
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Jacob Jenness

Fighting Gerrymandering by Automating
Congressional Redistricting

Jacob Jenness
jenne077@morris.umn.edu

Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
Gerrymandering is a political problem that the United States
has had for more than 200 years. Politicians have taken the
dull and routine process of drawing congressional districts
and turned it into a highly-partisan process. However, with
recent improvements in redistricting algorithms, researchers
Harry Levin and Sorelle Friedler have introduced their recur-
sive Divide and Conquer Redistricting Algorithm. This algo-
rithm has the potential to automate the process of congres-
sional redistricting, thereby removing the potential for bias.
By utilizing a set of partitioning and swapping algorithms,
the Divide and Conquer Redistricting Algorithm achieves
desirable goals, such as low population deviation, and high
levels of compactness, as well as meeting all of the legal
requirements needed for congressional districts.

Keywords: congressional redistricting, redistricting algo-
rithms, gerrymandering, computational geometry

1 Introduction
For as long as politicians have been in positions of power,
they have been trying to manipulate rules in their favor.
Gerrymandering is one such example that has become more
and more common, as well as controversial, in the United
States throughout the last few decades. Many have argued
that it gives politicians in power an unfair advantage, that
it subverts the will of the people, and that citizens should
choose their representatives, not the other way around [1].
To counteract gerrymandering, political scientists, com-

puter scientists, and mathematicians have worked together
to create algorithms that can automate the process of con-
gressional redistricting. This is beneficial, as it removes nearly
all human input from the redistricting process, essentially
eliminating the potential for political mischief.
This paper will analyze one such algorithm, Levin and

Friedler’s recursive Divide and Conquer Algorithm [2]. First,
we will take a closer look at gerrymandering and the current
redistricting process in Sections 1.1 and 1.2. Next, we will
consider some relevant background information and impor-
tant metrics used to quantify whether a district is "good" or
"bad" in Section 2. As we will see later in the paper, there is
no consensus on what constitutes a "good" or "bad" district,
so multiple measures are used. Further on, we will review

the algorithm and its components in Section 3. And last, we
will review the results of the algorithm, with some examples
of the districts created in Section 4.
There is an important question that must be asked, how-

ever. How do we know that the algorithm we are using is not
somehow biased itself? To answer this question, Levin and
Friedler do two things. First, they have provided the source
code for their redistricting algorithm, which can be found
here1. This ensures that there is transparency in the redis-
tricting process, and that their code can be independently
reviewed. Second, their algorithm does not consider election
or demographic data, which is discussed more in Section 2.7.
Their algorithm only considers the census data, state shape,
and number of districts provided to it.

1.1 What is Gerrymandering?
Gerrymandering is when legislative districts, such as con-
gressional or state districts, are drawn to favor a specific
group or political party. The term originated in 1812, when
Governor Elbridge Gerry, a Democratic-Republican from
Massachusetts, drew a state senate district somewhat in the
shape of a salamander [5]. Ever since the term was coined,
it has been used to describe a number of unfairly drawn
legislative districts, particularly congressional districts.

In the modern day, most gerrymandering is done by ana-
lyzing election data, racial census data, and voter registration.
Depending on how precisely a district will be drawn, lines
can cut around counties, neighborhoods, and even around
individual houses.

Gerrymandered districts can be categorized into two main
types: packed districts and cracked districts [1]. Packing is
when similar voters are tightly grouped together into as few
districts as possible so that those similar voters are more
concentrated in a few districts and are less likely to win
other neighboring districts.
Cracking, on the other hand, is essentially the opposite

of packing, as similar voters are spread out over many dis-
tricts to become the minority in those districts. Figure 1
demonstrates the differences between the two types of ger-
rymandered districts.

1https://github.com/newspapercentral/automated-congressional-
redistricting

https://github.com/newspapercentral/automated-congressional-redistricting
https://github.com/newspapercentral/automated-congressional-redistricting

Fighting Gerrymandering by Automating Congressional Redistricting

Figure 1. The leftmost diagram shows 4 districts where red
voters and blue voters have an equal chance of winning in
each district. The center diagram shows a district where the
majority of red voters are too ‘packed’ to win other districts.
The rightmost diagram shows blue voters being ‘cracked’ in
most districts, leading to a majority of red districts [3].

