception. LiDAR is a method for mea-
suring distances through a light as a laser. It allows the AV
ML model to view the environment around it in the form
of images. The model uses data from LiDAR to transform
it into an image, then it has to classify the images from the
data it has been trained on. Usually the AV classifies the
image correctly, and then makes a decision based on the re-
sult. For an example, if the AV were to reach a stop sign,
it would get data from LiDAR, process it, then classify the



image into predefined categories and stop the car. Since it
has to classify images, it can be attacked in this way, by
receiving falsified data of images that are not real.

Previous works has shown that DNNs can be attacked
with succcess rates up to 96% [7]. This has an incredibly
high rate of success, Papernot et al. (2017) shows the details
behind these attacks. In another work, Cao et al. (2019)
shows a more direct and real-world applicable way of at-
tacking such models. In their work they show success rates
as high as 90%, by attacking the LiDAR sensor directly with
adversarial examples crafted through perturbed input data.

2. BACKGROUND
We will present all information required for full under-

standing of how the adversarial attacks work, and how the
AV system works in this section.

2.1 Machine Learning
When the ML model is able to map inputs to a set of

classes, it then becomes known as a Classifier [7]. Since the
ML models we will discuss are supervised learning models,
the model classifies data based off its training data. If a
machine learning model is able to accurately classify data,
then it’s considered to be a fit model.

2.1.1 Deep Neural Networks
Deep Neural Networks are a subset of Machine Learning,

with Deep Neural Networks having multiple hidden layers.
In neural networks, the model has multiple layers, the first
being the input layer, the middle layers referred to as the
hidden layers, and the output layer. The input layer con-
nects to the input variables, and the output layer consists of
output nodes that produces the output variable. The hid-
den layers are multiple layers inside the DNN, each layer
has nodes or neurons and are between the input and out-
put layer. As illustrated in Figure 3, each neural layer is
connected to the next layer by edges referred to as weights
and shows how the data can be passed forward through the
neurons down until it reaches the output layer. Neurons rep-
resent intermediate results in a mathematical function and
are fed outputs from the previous layer. Weights are values
that helps influence the inputs between the next neurons.
The weights are applied onto the input data commonly by
multiplication and the result is used by the neurons in the
next layer. Then in the output layer, the probabilities of the
input belonging in a certain category is assigned. The input
layer could have things like pixels in an image, while the out-
put layer would consist of the probability of the image being
a certain category. They are commonly used in computer vi-
sion, which is useful when classifying images. That is why
the models we will look at deals with specifically DNNs.

2.1.2 Training
Training the model is process of fitting the model to the

training data by finding optimal weights for each edge. Given
the initial training set, the model will have randomized weights
applied to each neuron, and the output will be computed
most likely inaccurately. When facing optimization prob-
lems, every model has a way of figuring out the error in
predictions or classifications, this is done with whats known
as the loss function. One way of updating weights for op-
timization is called Backwards Propagation by creating a
gradient of the loss function based on the weights. Mathe-

matically a gradient is a vector that gives the direction of
greatest rate of increase of our loss function. The gradi-
ent is computed one layer at a time, starting from the last
layer. It allows you to determine which weights contribute
to the overall error and how to update them. It does so by
finding the local minimum in the error gradient for lowest
loss, this process is called the gradient descent. This process
happens by iteratively taking the current slope of the loss in
the gradient and then updating the weight in the opposite
direction of the slope until you reach the local minimum.
This leads to the weights being updated to have the low-
est loss. A small portion of the training data is kept hidden
from the model for an unbiased evaluation on unseen inputs,
referred to as the validation set. When training the model
using backwards propagation, the amount that the weights
are updated by is referred to as the learning rate. It’s impor-
tant to find an optimal learning rate for the model to find
the local minimum in optimal time. The validation process
is meant to tune hyperparameters like the learning rate.

2.1.3 Decision Boundaries
As the input values changes, the greatest probability of the

input belonging in a certain category also changes. This is
referred to as decision boundaries. For better visualization,
Figure 1 shows how regions in the graph are classified. Let
anything to the left of the decision boundary be classified
as a circle, and anything to the right would be classified
as a triangle. Any shape even if it’s a triangle, on the left
side would be classified as a circle. If there was a triangle
this would mean there is a minor inaccuracy in the model,
realistically all models have some error.

