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Abstract
Generative Pre-Trained Transformer 3 (GPT-3) is a natural
language processing model that uses a transformer neural
network to produce human-like text. This paper focuses on
what exactly language models are, what GPT-3 is, how trans-
former neural networks works, and goes into a discussion of
what it means for a computer to be able to produce human-
like text and how to advance while remembering to keep
ethics in mind.
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1 Introduction
A Turing test is a test that aims to determine whether or
not a computer is capable of thinking in the same capacity
that humans do. Alan Turing, in 1950, believed that in 50
years time, computers would be so good at the Turing test
that an average person testing a computer would have a 70
percent chance of making the right choice after five minutes
of questioning [3]. Although he was wrong, computers have
certainly come a long way.

Although not quite able to pass a Turing test, Generative
Pre-Trained Transformer 3 (GPT-3) is a very powerful lan-
guage model capable of producing human-like text. There
is an important distinction to be made: while GPT-3 can
produce human-like text, this doesn’t mean it’s capable of
thinking in the same way that humans do. The text that it
outputs is the result of natural language processing (NLP) - a
method that is used to ‘teach’ computers how to engage with
natural languages, or languages spoken between humans.

This paper will discuss further on what GPT-3 is and how
it works, what transformer neural networks are and how
they further language modeling, and finally, what are some
unintended consequences of language modeling and how
best to cope with those consequences.

2 Background
To understand how GPT-3 produces human-like text, its
necessary first to go over what GPT-3 is along with what are
some core concepts behind it.

2.1 What is GPT-3?
GPT-3 is the third generation of generative pre-trained trans-
formers released by OpenAI in June, 2020. GPT-3 is much
larger than its predecessors.While the original GPT and GPT-
2 were trained on 110 million learning parameters and 1.5
billion learning parameters respectively, GPT-3 was trained
on a significantly larger 175 billion learning parameters. [3]
For now, think of learning parameters as a way to compare
the scale of the language models. They will be discussed in
more detail later. “[GPT-3] is trained on Microsoft Azure’s AI
supercomputer. It is a very expensive training, estimated to
have costed 12 million USD.” [3] GPT-3 can be used for many
different tasks including summarizing, translation, grammar
correction, question answering, chat-bots, composing emails,
and more. Microsoft aided in GPT-3’s training and has exclu-
sive licensing for the model, but people not affiliated with
Microsoft have the ability to use the model through OpenAI’s
API [3].

Using GPT-3 is straightforward. OpenAI’s API takes in
a query that includes, among other fields, a prompt, or a
sequence of words, and tries to offer a completion for the
prompt. For example, if you were to give GPT-3 the prompt:

solve for x:
𝑥 + 40000 = 100000

it may respond:
𝑥 = 50000

Of course, anyone with some familiarity with basic algebra
could look at this prompt and tell you that the solution should
be 𝑥 = 60000, so why did the model respond ‘incorrectly?’
GPT-3 is a language model that tries to generate structurally
sound completions to prompts. It’s helpful to think of it in
this instance like a child that was raised in a room full of
mathematicians. The child knows what math is and what it
generally looks like, but they don’t actually know how to
solve problems using any kind of mathematical approach.
Interestingly enough, in this case the response given was
in the correct order of magnitude based on the prompt. Al-
though the technically correct answer was 𝑥 = 60000, as far
as the model is concerned, 𝑥 = 50000 is a sound completion.
It’s important to mention that GPT-3 isn’t guaranteed to

give the same response to any given prompt multiple times.
It’s possible to tweak its potential responses to be either
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Figure 1. GPT-3 OpenAI API Example Query

more objective or more creative, but it isn’t possible to guar-
antee any given response for any prompt. Figure 1 depicts
an example of a request including the prompt “tell me how
many feet fit in a shoe.” Sending the exact request to Ope-
nAI’s servers multiple times resulted in several responses
including:

• Zeyi asks me. I shake my head. “Two hundred feet,” she
says. “And can you see the elastic around the soleing?”
We all lean in to the shoe; I can see that it’s creased.
“You can retie that.” We all nod in recognition: we’ve
all owned a pair of sneakers with elastic like this. Zeyi
points to a piece of paper on the floor. “Is that a shoe
pattern?” we ask her. She looks at us and nods. “It’s my
sketch,” she says

• Answer: about 12
• It depends on the size of the shoe.