1.2 How are Congressional Districts Drawn?
Every 10 years, the Census Bureau surveys the United States
to determine the nation’s population. Once the Bureau has
completed this process, it sends a report of its findings to
Congress. Congress then goes through the apportionment
process, which is the process of determining how many
representatives a state has based on the changes in that
state’s population. Once this apportionment process has been
completed, every state with more than 1 representative must
go through the redistricting process.2
In most cases, congressional districts are drawn by state

legislatures directly. Some states, though, have advisory com-
mittees that are tasked with the redistricting process and can
recommend maps to the legislature. However, the legislature
can still reject these maps if it wishes. Other states have
independent committees, which have the exclusive ability
to redistrict the state.

2 Background and Definitions
One of the biggest challenges of trying to solve the problems
that come with redistricting, is that there is no universal
consensus on what constitutes a “fair" district. While it is
somewhat easy to point to a district and claim that it is unfair
or gerrymandered, it is much harder to do the opposite and
claim that a district is not unfair. As we will see, there are
many different metrics that can be considered when drawing
legislative districts.

2.1 Communities of Interest
Communities of interest are perhaps one of the most difficult
factors to consider when going through the redistricting pro-
cess. This is largely due to the fact that there is no objective
or standard definition of what a community of interest is.
A community of interest may refer to a group of people

that share demographic traits, such as race, religion, sexual
orientation, or culture, and live in close proximity. But, a
community of interest could also refer to people that go to
2Every state has at least 1 representative

church together, or shop at the same grocery store. Due to
the fact that these groups are not reliably and universally
quantifiable, Levin and Friedler have excluded communities
of interest from their analysis.

However, the Voting Rights Act of 1965 requires that cer-
tain states consider the racial composition3 of a state to create
a majority-minority district [1]. A majority-minority district
is a congressional district where a particular racial minor-
ity group or groups makes up the majority of that district’s
population. In order to comply with this legal requirement,
Levin and Friedler suggest merging population units (cen-
sus blocks/tracts) together to reflect certain communities
before the algorithm begins the redistricting process. We
will discuss population units later in Section 2.7.

2.2 Competitiveness
When some people think of creating fair congressional dis-
tricts, they consider whether or not Democrats and Republi-
cans have a somewhat equal chance of winning that district
in an election. This is called the competitiveness of a district.

However, most congressional districts are not competitive.
Just 17 percent of districts were considered competitive in
the 2016 election [1]. One of the reasons that so many dis-
tricts are considered solidly red or blue is due to geography.
Republicans are more likely to live in rural areas that take
up a large amount of land, while Democrats are more likely
to cluster in large urban areas. Because of this “self-sorting”
phenomenon, a problem exists in the redistricting process
where competitive districts may have strange shapes. While
competitiveness could be considered desirable in some cir-
cumstances, Levin and Friedler do not consider it in their
paper.

2.3 Proportionality
Proportionality is the idea that the percentage of votes a
political party gets in an election determines the percentage
of seats that that party receives in the legislature. If, for
example, the Democratic party were to receive 40 percent of
the total votes cast in an election, then the Democrats would
control roughly 40 percent of the seats in the legislative body.
While this seems like a fair system, it simply does not work
with the current model of district-based representation.

In Massachusetts, for example, Republicans win roughly
35% of the votes in Presidential and Senate elections [5]
and there are 9 congressional districts. Therefore, if Mas-
sachusetts had a system of proportional representation, then
Republicans would win 3 seats in Congress. However, it
would be nearly impossible to create 3 congressional districts
that all have a Republican majority in them, as Republicans
are widely spread out throughout the state.

3This is the only circumstance where it is legal to consider race during the
redistricting process [1].