Figure 1: Decision Boundaries.

2.2 Adversarial Attacks
Before an attack happens, an adversary has to choose a

machine learning model to attack, which is what we will call
a target DNN model. Adversarial attacks are attack meth-
ods where the adversary has intentionally crafted an input
designed to cause misclassifications from the target DNN
model. There are generally two attack methods for adver-
sarial attacks, both cause the DNN model to misbehave and
misclassify inputs. The first is called Evasion attacks, us-
ing perturbed data to attack the model. The second type is
called Poisoning attacks, which directly attack the training
data set by modifying it with false sample data. Usually this
is done through perturbing input until the DNN misclassifies
the input. Ideally the perturbations would be done as small
as possible so that the result would be indistinguishable from
the original when observed by humans. In Figure 2, this is
shown through the image of a panda. In our LiDAR exam-
ple we will discuss in section 3.1, the perturbations are done
to the points in the 3D point cloud data. This can be done



through input perturbation functions, which are functions
that perturb data, an example would be the middle picture
in Figure 2, and a mapping function can be seen as the sym-
bol in between the two pictures to combine the data. This
results in the picture on the very left with the classification
of gibbon.

Figure 2: How image classifiers can mistakenly clas-
sify images although to humans, it looks the same
[4].

2.2.1 Black Box and White Box Attacks
Black box attacks are types of attacks where the attacker

has no knowledge of its target internals. So the adversary
would not have access to the target DNN model’s algo-
rithms. When the target DNN model’s information is un-
known, possible attack methods are to train for similar deci-
sion boundaries as the target DNN model using a substitute
DNN model. Substitute DNN models are models crafted
by the adversary designed to be similar to the target DNN
model to figure out how to cause misclassifications before
querying the target DNN model any further. This helps
evade detection and allows the adversary to test data.

White box attacks deal with attack methods where the ad-
versary has access to the full algorithm. The adversary has
all access to knowledge about input and output variables,
and how the DNN model works.

Figure 3: Visualization of how DNNs work with M
component inputs and N component outputs [7].

3. METHODS OF ATTACKS
Depending on how much information the adversary has

on the target DNN model, the attack will be either a black
box or white box attack.

3.1 White Box
For a white box attack we will talk about LiDAR-based

perception autonomous vehicles and the attack strategy used
from Cao et al. (2019) [9]. The attack method that is used
is an evasion attack through perturbing images as minimal
as possible until a misclassification is reached potentially
leading to fatal injuries. The reason that this attack method
is used is because the targeted model is from a company that
has an open source platform for Autonomous Vehicles called
Baidu Apollo [9], and researchers cannot modify the DNN
model algorithms or training set. All that is done is crafting
perturbed images, mapping that on the original image, and
then feeding that to the input as seen in Figure 4. The
input to the model is a collection of points such as an X
for length, Y width, and a Z for height that represent a 3D
shape referred to as a feature matrix. Depending on the
result they perturb the data and repeat. The adversary has
access to all the models inputs, the output variables, the
algorithm itself, and the model’s parameters so it is a white
box attack [9]. We will discuss how in this white box attack,
one possible attack method was through an evasion attack.
To further understand the attack process, we will discuss
how the input is received and works.

LiDAR is a light sensing technology used to measure dis-
tances from a point. It has powerful uses when it comes to
AV, it allows the AV to see the environment around it. All
LiDAR does is collect raw data of the environment multiple
times a second. It needs to be stored into collections for a
3D representation so it can be used such as point clouds [3].
It first gets pre-processed to transform the sample points
into readable inputs for the DNN model which is a feature
matrix. During this phase of processing the LiDAR data,
the 3D point clouds are used to generate a feature matrix
by mapping those points into the desired feature cell. The
process of the decision making from the autonomous vehicle
can be seen in Figure ??. It starts with pre-processing the
LiDAR data into a feature matrix, and is then sent as input
values for the DNN. The DNN then classfies the image, and
the image post-processed to apply further information on
the image such as speeds, shapes and positions to see what
the image looks like. After that the autonomous vehicle then
decides what to do based on all the information given [9].