Prompt responses are dependent on other parameters (not
referring to the learning parameters mentioned in section
2.1) beyond the prompt itself. Different parameters have
varying levels of impact on the response, so I will only go
over some more important ones.
First is the ‘engine’ parameter, which specifies which

model in the GPT-3 family to use. Davinci is the most pow-
erful model and the one that people generally refer to when
they say GPT-3. Davinci being the most powerful makes
it the most expensive and slowest model to query, so other
models can sometimes be found to bemore helpful. The other
models are Curie, Babbage, and Ada, and they each special-
ize in various natural language processing centered tasks
including but not limited to language translation, sentiment
classification, and summarization [7].

Another parameter is response length, which is measured
in tokens. OpenAI defines tokens as being “common se-
quences of characters found in text. The models understand
the statistical relationships between these tokens, and excel
at producing the next token in a sequence of tokens. A help-
ful rule of thumb is that one token generally corresponds to 4
characters of text for common English text. This translates
to roughly ¾ of a word (so 100 tokens = 75 words).” [7]

Figure 2. Neural Network Node Structure [5]

The final parameter that will be highlighted is temperature,
which measures how objective/interpretive you want the
response to be on a scale of 0-1, with 0 being most objective
and 1 being most interpretive. One example of a use case for
the temperature parameter can be found in implementing a
chat bot. If you want the chat bot to respond in a very matter
of fact fashion, you would set the temperature lower. If you
want the chat bot to emulate some personality, you would
set the temperature higher and add into the prompt that you
want the responses to be sarcastic, sad, chipper, or any other
personality trait(s) [7].

2.2 Natural Language Processing
Natural language processing is an interdisciplinary field com-
bining computer science and linguistics. NLP involves the
process of trying to use patterns found in natural languages
to make it so that machines are able to engage with those lan-
guages. Historically, computer scientists tried to do natural
language processing using rules (dictionaries and grammar)
that a given natural language generally followed, but now
we are able to use machine learning technique to find these
patterns for us [2].

2.3 Neural Networks
Neural networks, a type of machine learning model, are
series of algorithms that are designed to recognize patterns
in data. Through this pattern recognition, they are able to
‘learn’ how to do various tasks. They are constructed via
nodes that form either the input layer, the hidden layer(s),
or the output layer of a neural network (see Figure 2). Each
node is connected to all the nodes in the next layer and those
connections are called edges.

The input layer takes inputs which are generally a vector
representation of the data. The learning parameters men-
tioned in section 2.1 are what go into the model, and they
can be described as the input values the neural network tries
to learn during training.



Nahum Damte

The edges apply a weight to the inputs they receive, either
from the input layer or a previous layer. Applying a weight
to an input is essentially multiplying the value of the weight
by the value of the input.
The hidden layers receives inputs which are the sums

of the values of all their incoming nodes multiplied by the
weights on their incoming edges, and apply an activation
function to their inputs which introduces non-linearity to the
output of a node. This allows the neural network’s decision
boundary to be non-linear.

Finally, the output layer returns probability distributions
for each potential output, one per node in the output layer.

The basic neural network architecture is good but it lacks
the ability to receive and return inputs and outputs sequen-
tially [5].

3 Transformer Neural Network and Model
Architecture

Transformer neural networks are currently the best neural
network architecture that exist in service to natural language
processing. There are two major aspects of transformer neu-
ral networks that make them so powerful:

• They are able to receive data that is sequential in
nature with no predetermined size

• They are able to process this otherwise sequential data
in parallel

See Figure 3 to see the overall transformer neural net-
work architecture. This section will go over the layers in
this network’s overall architecture, as described in the pa-
per Attention Is All You Need [11] along with what attention
is and why it’s important. This architecture isn’t necessar-
ily representative of the implementation of the transformer
used in GPT-3, but it can be used to achieve various natural
language processing tasks including but not limited to lan-
guage modeling, question answering, machine translation,
and paraphrasing. In the paper, the researchers successfully
trained the model in machine translation.

3.1 Input Embedding
The input embedding layer takes tokens in from the input
sequence and maps them to an embedding space based on
how similar they are to other tokens in that space, similar
referring to what context the tokens are found in. Figure 4
depicts three tokens: guitar, violin, and viola, as being close
to each other because all of those tokens are generally used
in very similar contexts. It’s important to mention that while
Figure 4 depicts these tokens as existing in a two dimensional
space for the sake of the visualization, these tokens actually
exist in multi-dimensional space.

The input embedding layer uses pre-trained embeddings.
After all, this model isn’t usually trained to create word em-
beddings since that can be done with other, simpler architec-
tures. Additionally, since word embeddings grant meaning

Figure 3. Transformer Neural Network Architecture [11]

Figure 4. input embedding visualized [1]

to words, it’s essential that our model has this meaning to
do other NLP tasks.

