
This work is licensed under a Creative Commons “Attribution-NonCommercial-ShareAlike 4.0
International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Johannes Martinez

Scheduling Aircraft Departures to Avoid Enroute
Congestion
Johannes Martinez

mart4695@morris.umn.edu
Division of Science and Mathematics
University of Minnesota, Morris

Morris, Minnesota, USA

Abstract
When scheduled flights are forecast to overcrowd sections
of enroute airspace, an air traffic control authority may need
to issue departure delays. Mixed integer linear programming
can be used to compute a schedule that resolves the con-
gestion while bringing the sum of all delays to a minimum.
Standard linear programming constraint formulations for
such scheduling problems, however, have poor run times
for instances of realistic size. A new constraint formulation
based on cycles and paths through a route graph consistently
reduces run times in computational experiments. It shows
particularly strong performance for schedules that approach
the worst-case solution times in standard formulations.
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1 Introduction
Airlines submit flight plans to an air traffic control authority
(ATC) to access high-altitude enroute airspace and to fly in
poor visibility. Flights request routes and departure times,
allowing ATC to forecast traffic conditions. Once airborne,
every aircraft imposes a workload on controllers assigned to
the airspace’s sectors. Although sectors are staffed according
to typical traffic conditions, traffic spikes and increasing
airspace use can create capacity overloads known as hotspots.
Hotspots may increase errors, worsen congestion and delays,
and lead to accidents.
In this paper, sector capacity is defined as a limit on the

number of aircraft allowed in a sector at once. In practice,
however, capacity may be defined according to the number
of tasks controllers perform over a period, a measure associ-
ated with aircraft entries per sector per controller shift. The
scheduling techniques discussed can be extended to a variety
of hotspot definitions [4].
A central ATC authority may receive flight plans early

enough to simulate various traffic scenarios [4]. If these sim-
ulations indicate that the flight plans create hotspots, the
authority may request aircraft to submit altered plans or else
accept route changes. But if such measures do not succeed
in resolving the hotspot, the authority must begin delaying
flights. Especially for widespread predicted congestion, the
question then is which aircraft to delay and for how long.

Problems of this type can be solved using linear programming,
introduced in Section 2. The particular manner in which the
problem is written into a linear program is known as a for-
mulation. In Section 3 we describe a standard formulation
of the hotspot problem, while in Section 4 we describe an
improved formulation introduced by Mannino and Sartor [5].
Finally, in Section 5 we discuss computational experiments
comparing the two formulations.

2 Background
2.1 Linear Programming
In a linear program, we try to minimize or maximize a linear
function subject to a set of linear constraints. Our objective,
for example, may be to minimize the sum of two variables, 𝑥1
and 𝑥2. If our variables represent coordinates on a Cartesian
plane, we can imagine that our constraints outline a feasible
region, an area of the plane that corresponds to permitted
solutions to our problem (not every feasible solution is nec-
essarily optimal, though). Our problem, for instance, may
have three constraints, each of which requires that a linear
expression composed of our variables be of at least or at most
a certain value. We can write a linear program as follows:

minimize 𝑥1 + 𝑥2 (𝑖)
subject to −𝑥1 + 2𝑥2 ≤ 2 (𝑖𝑖)

𝑥1 + 2𝑥2 ≥ 3 (𝑖𝑖𝑖)
2𝑥1 − 𝑥2 ≤ 4. (𝑖𝑣)

Our objective function (i) is written first, followed by our
constraints (ii) to (iv). If we plot the constraints, we can see
that our problem’s feasible region is the triangle seen in Fig-
ure 1. Any point on the edges or interior of this triangle is a
feasible solution. While there are an infinite number of fea-
sible coordinate pair solutions in this case, we are interested
in the pair whose sum is the lowest.
All points (𝑥1, 𝑥2) with the same sum, 𝑧, form a line with

slope -1 [2]. The line is described by the linear objective
function itself, and is therefore known as the objective line.
In Figure 1, if we translate the objective line from the origin
towards the feasible region, the sum 𝑥1 + 𝑥2 will grow and
the line will eventually reach either an edge or a vertex of
the feasible region. In this case, point (0.5, 1.25) represents
the optimal solution, as any objective line beyond that will
have a greater sum 𝑧. It is sometimes useful to know the
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Figure 1. Graph showing constraint inequalities. Each deci-
sion variable 𝑥1 and 𝑥2 adds a dimension. In the shaded fea-
sible region, any point (𝑥1, 𝑥2) satisfies all three constraints.
The dotted lines show the points at which the objective value
is 1.75 and 3. The minimum feasible solution occurs on the
labeled vertex. Light dots show the integer values in the
feasible region.

optimal integer solution, shown in the figure as the point (1,
1).