The attack method is to create adversarial examples by
generating sample points. This is observed through the ad-
versary having their own attack laser to help generate 3D
point cloud sample points. One hundred random points are
selected from the surrounding environment to generate the
3D point cloud data, using only sixty to create the input
parameters. The reason for this is because out of hundred
sample points, only sixty were stable enough to use for their
image. To create the adversarial example, the adversary
needs to create fake points in the image, this is referred to
as spoofing. In previous works, there have been methods
to try and blindly spoof the points. However, it is shown in
the article that blindly spoofing points has low success rates,
so the approach was modified. The process can be shown
through Figure 4. The spoofed points are carefully placed
into position through the input perturbation function, this
can be seen in the first image of Figure 4. In order for
the spoofed objects to become more obstacle-like the per-
turbation function can also scale the spoofed points, such
as causing the points to grow in size by scaling it’s height
points in the third image. The resulting image can be seen



Figure 4: Closer look at how the adversarial examples work overall and how the system interprets the
adversarial example [9].

Figure 5: An example of how LiDAR is used in ML to allow AV systems to make decisions [9].

in the last image of Figure 4 [9]. The spoofed data must be
perturbed through the input perturbation function in order
to generate adversarial examples which they would test on
the target model for higher success rate on attacks.

The input image is analyzed and the adversary is able to
add or subtract from the input to create an image for the
targeted model. The adversary could modify the distance
of the 3D point cloud or the azimuth of the 3D point cloud,
this is referred to as global spatial transformation. To create
the adversarial example researchers have to map the spoofed
data onto the input through a mapping function. This can
be seen as combining an imaginary image to the original
image. All of this computation happens before the data is
injected into the DNN.

Once they have the adversarial example they could then
spoof the points into the car with the laser. This creates
an imaginary obstacle for the car which could lead to fatal
injuries. The example provided in the article is a digital
example, the adversary would have to take spoof points in
front of targeted car on the road. There are numerous ways
to do this, two of which is discussed in the article. First
you could have another car to follow the targeted car and
attack the car through generating the adversarial examples
and injecting the data into the targeted LiDAR sensor. Sec-
ond you could set up an adversarial attack on a car that is
at a stop, causing it not move [9]. Other examples could be
to prevent others from taking your parking spot.

3.2 Black Box
The attack strategy we will look at is from Papernot et al.

(2017) [7], where they create their own DNN referred to as
a substitute DNN to train for similar decision boundaries.
This is an evasion attack that targets a DNN called the tar-

get DNN or Oracle DNN O. The researchers trained the
DNN themselves for a suitable classifier, but did not create
or have any information on the DNN, thus it’s still a black
box attack. If the researchers trained the target DNN with
bad data, that would ruin the nature of the attack. It is an
evasion attack because it can only use observed ouput labels
from the target DNN to craft adversarial examples that force
the DNN to misclassify images. If the target DNN classified
an image as the number 3, then they know what input falls
under the class for 3. They also limit their data set to not
having access to large data sets so it can be more applica-
ble in real-world scenarios due to cost. By attacking only
through observing output variables from the target DNN,
this allows the attack method to be widely used to attack
other DNN image classifiers. The goal is to cause the target
model to misclassify the image [7].

The adversarial examples are generated with as much min-
imal perturbations as possible so the changes isn’t detectable
by humans. This also makes it more efficient to use. A
query is made to the target DNN, and then the output is
recorded so that their own substitute model does the same
through approximation. Then once the substitute has col-
lected enough data, it could potentially craft adversarial ex-
amples by itself because the substitute should theoretically
mimic the target DNN model. Since they also use as little
perturbation as possible, they limit the amount of queries
they need to make. This allows the adversary to be further
undetected from the target DNN [7].