3.2 Positional Encoding
Since these sequential inputs are being processed in par-
allel, it’s important to have some way to retain positional
information. The purpose of the positional encoding layer is
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Figure 5. Multi-head attention layer attention vectors [1]

exactly that. The positional encoding layer generates vectors
containing positional information for each token with the
same dimensions as the previous input embedding layer, so
that the two vectors can be summed. The resulting vectors
contain both the meaning and the positional information of
each token in the sequence.

3.3 Multi-Head Attention
After the input embedding and positional encoding layers
come the first multi-head attention layer. Multi-head atten-
tion allows themodel to learn how to generate different atten-
tion vectors that focus on different linguistic phenomenons.
By having each attention head focus on different linguistic
features, we get better predictions. The model in [11] utilized
8 attention layers.

The multi-head attention layer takes the sequence of input
vectors passed in from the positional encoding layer and
generates attention vectors based on those inputs. Figure 5
depicts attention vectors for the input sequence ‘The big red
dog’ which is comprised of 4 attention vectors that show the
relation between each token in the sequence to each other
token in the sequence. For example, the token ‘The’ is shown
to be the most relevant to itself, followed by the tokens ‘dog,’
‘red,’ and ‘big.’

To generate attention vectors, youmust first take the input
sequence vectors and represent them with query, key, and
value matrices. These matrices are generated by passing each
matrix of tokens through three different linear layers simul-
taneously, as depicted as the first step in Figure 6. The linear
layers are composed of fully connected neurons without the
activation function (hence linearity) and these linear lay-
ers each have different weights [6]. "The attention function
can be described as mapping a query and a set of key-value
pairs to an output, where the query, keys, values, and out-
put are all vectors. The output is computed as a weighted
sum of the values, where the weight assigned to each value
is computed by a compatibility function of the query with
the corresponding key." [11] The compatibility of a query
with its corresponding key refers to how ‘similar’ a key and
query is, and can be obtained by calculating the dot product
between the elements of the key and query vectors. This
implementation uses scaled dot product to make sure the
values don’t get too large.

The attention function used in this model is called scaled
dot-product attention (see Figure 7) and can be computed
using the following function:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑
𝑉 ),

where Q, K, and V represent the query, key, and value vectors
respectively, and d represents the dimensions of the query,
key, and value matrices which directly corresponds to the
number of tokens in the input sequence. The T applied to the
K in the formula means the key vector is to be transposed,
or rotated. If a vector is a matrix with a single column, the
transpose of a vector is a matrix with a single row. Finally
the softmax function is as follows:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧) = 𝑒𝑧∑
𝑧 𝑒

𝑧 ,
Where z represents each element in the vector and e repre-
sents the natural exponent. Its purpose is to take an input
and represent it between zero and one, effectively giving you
a probability distribution. These outputted attention vectors
contain probability distributions seen in figure 5.
The masked multi-head attention sub-layer works simi-

larly to a regular multi-head attention layer, but is made to
not attend to positions following the current position. This
masking, combined with fact that the output embeddings are
offset by one position (the output embedding layer works
similarly to the input embedding layer other than offsetting
embeddings by one position), ensures that the predictions for
position i can depend only on the known outputs at positions
less than i [11].

3.4 Feed-Forward
After the first multi-head attention layer comes the first fully
connected feed forward layer. The feed forward layer takes
the resulting attention vectors from each layer in the multi-
head attention layer and applies two linear transformations
with the following rectified linear unit (ReLU) activation in
between:

𝑅𝑒𝐿𝑈 (∑𝑛
𝑖=1 𝑥𝑖𝑤𝑖 ) =𝑚𝑎𝑥 (0,

∑𝑛
𝑖=1 𝑥𝑖𝑤𝑖 ) [11]

3.5 Linear Layer and Softmax Layer
The last layers involved in the transformer are the linear and
softmax layer. The linear layer applies a linear transforma-
tion to the vector it is passed and the softmax layer takes the
output from the linear layer and gives a probability distri-
bution for the correctness of the outputted token-vector. If
you were training a natural language model, this probability
distribution would measure the model’s perceived accuracy
of the generated token as a part of its completion [1].