2.2 Linear Programming Solvers
The task of a linear programming solver is to find an optimal
solution to an objective function subject to constraints or
else to determine that no solution exists. If we consider a
single constraint in the previous example, we can see that it
divides the plane into half-planes and that the intersection of
all constraint half-planes produces the feasible region. The
objective line, meanwhile, relates all points in the feasible
region that share the same value of the objective function.
Because an enclosed feasible region contains an infinite num-
ber of points, it is not possible for a computer to evaluate the
objective function at every single point in a finite amount of
time and to determine from that what the optimal solution is.
Because of the mathematical properties of feasible regions
produced by linear constraints, however, the objective line
will always find an optimal solution at a vertex [1]. Even if
the region were bordered by a segment parallel with the ob-
jective line, we can still make the case that optimal solutions
always exist at vertices because the segment is bounded by
vertices that have solutions as optimal as any of the infinite
solutions along the line [2].

When we add another variable, we add another dimension
to our space. With three variables, each constraint creates
half-spaces, and the intersection of these half-spaces creates
a feasible region. All points in this region that result in the
same 𝑧 value are linked by an objective plane. This plane
can encounter a single vertex at a three-dimensional feasible
region’s corner. As with the parallel line segment case in

two dimensions, if a plane parallel to the objective plane is
encountered, that plane will still be bounded by vertices that
contain a solution as optimal as any of the infinite number
of points along the plane. In general, a feasible region in any
number of dimensions is known as a simplex.
The simplex algorithm forms the basis of many solvers.

The algorithm starts at a vertex, and, in the case of minimiz-
ing, moves to a neighboring vertex whose objective output is
equal or lower than the output of the current vertex. Because
the simplex is convex, it has no local dip that is not also
global. Thus, if the simplex algorithm finds no neighboring
vertex with a lower objective output, the current vertex can
be considered the optimal solution, and other vertices can
be safely ignored. The simplex algorithm usually avoids vis-
iting many if not most nodes, and its behavior can thus be
described as polynomial on average. In the worst case, how-
ever, feasible regions can be shaped in a manner that forces
the algorithm to visit 2𝑛 vertices, where 𝑛 is the number of
variables in the problem.

2.3 Mixed Integer Linear Programming
We will see in Section 3.3 that modeling the hotspot problem
requires discrete variables to represent binary conditions.
A flight, for example, either is or is not in a sector. To ac-
commodate this, the simplex method must be extended. A
mixed integer linear program (MILP) accepts continuous and
discrete variables. When variables are limited to integers, a
convex polygon feasible region no longer has infinite solu-
tions. It also, however, no longer has the convex properties
of the feasible region of a continuous linear program: a local
maximum or local minimum no longer necessarily implies
a global maximum or minimum. Many integer solvers com-
pute a continuous solution first. Then, they search around
that continuous solution for the most optimal solution that
also satisfies the integer constraint [1]. The search process
makes integer solvers visit far more vertices on average than
linear solvers. Any integer constraint formulation that does
not tightly confine the feasible region may thus be prone to
an exponential growth in solution times with the addition
of each program variable.

3 A Standard MILP Model
Mannino and Sartor [5] describe a standard approach to mod-
eling the hotspot problem for a mixed integer linear program-
ming solver. As we shall see in Section 3.4, this formulation
grows quickly and may be impractical for realistic scenarios.
Nevertheless, it serves both as an introduction to the model-
ing techniques used in an improved formulation the authors
introduce (Section 4) and as a point of comparison.