Jacob Jenness

2.4 Compactness
Compactness focuses on the shape of a district and prioritizes
districts that are closer together than districts that branch
off into specific and narrow parts. While there is no officially
agreed upon definition of compactness, Levin and Friedler
use three separate definitions in their paper [2]. Each mea-
sure of compactness outputs a score between 0 and 1, with
scores closer to 1 being more desirable. Because each mea-
sure produces different results when calculating a district,
Levin and Friedler choose to include multiple scores. For
example, a district may have a high scores for one measure
and low scores in other measures, or vice versa.
For each example below, 𝐷 refers to the district being

computed, and 𝑝 (𝐷) refers to the perimeter of a district.
1. Convex Hull: 𝑎𝑟𝑒𝑎(𝐷)/convexHull(𝐷)
2. Polsby-Popper: (4𝜋 · area(𝐷))/𝑝 (𝐷)2

3. Modified Schwartzberg:
(
2𝜋

√
area(𝐷)/𝜋

)
/𝑝 (𝐷)

A Convex Hull is a shape that contains all of the points
within a district and has the minimal distance between the
outermost points. An example of a Convex Hull would be a
random set of nails hammered onto a board, with a rubber
band surrounding all of the nails.
Polsby-Popper and Modified Schwartzberg scores, while

technically different, are essentially just area divided by
perimeter. This simplification will come in handy when de-
termining compactness scores in a later section.

2.5 Population Deviation
Population equality is a prerequisite for congressional dis-
tricts that requires the populations of each district to be
nearly equal to each other. Population deviation is a metric
used to measure population equality.
To find the population deviation, 𝜖 , of a state, we need

two things. The first is the ideal district population, 𝐿, which
can be found by dividing the state’s total population by the
number of districts for that state. The second is a list of the
populations of each district, 𝐺𝑖 , for district 𝑖 . Then we find
the biggest difference between district populations and the
ideal population, and divide it by the ideal population.

More formally, we can put it like this.

𝜖 = (𝑚𝑎𝑥 (|𝐺𝑖 − 𝐿 |)/𝐿
For the rest of the paper, we will define the optimal popu-

lation deviation to be less than or equal to 0.5%.

2.6 Contiguity
Contiguity is a very important requirement for legislative
districts, as every district in the country has to abide by this
rule. The formal definition of contiguity says that, for any
two points within a district there must be a path between
those points that does not cross a district line. Therefore,
every part of a district must connect with every other part
of a district.

Contiguity also contains a requirement that district lines
cannot go through individual houses or apartment buildings.
This issue can be avoided in the redistricting process by
using census blocks, which will be further explained in the
next section.

2.7 Census Data
The Census Bureau categorizes every geographic part of
the United States into components of various size. At the
smallest level are census blocks, which are drawn in relation
to visible lines such as roads, railroad tracks, and streams as
well as invisible boundaries like property lines, city limits,
and school districts [4].
In urban areas, census blocks are roughly equal in size

to city blocks, while in rural areas they tend to be larger
and more irregular in shape. Census blocks are grouped into
block groups for naming purposes, and block groups are
grouped into census tracts.
Census tracts are generally used to encompass a neigh-

borhood, and contain anywhere between 2,500 to 8,000 peo-
ple [4]. Census tracts are also used to divide individual coun-
ties into multiple parts, and counties are used in the same
fashion at the state level.

3 The Algorithm
Levin and Friedler have introduced their recursive Divide
and Conquer (D&C) Redistricting Algorithm as a potential so-
lution to partisan gerrymandering [2]. The D&C Algorithm
utilizes a Voronoi component and swapping components to
divide a state into multiple districts.

Let us start with an overview of what the D&C Algorithm
will be doing in the following sections. The D&C Algorithm
starts with the entire state and treats it like one district by
encompassing it in a rectangle. It then divides the state into
two districts by growing a district from one of the corners
of the rectangle, as shown in Figure 2. We refer to these two
districts as a two-district partition for the majority of this
section.

Then, we ensure that the two-district partition is contigu-
ous, and begin swapping population units. Once we are no
longer able to make population swaps that are beneficial,
we start over with a new two-district partition at a different
corner of the rectangle.
Once we have made a two-district partition for each cor-

ner of the rectangle, we compare the two-district partitions
to each other to find the best one in terms of population
deviation and/or compactness. When we have found the best
initial two-district partition, we repeat the entire process
recursively on both districts. This process of division and
sub-division is done until we reach the base case, where there
are no more districts to create.