3.6 Overall Model Architecture
This model has an encoder-decoder structure. Here, the en-
coder maps an input sequence of symbol representations
(𝑥1, ..., 𝑥𝑛) to a sequence of continuous representations z =
(𝑧1, ..., 𝑧𝑛) that holds all the learned information of that input
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Figure 6.Multi-Head Attention [11]

Figure 7. Scaled Dot-Product Attention [11]

[8]. Given z, the decoder then generates an output sequence
(𝑦1, ..., 𝑦𝑚) of symbols one element at a time. At each step the
model consumes the previously generated symbols as addi-
tional input when generating the next. The benefit here is
that the model is able to use tokens it has already generated
as part of a completion as additional context to aid in the
generation of further tokens in its completion sequence. The
Transformer follows this overall architecture using stacked
self-attention and point-wise, fully connected layers for both
the encoder and decoder, shown in the left and right halves
of Figure 3, respectively. [11].

4 Consequences
Though GPT-3 isn’t exactly capable of passing a Turing test,
it is still ultimately capable of producing high quality human-
like text given the proper prompts and parameters. Models
like GPT-3 will only get better with time, and that means
that with time we will be able to produce more and more

Figure 8. Reddit bot using GPT-3 [9]

high quality and cheap semantic artifacts. Translations, sum-
maries, minutes, comments, web-pages, catalogues, newspa-
per articles, guides, manuals, forms to fill, reports, recipes,
and still other tasks are all within the scope of GPT-3’s capa-
bilities - at least as far as drafting up these artifacts goes. It
can be said that an integral skill many writers today employ,
cut & paste, will be eclipsed by the new skill of prompt &
collate [3].

GPT-3 and other future language processing models open
the doors to a lot of opportunities to us. However, they also
comewith risks. Although OpenAI keeps pretty strict control
of their software, OpenAI doesn’t have a monopoly on lan-
guage models. Eventually copycat technologies will emerge,
and with them several risks.

4.1 Universal Adversarial Triggers
Universal Adversarial Triggers, a method of adversarially dis-
rupting natural language models, are input-agnostic token
sequences that, when prepended to model input, cause a nat-
ural language model to exhibit a new, adversarially defined
behavior [4]. These UATs are dangerous for a few reason. For
one, they pose a security risk to many pre-trained models
that rely on similar architectures and data-sets to the GPT
family of models. Secondly, bots on social media that are fed
UATs can potentially “inflate the presence of fringe ideas
online as well as trigger already deployed models that are
built upon these pre-trained systems in a fashion reminiscent
of the fall of Microsoft’s Tay.” [4] Tay was a bot released by
Microsoft onto twitter back in 2016 that in less than 24 hours
was tweeting out Nazi rhetoric among other obscene text
and had to be taken down by Microsoft [4].

4.2 War on Bots
Another ramification of machines online producing human
like text and interacting with people as if they are people
themselves is that it becomes much more difficult for social
media companies to distinguish between bots and humans.
Right now, a method that many social media companies
use to determine whether or not an account belongs to a
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machine or a human is to look at its interactions. Bots in-
teract with each other, but humans don’t tend to interact
with bot content very often. As of right now, bot content is
usually relatively unsophisticated, so humans can generally
see through them. If a cluster of accounts seem to interact
with each other a lot but accounts outside of that cluster tend
to avoid them, you can assume that most of the interactions
happening in the cluster are fake account bot interactions.
A bot powered by GPT-3 was able to go undetected on

Reddit for a little over ten days in 2020. It didn’t get caught
because anything about its speech came off as off to redditors
as suspect, but because someone looked at its post history
and realized that it would be impossible for a human being
to post at this volume, as can be seen in Figure 8. After some
investigation, the people of r/gpt3, a group of GPT-3 enthu-
siasts on Reddit, realized that the bot was being powered by
a website called Philosopher AI that utilizes a GPT-3 model.
They were able to come to this conclusion because some of
the text that the bot was outputting seemed similar to some
of Philosophy AI’s text outputs. This particular event was
self contained and the owner of the bot didn’t seem to have
any bad intentions, so nothing bad came out of the whole
situation. However, a bad actor could easily use GPT-3 to
make it seem like a lot of people were talking about a certain
topic, or to spread misinformation [9]. Additionally, GPT-3
powered bots that post in more human fashion would be
even harder to detect, as this bot was only caught due to its
post history which was highly atypical for humans.

5 Conclusion
Progress is inevitable. While that may be the case, that
doesn’t mean that we shouldn’t bother with trying to come
up with counter-measures to counteract bad actors using
language models. Whether that be teaching people about
Universal Adversarial Triggers (they can actually be used for
bot detection), teaching people about general media literacy
with some added info on how to suspect you are interacting
with a non-human, taking more care to make sure that our
uglier biases get trained into these models to a lesser degree,
or a mix of some or all those ideas, we ought to not just
continue to press forward in our machine learning pursuits
with reckless abandon.
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