3.1 Relating Flights and Sectors
The aircraft scheduling problem consists of threemain phases.
First, we collect a set of proposed flights. Then, we estimate
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Figure 2. Sector map including planned routes.

sector traversal times for each flight given the route, aircraft
type, departure time, weather, and other relevant data. Fi-
nally, we build constraints from this data to form a MILP.
Throughout this section, we will use an example batch of
four flights: 𝑓 , 𝑔, ℎ, and 𝑖 . We can superimpose the routes
these flights submit to ATC on a sector map (Figure 2). Then,
we can begin to extract the information required by the
scheduling model.
Consider our set of sectors {𝑠1, 𝑠2, . . . , 𝑠7} ∈ 𝑆 and our

set of flights {𝑓 , 𝑔, ℎ, 𝑖} ∈ 𝐹 . If a flight passes through a
sector, we create a route node (𝑓 , 𝑠) ∈ 𝑅. A flight can thus
be represented as a sequence of route nodes. For flight 𝑓 in
Figure 2, for example, we have the sequence

(𝑓 , 𝑠1), (𝑓 , 𝑠3), (𝑓 , 𝑠4), where each node (𝑓 , 𝑠) ∈ 𝑅.
We store the time at which flight 𝑓 enters sector 𝑠 as a

schedule node 𝑡 (𝑓 , 𝑠) . All schedule nodes belong to the set R.
For the sake of illustration, wewill use the infeasible schedule
in Figure 3 to demonstrate how the various constraints work
and also to store departure times and traversal times.

3.2 Flight-Delaying Constraints
We assume that a flight cannot leave before its scheduled
departure time. For any flight 𝑓 , where the planned departure
time is Γ𝑓 and where 𝐷 is the set of departure route nodes,
we must satisfy the inequality

𝑡 (𝑓 , 𝑠) ≥ Γ𝑓 , where (𝑓 , 𝑠) ∈ 𝐷.1 (1)

We can find the minimum departure time for a flight by
reading the planned entry time into its departure sector. In
Figure 3, we find that Γ𝑓 , 𝑔 = 20, Γℎ = 0, and Γ𝑖 = 5.
1We assume departure times are measured relative to the start time of the
model. A time offset constant can be added if this is not the case.

𝑡 (𝑓 , 𝑠1) = 20, 𝑡 (𝑓 , 𝑠3) = 30, 𝑡 (𝑓 , 𝑠4) = 45
𝑡 (𝑔, 𝑠5) = 20, 𝑡 (𝑔, 𝑠6) = 25, 𝑡 (𝑔, 𝑠3) = 35, 𝑡 (𝑔, 𝑠1) = 55
𝑡 (ℎ, 𝑠6) = 0, 𝑡 (ℎ, 𝑠4) = 15, 𝑡 (ℎ, 𝑠3) = 50, 𝑡 (ℎ, 𝑠) = 60
𝑡 (𝑖, 𝑠7) = 5, 𝑡 (𝑖, 𝑠6) = 10, 𝑡 (𝑖, 𝑠3) = 20, 𝑡 (𝑖, 𝑠2) = 40

Figure 3. An unfeasible schedule used to illustrate how the
model constraints work. This schedule also stores estimated
sector traversal times and filed departure times.

Considering any flight 𝑓 , we define the time to traverse
a sector 𝑠 as Λ (𝑓 , 𝑠) , and we represent the route node that
follows node (𝑓 , 𝑠) as (𝑓 , 𝑠 + 1). Given that the scheduling
algorithm does not adjust an aircraft’s planned speed and
route, both the sector traversal times and the order of the
route node sequence must be preserved. We call this con-
straint the precedence constraint, and it can be written as

𝑡 (𝑓 , 𝑠+1) − 𝑡 (𝑓 , 𝑠) = Λ (𝑓 , 𝑠) . (2)

We see in Figure 3 that our initial schedule implies that
𝑡 (𝑓 , 𝑠3) −𝑡 (𝑓 , 𝑠1) = 10. This ten minute traversal time for sector
𝑠1 (written as Λ (𝑓 , 𝑠1) = 10) must be retained in any schedule
revision.