Fighting Gerrymandering by Automating Congressional Redistricting

Figure 2. A state that needs 10 districts. The first division
yields two blue districts that have a population of 5/10 each.
The second division yields another red district in each previ-
ous district with a population of 1/10 each. The blue districts
with populations of 4/10 will be further sub-divided until we
reach the base case.

3.1 Divide and Conquer Component
This is the main function in the algorithm. Initially, it starts
off with the population of the district being divided, 𝑛, the
district we wish to divide (which is initially the entire state),
and the number of districts that must be created, 𝑘 .

It also takes as input the maximization function of choice,
which we will explore more in Section 3.6. The primary
purpose of this component is to create a two-district partition
that is recursively subdivided into other districts. We do this
by redefining the ideal population, 𝐿, every time we must
divide.
In Figure 2, we can see an example of sub-division on

a hypothetical rectangular state. In the first division, the
state needs 10 districts. 10 is an even number, so we can
cut the state in half for our two-district partition. Therefore,
the algorithm creates a district from the bottom left with
a population that is roughly half of that state’s population
(𝐿 = 1/2 · 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛). In Figure 2, this results in two blue
districts.

In the next sub-division, we need 5 districts in both of the
previous districts. 5 is an odd number, so we must create one
district with the ideal population before we cut in half again.
Therefore, we create a district where 𝐿 = 𝑛/𝑘 or 𝐿 = (1/2)/5
which equals 1/10. In Figure 2, this results in two red districts.

3.2 Redistrict Two Districts Component
This is the function that is called by the Divide and Conquer
function after 𝐿 has been determined. First, we define the
rectangle that will encompass the district we intend to divide.
Second, we initialize a collection of two-district partitions
that will be used after all two-district partitions have been
generated, so that we can compare population deviation or
compactness scores.

Next, we call the Voronoi, Contiguity Swapping, and Pop-
ulation Swapping components on each of our two-district
partitions. And finally, we call our Maximization Function on
the two-district partitions to determine which one scores the
best on the population deviation and compactness metrics.

Figure 3. An example of two districts, marked as red and
blue, with non-contiguous components. Units A,B,C, and D
are not contiguous with their respective districts.

3.3 Voronoi Component
The D&C Algorithm uses a modified Voronoi component
as the second step of its two-district partition process. Es-
sentially, this means that the algorithm starts with a single
point that grows in every direction it can until it becomes
bigger than 𝐿.

The component begins by placing this starting point, which
is called a ‘seed’, in one of the four corners of a rectangle
that encompasses a district we want to divide. This seed will
grow to become the first district. Then, it looks for the geo-
graphically closest population units, such as census blocks,
and adds those units to the first district. It continues to do
this until the first district’s population becomes bigger than
𝐿.

Every other population unit not assigned to the first dis-
trict is then given to the second district. Once the other
components are executed, this process will be repeated from
the beginning for the other three corners of the rectangle to
determine which pair of districts produces the best popula-
tion deviation and compactness.

3.4 Contiguity Swapping
Because of the way that the Voronoi component creates the
two-district partition, the districts may not be contiguous.
Therefore, a contiguity swapping component exists to ensure
that both of the created districts become contiguous before
they are modified further.
Because of the structure of the algorithm, the Voronoi

component takes a two-district partition as input. Thismeans
that the Voronoi component will only ever process exactly
two districts at a time. Levin and Friedler take advantage of
this, as all of the non-contiguous components for one district,
must be contiguous with the other district, and vice versa.

First, all of the contiguous components of the first district
are identified. Second, we find the largest contiguous com-
ponent in the first district. Third, all of the non-contiguous
components in the first district are swapped to the second
district. The above steps are then applied to the second dis-
trict. Now, both the first and second districts are contiguous.
Figures 3 and 4 demonstrate contiguity swapping.

Jacob Jenness

Figure 4. The result of the Contiguity Swapping Compo-
nent working on the non-contiguous districts. A and B were
swapped with the blue district, and C and D were swapped
with the red district.

3.5 Population Swapping
After the contiguity swapping component completes, the
D&C Algorithm moves on to population swapping. A set of
swappable components is found and created between the
two districts. These components are found by determining
whether a population unit (like a census block) shares a
boundary with a population unit in the other district. If the
population unit meets this criteria, then it is added to the set
of swappable components.
Then, the algorithm determines whether swapping the

component is beneficial or not. If it finds that the population
deviation is lowered as a result of swapping, the component
is swapped and is then removed from the set. This is done
until there are no more swappable components.