Figure 6 outlines the process of creating an accurate sub-
stitute DNN. First the adversary tries to learn something
about Oracle DNN O’s decision boundaries by querying Or-
acle O to label images, then the substitute DNN trains it-
self based on the resulting decision. Steps one is the ini-



Figure 6: Good visualization on how the substitute DNN works, and how it is trained to provide accuracy
as well as decisions similar to the target DNN model [7].

tal training set selected for the substitute DNN. Step two
is where the substitute DNN is crafted.In step three, the
queries are made to help the substitute model label output
variables thus creating decision boundaries. In step four the
model is trained (See Section 2.1.2 for a reminder of how
this works). The substitute model needs a way to find the
decision boundaries, this can be done through moving along
the loss gradient by updating/calculating weights based on
the least amount of loss. Jacobian is a mathematical way to
update the weights. Jacobian-based Dataset Augmentation
is used during the training process to move input by pertur-
bation along the gradient of Oracle O’s decision boundaries,
and the direction is identified through the Jacobian matrix
in step five [7]. That is how the substitute DNN is trained
to be similar to Oracle DNN O because the models are sim-
ilar in their decision boundaries. Then the new perturbed
images are sent back to step three, which can be seen as
generating synthetic data. This process happens iteratively
until the substitute model is shown to have similar decision
boundaries as the target DNN model.

Once the substitute DNN has been made, it can then start
crafting adversarial examples through two methods which
is the Goodfellow et al. algorithm and the Papernot et al.
algorithm. Both algorithms allow the substitute DNN to
perturb the data to achieve desired goals. The Papernot
Algorithm allows less perturbations, but at the expense of
computing cost. While the Goodfellow Algorithm allows the
substitute model to swiftly craft many adversarial examples,
but with large amounts of perturbations [7].

3.2.1 SetUp
Now that we understand how the adversarial examples

can be crafted, we will discuss how they are used to at-
tack MetaMind Oracle, Google, and Amazon oracles. This
is an black box evasion attack, the researchers has no ac-
cess to MetaMind’s DNN model. However, the researchers
are able to train MetaMind’s model for a suitable classi-
fier, and then attack through the method described in the
previous Section. MNIST is a database collection of hand-
written digits, numbers ranging from zero to nine which will
be the common training set. MNIST is used to train the tar-
get DNN model, MetaMind allows you to train MetaMinds
DNN through their API. The researchers use data to train
MetaMind’s DNN, but the DNN is not known to the adver-
sary. So a large enough training set is given to the target
DNN model to make a suitable classifier of 94.97% classifica-
tion accuracy, and then attack that DNN. They also created
a validation set of 10% of the sample data in order to create

further unbiased DNN. To further remove bias from the tar-
get DNN, Papernot et al. (2017) also introduces their own
handwritten data set to the substitute DNN. This also helps
removing similarities in the training data which is all from
MNIST [7].

Once both the target DNN and substitute DNN has been
created, the adversary can begin to craft adversarial ex-
amples using the substitute DNN. Using the Papernot and
Goodfellow algorithms they are able to perturb the input
data and create the adversarial examples. Through this they
were able to successfully cause miclassifications from the tar-
get DNN, for an example Oracle O would classify 3’s as 8’s.
Then the same setup was recreated for Amazon and Google
and got quite interesting results which will be discussed in
Section 4 [7].

3.3 Other Attack Methods
Poison attacks are adversarial attacks where the adver-

sarial example is injected into the training data of the ML
model. This can damage the ML model so that it is un-
able to perform correctly. This can happen when a software
continuously collects data, so that it can retrain itself in
the future. This is where poison attacks can be performed,
and realistically where most are performed, because nor-
mally people don’t have access to manipulate software labels
or internals. Example softwares would be spam-detection
or anti-viruses which have been attacked through the poi-
son method [6]. Examples given in the works by Muñoz-
González et al. (2017), a white box attack type, show how
PDFRate which is an online tool for catching malware em-
bedded inside of pdf files can be attacked [6]. The tool ana-
lyzes the pdf file and reveals if there is any hidden malware.
Then since the tool asks for feedback, this is essentially al-
lowing users to confirm if the classification by PDFRate was
correct. Providing false or wrong feedback can harm the
algorithms ability to accurately detect malware.