3.3 The Hotspot Constraint
While constraints (1) and (2) ensure that we limit solutions
to delaying flights, we have yet to constrain against hotspots.
Each sector 𝑠 has an associated capacity 𝑐𝑠 . The workload
imposed on air traffic controllers is considered excessive if
the number of flights in 𝑠 at the same time is greater than 𝑐𝑠 .
We let the set 𝐹𝑠 2 contain all flights that pass through sector
𝑠 . From this set, we consider each possible pairing (order
does not matter). If any pair 𝑓 and 𝑔 share 𝑠 for at least part
of their sector traversal time, we set binary quantity 𝑥𝑠

𝑓 𝑔
to

1. In Figure 4, for instance, we see that flights ℎ and 𝑖 share
sector 𝑠6 for five minutes. Hence, 𝑥𝑠6

ℎ𝑖
= 1.

Let 𝐾 be a subset of 𝐹𝑠 and let 𝐾 have 𝑐𝑠 + 1 flights. We
consider only 𝑐𝑠 + 1 flights at a time because we want to
identify a particular set of flights that violates the constraint,
while allowing combinations that do not (see Example 3.3.2).
Note that only sectors 𝑠3 and 𝑠6 are traversed by more than
two flights over the schedule period. If we assume that the
capacity of all our sectors 𝑐𝑠1−7 is two, only these two sectors
have this subset 𝐾 . The hotspot constraint can be written as
follows:∑︁
{𝑓 , 𝑔}⊆𝐾

𝑥𝑠
𝑓 𝑔

≤
(
𝑐𝑠 + 1
2

)
−1, 𝐾 ⊆ 𝐹𝑠 , |𝐾 | = 𝑐𝑠+1, 𝑠 ∈ 𝑆 (3)

3.3.1 Example. Using Figure 4 as an aid, we can check
whether a hotspot will form in sector 𝑠6. We find that 𝐾 has
a cardinality of 𝑐𝑠6 + 1 = 3. This implies that in the inequality
2Mannino and Sartor [5] use 𝐹 . 𝐹𝑠 , however, makes the sector these flights
are associated with more apparent.
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Figure 4. Flight entry and exit times for sectors traversed
by more than 𝑐𝑠1−7 = 2 flights over the batch period. Based
on data from Figure 3.

in (3) we can consider three flights at a time. We can see
in Figures 2 and 4 that 𝐹𝑠6 contains three flights over our
period. We therefore have that subset 𝐾 exists for 𝐹𝑠6 and
that the inequality (3) will be performed for only one group
of pairings.

𝑥
𝑠6
𝑔ℎ

+ 𝑥𝑠6
𝑔𝑖
+ 𝑥𝑠6

ℎ𝑖
≤

(
𝑐𝑠6 + 1

2

)
− 1

0 + 0 + 1 ≤
(
3
2

)
− 1

1 ≤ 2

Given that constraint (3) is satisfied, we conclude that there
is no hotspot in sector 𝑠6

3.3.2 Example. For sector 𝑠3, |𝐾 | = 3 but |𝐹𝑠3 | = 4. This
means that we need to consider three pairings at a time, in
four sums (each sum excludes one flight).
𝑥
𝑠3
𝑔ℎ

+ 𝑥𝑠3
𝑔𝑖
+ 𝑥𝑠3

ℎ𝑖
≤ 2 (excluding 𝑓 )

𝑥
𝑠3
𝑓 ℎ

+ 𝑥𝑠3
𝑓 𝑖
+ 𝑥𝑠3

ℎ𝑖
≤ 2 (excluding 𝑔)

𝑥
𝑠3
𝑓 𝑔

+ 𝑥𝑠3
𝑓 𝑖
+ 𝑥𝑠3

𝑔𝑖
≤ 2 (excluding ℎ)

𝑥
𝑠3
𝑓 𝑔

+ 𝑥𝑠3
𝑓 ℎ

+ 𝑥𝑠3
𝑔ℎ

≤ 2 (excluding 𝑖)

→

1 + 1 + 0 ≤ 2
0 + 1 + 0 ≤ 2
1 + 1 + 1 ≰ 2
1 + 0 + 1 ≤ 2

Given that constraint (3) is not satisfied, we conclude that
there is a hotspot in sector 𝑠6. Note, however, that only the
combination of flights 𝑓 , 𝑔, and 𝑖 results in a conflict. The
other three combinations will not be blocked.