For most states, this initial population swapping achieves
the optimal population deviation 4 after the first round of
swapping. However, some states require more than one
round of population swapping due to a large number of
population units. This is only notable due to the fact that
more than one round of population swapping can lead to
long compute times, potentially even leading to the algo-
rithm running for more than a day to complete.5 While this
can be significant, it is certainly more efficient than doing
the redistricting process by hand.

3.6 Maximization Function
As previously stated, the Voronoi component generates four
variations of the two-district partition. The maximization
function determines which variation is the best by looking
at the scores for population deviation and compactness.

At this point, different maximization functions can be run
to determine which two-district partition is the best. This is
done at the end of the Redistrict Two Districts component.
Levin and Friedler use three different maximization functions
in their analysis,

4Remember that the optimal population deviation is less than or equal to
0.5%
5When running the MinPop version of the D&C Algorithm on the census
blocks of Texas, it took 1 Day, 8 hours, 4 minutes, and 8 seconds to complete
on a system with 128GB of RAM.

• 𝑀𝑖𝑛𝑃𝑜𝑝: Selects the two-district partition with the
lowest population deviation.

• 𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝑎𝑐𝑡 : Selects the two-district partition with
the largest average Modified Schwartzberg compact-
ness.6

• 𝑉𝑎𝑙𝑖𝑑𝐶𝑜𝑚𝑝𝑎𝑐𝑡 : Same as𝑀𝑎𝑥𝐶𝑜𝑚𝑝𝑎𝑐𝑡 , but two-district
partitions must have optimal population deviation
(≤ 0.5%) if possible.

4 Results
The D&C Algorithm’s results have been measured with pop-
ulation deviation and various compactness scores. In this
section, we will explore these results and look at one specific
version of the algorithm. The full results of the algorithm can
be found in Levin and Friedler’s paper [2], which includes
maps for other versions of the algorithm, graphs about pop-
ulation deviation and compactness scores, and more.

4.1 Population Deviation
When using census blocks, population deviation scores across
all versions of the algorithm were valid and extremely close
to 0.0%.

When using census tracts instead of census blocks, popula-
tion deviation scores get worse. Figure 6 shows the algorithm
being run on census tracts with population swapping en-
abled. All the results in Figure 6 shows the median scores
with the 25th and 75th percentile error bars for their re-
spective measurements. Remember that valid population
deviation scores must be less than 0.5%.
Population deviation scores also decrease when the al-

gorithm does not use the population swapping component.
When the D&C Algorithm is run on census tracts without
population swapping, we achieve even worse results than
what is seen in Figure 6. Population deviation scores are
almost never considered valid, and can become as high as
35% on MaxCompact.

4.2 Compactness Scores
Recall the simplification we made in Section 2.4. The Polsby-
Popper and Modified Schwartzberg scores are essentially
just area divided by perimeter. This means that in order to
get a high compactness score, a district must have a large
area with a relatively small perimeter. This can become a
problem when we consider how districts are drawn with the
D&C Algorithm.
If you look at states such as California or Texas in Fig-

ure 5, you may notice some districts that appear to be long,
thin strips of land. These districts generate low compact-
ness scores due to the fact that they have very little area,
and a large perimeter. Figure 5 depicts ValidCompact, which

6Levin and Friedler do not provide an explanation for why they chose this
compactness measure in their algorithm, but do provide multiple compact-
ness scores in their analysis of the algorithm.

Fighting Gerrymandering by Automating Congressional Redistricting

Figure 5. ValidCompact version of the D&C Algorithm run on census blocks. Each color represents a different district of equal
or nearly equal population size on a per state basis. Notice how the edges of each district are not perfect circles, and are fit to
census blocks. Maps for other versions of the algorithm are included in Levin and Friedler’s paper [2].

Figure 6. Population Deviation scores for different versions
of the algorithm run with census tracts and population swap-
ping. The leftmost bar refers to MinPop, the center bar refers
to ValidCompact, and the rightmost bar refers to MaxCom-
pact.

had the best compactness scores for census blocks. How-
ever, MaxCompact and MinPop both had worse compactness
scores for census blocks than census tracts.

