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What is Machine Learning?

● Classifiers

● Appliances: 
○ SnapChat
○ Youtube
○ Siri
○ Email Spam Filter

Loon, R. V. [2]



Categorizing Images with Deep Learning

● Input: Pixels in image

● Neural Network
○ Feed Forward
○ Recurrent

● Output: Probability distribution of labels

Papernot et al [3]



Categorizing Images with Deep Learning

● Decision Boundaries

● Categorizing inputs

Kemp et al [5]



Adversarial Examples

● Evasion Attack
○ Existing model
○ Minimal perturbed inputs

● Poison Attack
○ Training process
○ Future misclassification 



Adversarial Examples - Evasion Attacks

● Fake inputs

● Perturbation function

● Designed to fool ML models

Tanay [4]



Evasion Attacks

● Substitute or surrogate model

● Black box

● White box 



Adversarial Examples - Poison Attacks

● Has access to training data

● Inserting bad data

● Happens during training process

● Targets decision boundaries 

Polyakov [6]



Poison Attacks

● Backdoor/Integrity attack

● Availability attack

● Influence the machine



Computer Vision

● How computers can see images and classify them

● Able to recognize pictures

● Understanding images



Concrete Examples?



Autonomous Vehicles

● Six levels of Autonomy
○ Level 0: No Automation
○ Level 1: Driver Assistance
○ Level 2:  Partial Automation
○ Level 3: Conditional Automation
○ Level 4: High Automation
○ Level 5: Full Automation



Lidar

● Sensor using light to measure distances

● 3D point cloud data

● Used for Feature Generation

Cao et al [1]



Adversarial Attacks on AV systems

● White Box Attack

● Insert Lidar data via laser

● Target DNN processes the data

● Makes a decision



Adversarial Attacks on AV systems -
How it can be done

● Need your own laser

● Receives pulse from sensor

● Sends back spoofed reflection 

Cao et al [1]



Adversarial Attacks on AV systems

● Perturbation Function

● Merging Function

Cao et al [1]



Adversarial Attacks on AV systems - Result

● Initial 3D Point Cloud data

● Perturbed input

● Merged and Transformed

Cao et al [1]



Scenario

● On the road with target

● Inject spoof data

● Fool the machine learning model

● 75% success rate against Baidu Apollo’s ML model

Cao et al [1]



Other scenarios and Impact

● At a stop sign

● Cause “accidental” injuries

● Harder to detect

Kunz [7]



Attacks against other image 
classifiers



Attacks on MetaMind, Google, and Amazon

● Black Box Scenario

● Number Image Recognition

● Substitute DNN

Papernot et al [3]



Substitute DNN

● As minimal queries possible to target DNN O for labels

● Label initial dataset

● Train for similar decision boundaries

Papernot et al [3]



Experiment

● Use MNIST dataset for target DNN training

● Create and train substitute DNN

● Perturb inputs

● Cause misclassifications

● 84% success rate

Papernot et al [3]



Defense Strategies

● Adversarial training

● Manually searching for adversary attacks



Conclusion

● No fool proof method for defense

● Machine Learning models can have security risks

● Adapt and create robust models
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