3.4 The Disjunctive Constraints
If we take a pair of distinct flights 𝑓 and𝑔 that traverse sector
𝑠 at some point, only one of the following three conditions
may be true:

• Flight 𝑓 leaves 𝑠 before 𝑔 enters (denoted as 𝑦𝑠
𝑓 𝑔

= 1).

• Flight 𝑔 leaves 𝑠 before 𝑓 enters (denoted as 𝑦𝑠
𝑔𝑓

= 1).
• Flight 𝑓 shares 𝑠 with 𝑔 (denoted as 𝑥𝑠

𝑓 𝑔
= 1).

We can summarize this list and the condition that exactly
one statement be true in a new constraint:

𝑦𝑠
𝑓 𝑔

+ 𝑦𝑠
𝑔𝑓

+ 𝑥𝑠
𝑓 𝑔

= 1, {𝑓 , 𝑔} ⊆ 𝐹𝑠 𝑠 ∈ 𝑆 (4)

Referring to flightsℎ and 𝑖 as they traverse sector 𝑠3 in Figure
4, for example, we have

𝑦
𝑠6
ℎ𝑖
+ 𝑦𝑠6

𝑖ℎ
+ 𝑥𝑠6

ℎ𝑖
= 1

0 + 1 + 0 = 1

For every pair of flights {𝑓 , 𝑔} ⊆ 𝐹𝑠 , the associated parts
of the schedule 𝑡 (Figure 3) need to satisfy the disjunctive
constraint (4) as modeled in a conjunction of constraints.

(i) 𝑡 (𝑔, 𝑠) − 𝑡 (𝑓 , 𝑠+1) ≥ −𝑀 (1 − 𝑦𝑠
𝑓 𝑔
)

(ii) 𝑡 (𝑓 , 𝑠) − 𝑡 (𝑔, 𝑠+1) ≥ −𝑀 (1 − 𝑦𝑠
𝑔𝑓
)

(iii) 𝑡 (𝑔, 𝑠+1) − 𝑡 (𝑓 , 𝑠) ≥ −𝑀 (1 − 𝑥𝑠
𝑓 𝑔
) (5)

(iv) 𝑡 (𝑓 , 𝑠+1) − 𝑡 (𝑔, 𝑠) ≥ −𝑀 (1 − 𝑥𝑠
𝑓 𝑔
)

where 𝑦𝑠
𝑓 𝑔
, 𝑦𝑠

𝑔𝑓
, 𝑥𝑠

𝑓 𝑔
∈ {0, 1}

The constant 𝑀 , known as Big-M, is a large number intro-
duced to simulate −∞. Because this is a conjunction of con-
straints, the purpose of Big-M is to make the inequalities
hold for any entry and exit times suggested, except those
that do not satisfy the properties the set Boolean represents.
If we want to be assured that the times suggested are feasible
in a solution where 𝑦𝑠

𝑓 𝑔
= 1, the entry time of 𝑔 must be

greater than the exit time of 𝑓 . As the right-hand side of (i)
is zero in this case, the constraint will not allow the time as
𝑓 enters the sector following 𝑠 to be greater than the time 𝑔
enters sector 𝑠 .

If we consider inequality (ii) with the same pair of flights
and the same sector, even though subtracting the entry time
of the first flight from the exit time of the second flight yields
a negative number, with a suitably large constant 𝑀 , the
inequality will still hold. This means that (ii) cannot change
the solution: any times that satisfy (i) can be considered
in the conjunction, but times that do not satisfy it (those
that make the left-hand side negative), will invalidate the
entire conjunction and clip off any other inequalities in it
that might still hold. Similar cases can be made for (iii) and
(iv).

This concludes the standard MILP formulation. Any sched-
ule allowed by the constraints 1 - 5 will ensure flights leave
at of after their departure time, traverse sectors at the speeds
planned, do not cause hotspots, maintain a logical sequence,
and have sector entry times consistent with all prior con-
straints. The objective, then, is to return the feasible schedule
in which the sum of all delays is the lowest. The MILP solver
achieves this by considering the sets of 𝑡 , 𝑥 , and 𝑦 variables
satisfying the constraints, and by finding the set in which
the sum of all times 𝑡 is smallest.
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Figure 5. A disjunctive graph model of the hotspot problem.