In the experimental setup, Muñoz-González et al. (2017)
used back-gradient optimized poisoning which is backwards
propagation but with fixed size steps instead of using the
current slope. Muñoz-González et al. (2017) test the suc-
cess rates of the attack method on other machine learning
algorithms to test the transferability in classification on a
Spambase dataset for spam detection in emails. These algo-
rithms consist of DNN’s, Adaline which is a single layered
neural network, and Logistic Regression which is another
learning classification algorithm. Back-gradient is used by
having their own poisoning model that can update its pa-
rameters and weights starting from the last layer. The way



it’s done is to try and compute the gradient based off of
maximizing the classification error by reversing the learn-
ing procedure of the target algorithm while updating the
neuron’s weight [6].

4. RESULTS AND SOLUTIONS
All three attack methods yields quite successful results

when attacking their targets through adversarial examples.
When Cao et al. (2019) attacked Baidu Apollos ML model,
they were able to achieve a success rate of 75% [9]. Since
they had full access to the algorithms, they were able to
create a virtual experiment that caused the model to mis-
classify inputs. Papernot et al. (2017) were able to achieve
even higher success rates of misclassifications, they attacked
MetaMind, Amazon, and Google. For MetaMind they had
success rates of 84%, Amazon being 96% , and Google being
88% [7]. Lastly, for the poison attack method, they achieved
classification errors for ML models like Adaline and Logistic
Regression to be up to 30%. Although the rates are much
lower, it’s meant to show the transferability of their attack
method, which is effective when tested between different ML
models.

5. CONCLUSION
In this work we show how ML models can be targeted

through adversarial examples. We show various ways how
the model can be attacked whether information is known of
the target DNN or not. Each method achieves their goals
in causing misclassifications at high rate. Adversarial at-
tacks such as evasion and poison attacks are shown to have
high success in causing malfunctions from machine learning
models.

6. ACKNOWLEDGEMENTS
I would like to thank Peter Dolan, Elena Machkasova,

Humza Haider, and the students of Senior Seminar Fall 2020
for contributing to this work through advice and feedback.

7. REFERENCES
[1] Andrew J. Hawkins Waymo is first to put fully

self-driving cars on US roads without a safety driver.
(2017, November 07) Retrieved October 10, 2020, from
https://www.theverge.com/2017/11/7/16615290/waymo-
self-driving-safety-driver-chandler-autonomous

[2] Google ML Practicum: Image Classification Retrieved
October 10, 2020, from
https://developers.google.com/machine-
learning/practica/image-classification

[3] Gray, D. (n.d.). LiDAR vs point clouds: Learn the
basics of laser scanning, 3D surveys and reality capture
Retrieved December 04, 2020, from
https://info.vercator.com/blog/lidar-vs-point-clouds

[4] Ian Goodfellow, Nicolas Papernot, Sandy Huang, Rocky
Duan, Pieter Abbeel, Jack Clark Attacking Machine
Learning with Adversarial Examples 2017, February
24.Attacking Machine Learning with Adversarial
Examples. Retrieved October 09, 2020, from
https://openai.com/blog/adversarial-example-research/

[5] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy
Risks of Securing Machine Learning Models against
Adversarial Examples. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and
Communications Security (CCS ’19). Association for
Computing Machinery, New York, NY, USA, 241–257.

[6] Luis Muñoz-González, Battista Biggio, Ambra
Demontis, Andrea Paudice, Vasin Wongrassamee, Emil
C. Lupu, and Fabio Roli. Towards Poisoning of Deep
Learning Algorithms with Back-gradient Optimization
In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security (AISec ’17). Association for
Computing Machinery, New York, NY, USA, 27–38.

[7] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
Practical Black-Box Attacks against Machine Learning
In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security (ASIA CCS
’17). Association for Computing Machinery, New York,
NY, USA, 506–519.

[8] Wikipedia Machine Learning (2020, October 07).
Retrieved October 10, 2020, from
https://en.wikipedia.org/wiki/Machine learning

[9] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng
Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen,
Kevin Fu, and Z. Morley Mao. Adversarial Sensor
Attack on LiDAR-based Perception in Autonomous
Driving. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’19). Association for Computing Machinery, New
York, NY, USA, 2267–2281.