Figure 7 shows the median compactness scores for Valid-
Compact with the 25th and 75th percentile error bars for
their respective measurements.

4.3 Recommended Algorithm Version(s)
Ultimately, Levin and Friedler recommend the ValidCom-
pact version of their algorithm being run on census blocks,
which can be seen in Figure 5. Due to this version achieving

Figure 7. Compactness scores for ValidCompact. CH stands
for Convex Hull, PP stands for Polsby-Popper, and SB stands
for Modified Schwartzberg

high levels of compactness while maintaining low popula-
tion deviation scores, it utilizes the algorithm to its fullest
potential.
However, Levin and Friedler also recognize that a single

redistricting algorithm may not satisfy the needs of every
state in every situation. As we have seen through most of
Section 2, there are a wide variety of metrics that can be
used to consider whether a district is "good". Some states
may value compactness over population deviation, while
others may try and include communities of interest in their
redistricting process.
Therefore, Levin and Friedler conclude that their algo-

rithm is the most useful when used in conjunction with “a
human understanding of the specific redistricting needs.” [2]

Jacob Jenness

Acknowledgments
Special thanks to both Nic McPhee and Elena Machkasova
for their feedback and advising during the process of writing
this paper. I’d also like to thank Harry Levin and Sorelle
Friedler for their paper.

References
[1] Galen Druke, David Wasserman, Harry Enten, Aaron Bycoffe, Ella

Koeze, and Julia Wolfe. 2017. The Gerrymandering Project. https:
//fivethirtyeight.com/tag/the-gerrymandering-project/

[2] Harry A. Levin and Sorelle A. Friedler. 2019. Automated Congressional
Redistricting. ACM J. Exp. Algorithmics 24, Article 1.10 (April 2019),
24 pages. https://doi.org/10.1145/3316513

[3] Daniel McGlone. 2018. Exploring Pennsylvania’s gerrymandered
congressional districts. https://www.azavea.com/blog/2018/01/23/
exploring-pennsylvanias-gerrymandered-congressional-districts/

[4] Katy Rossiter. 2011. What are census blocks? https://www.census.
gov/newsroom/blogs/random-samplings/2011/07/what-are-census-
blocks.html

[5] Zachary Schutzman. 2020. Trade-Offs in Fair Redistricting. In Proceed-
ings of the AAAI/ACM Conference on AI, Ethics, and Society (New York,
NY, USA) (AIES ’20). Association for Computing Machinery, New York,
NY, USA, 159–165. https://doi.org/10.1145/3375627.3375802

https://fivethirtyeight.com/tag/the-gerrymandering-project/
https://fivethirtyeight.com/tag/the-gerrymandering-project/
https://doi.org/10.1145/3316513
https://www.azavea.com/blog/2018/01/23/exploring-pennsylvanias-gerrymandered-congressional-districts/
https://www.azavea.com/blog/2018/01/23/exploring-pennsylvanias-gerrymandered-congressional-districts/
https://www.census.gov/newsroom/blogs/random-samplings/2011/07/what-are-census-blocks.html
https://www.census.gov/newsroom/blogs/random-samplings/2011/07/what-are-census-blocks.html
https://www.census.gov/newsroom/blogs/random-samplings/2011/07/what-are-census-blocks.html
https://doi.org/10.1145/3375627.3375802

	Abstract
	1 Introduction
	1.1 What is Gerrymandering?
	1.2 How are Congressional Districts Drawn?

	2 Background and Definitions
	2.1 Communities of Interest
	2.2 Competitiveness
	2.3 Proportionality
	2.4 Compactness
	2.5 Population Deviation
	2.6 Contiguity
	2.7 Census Data

	3 The Algorithm
	3.1 Divide and Conquer Component
	3.2 Redistrict Two Districts Component
	3.3 Voronoi Component
	3.4 Contiguity Swapping
	3.5 Population Swapping
	3.6 Maximization Function

	4 Results
	4.1 Population Deviation
	4.2 Compactness Scores
	4.3 Recommended Algorithm Version(s)

	Acknowledgments
	References