4 The Path&Cycle Formulation
While the standard formulation in Section 3 correctly models
and constrains the hotspot problem, the use of Big-M coeffi-
cients poorly bounds the integer search trees, making solu-
tion times slow for realistic scenarios. To eliminate Big-M
constraints, Mannino and Sartor [5] introduce a formulation
based on paths and cycles formed in a disjunctive graph that
models the hotspot problem. The graph observations can be
written as a MILP problem that can be solved by any solver
capable of computing the standard MILP formulation in the
previous section.

4.1 Disjunctive Graphs
We can draw the Big-M formulation in the previous section as
a directed graph (Figure 5). Each route node becomes a vertex
𝑢 ∈ 𝑅, and we add an origin vertex 𝑜 as well. For a flight
𝑓 , the directed edge from 𝑜 to the departure vertex (𝑓 , 𝑑𝑓 )
has a weight corresponding to the minimum departure time
Γ𝑓 . The precedence constraint (2) is represented by a pair of
directed precedence edges between two route nodes 𝑢 and 𝑣 .
The edge from 𝑢 to 𝑣 has weight Λ𝑢 , while the edge from
𝑣 to 𝑢 has weight −Λ𝑢 . As in the previous section, a route
node is written as a flight and sector pair (𝑓 , 𝑠). Edges with
weight 0 link each pair of flights that at some point traverse
the same sector: (𝑓 , 𝑔) ∈ 𝐹𝑠2 , for instance. These edges are
associated with Big-M constraint (5). If, for instance, (5.i) is
active (𝑦𝑠

𝑓 𝑔
= 1), we draw a conflict edge (𝑢, 𝑣), where𝑢 and 𝑣

are vertices related to 𝑡 (𝑓 , 𝑠+1) and 𝑡 (𝑔, 𝑠) respectively. Figure 5
illustrates all possible conflict edges for sector 𝑠2. Constraint
(4) is used in the new formulation as well, however, ensuring
that a feasible solution has only either a pair of 𝑥 conflict
edges active or else a single𝑦 edge active per mutually visited
sector.

Rather than constrain entry and exit times for every sector,
as in Big-M constraint (5), the new formulation only varies
conflict edge activation. Rules regarding these activations
make only feasible combinations of active edges possible.
In other words, contradictions such as a flight entering a
sector both before and at the same time as another flight
are not permitted. In a graph, such contradictions manifest
as positive directed cycles. In Figure 5, flights 𝑓 and 𝑔 both
traverse sectors 𝑠2 and 𝑠3. If we attempt to make flight 𝑔

Figure 6. A disjunctive graph with a pair of flights 𝑓 and 𝑔
that both traverse a sector 𝑠1 with capacity 𝑐𝑠1 = 1. The sum
of the longest traversal times for each 𝑦 edge is given to the
right. The optimal solution occurs when this sum is lowest,
in this case when edge 𝑦𝑠1

𝑓 𝑔
is active. −Λ values omitted for

readability.

traverse 𝑠2 first (𝑦𝑠2𝑔𝑓 = 1), we expect flight 𝑓 to enter 𝑠2 only
after 𝑔 enters 𝑠3. In this case, it is not possible to make flight
𝑓 traverse 𝑠3 before 𝑔 because flight 𝑓 is behind and not
allowed to enter until 𝑔 leaves. (The node sequence shows
that flight 𝑔 is not allowed to exit the sector pair to wait for
flight 𝑓 .) In the graph, this situation is modeled by activating
conflict edges𝑦𝑠2

𝑔𝑓
and𝑦𝑠3

𝑓 𝑔
. Note that we get a cycle from node

(𝑔, 𝑠3) through (𝑓 , 𝑠2), (𝑓 , 𝑠3), and (𝑓 , 𝑎𝑓 ) back to (𝑔, 𝑠3). All
precedence edges taken on this cycle are positive, and the
cycle therefore has a positive traversal length and is not
permitted by the cycle constraint.

Net negative cycles, however, are allowed. In Figure 5, for
example, flight 𝑔 has both a positive and negative departure
edge. If conflict edge𝑦𝑠2

𝑓 𝑔
is active, a cycle can be formed from

the origin 𝑜 through the first three 𝑓 nodes and through
two 𝑔 nodes back to 𝑜 . The cycle is only permitted if the
positive path through the 𝑓 nodes is shorter than the negative
path through the 𝑔 nodes, a condition that depends on the
minimum departure times and precedence edge values of 𝑓
and𝑔. In effect, 𝑓 is only allowed to traverse 𝑠2 first if𝑔 arrives
to 𝑠2 later than 𝑓 . The existence of a negative departure time
edge for 𝑔 thus gives the flight priority over other aircraft in
the system. This is useful for accomodating a flight from an
external jurisdiction, whose departure time is not controlable
by the local authority. Flight 𝑓 , in contrast, has only a positive
departure edge and can be rescheduled as needed.
Mannino and Sartor [5] state that the objective function

of the Path&Cycle formulation is to minimize the sum of
the longest traversal paths from the origin 𝑜 to every arrival
node. The graphs evaluated must satisfy a hotspot constraint,
constraint (4) from the previous formulation, and a constraint
against positive directed cycles. Figure 6 considers a pair of
flights 𝑓 and 𝑔 that both traverse sector 𝑠1. If 𝑐𝑠1 = 1, no 𝑥
edges are possible, and because both flights request to enter
𝑠1 at the same time (Γ𝑓 , 𝑔 = 0), one flight must be delayed. If
conflict edge 𝑦𝑠1

𝑔𝑓
is active, the longest path from 𝑜 to arrival
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node (𝑓 , 𝑠3) proceeds through the first sector of 𝑔, the active
conflict edge, and all 𝑓 nodes. The longest path from 𝑜 to
(𝑔, 𝑔3) traverses all flight 𝑔’s nodes.
Figure 6 shows a similar process for when conflict edge

𝑦
𝑠1
𝑓 𝑔

is active. The smallest longest path sum occurs when 𝑦𝑠1
𝑔𝑓

is active, a result that is consistent with the fact that flight 𝑓
traverses 𝑠1 more quickly than 𝑔. The delay information for
each flight can be extracted from the length of the longest
path to the arrival node of each flight for the optimal conflict
edge solution. In Figure 6 we can see that the longest path to
the arrival node of flight 𝑓 is unmodified from the original
departure time proposal. The longest path to the arrival
node of flight 𝑔, however, is five minutes longer than the
shortest traversal, implying that flight 𝑔 must be delayed by
five minutes to avoid sharing sector 𝑠1 with flight 𝑓 .
For a derivation of the graph formulation and proofs of

the properties used, see [3]. For MILP formulation of the
graph constrains, see [5]. An expansion of the Path&Cycle
formulation that includes more definitions of sector capacity
is found in [4].

5 Results and Conclusions
Mannino and Sartor [5] implemented the standard and Path&
Cycle formulations. They used the CPLEX 12.8 integer pro-
gramming solver and ran their formulations on a single
thread. The authors generated 30 scheduling scenarios in a
simulated world containing 400 sectors and 20 airports. For
each run, a pair of airports was randomly selected and flights
were randomly scheduled from one airport to the other.

In Table 1 we can see how the Path&Cycle formulation
significantly reduces the number of branch and bound nodes
evaluated by the algorithm before reaching an optimal so-
lution. These reductions become particularly important as
the size of set the of schedules submitted increases, and they
suggest that the new formulation markedly tightens the so-
lution space. While we can see consistent improvements in
run times, it is worth noting that the largest performance
differences occur between the worst instances of each for-
mulation, where the Path&Cycle approach takes only 1.35
seconds to compute an optimal schedule, while the standard
formulation takes over 50 seconds. This strongly suggests
that the Path&Cycle formulation produces a feasible region
that is less complex and avoids large search trees in themixed
integer linear programming solver.
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ID |F | cs Solved hotspots Visited nodes Time (s) Speed up

PC BF PC BF PC BF

ATM1 122 3 13 13 1016 19175 1.06 4.99 4.7x
ATM2 137 3 13 13 3062 36806 1.35 10.38 7.7x
ATM3 131 3 8 8 109 774 0.18 0.28 1.5x
ATM4 142 3 13 13 833 40482 0.73 6.43 8.8x
ATM5 110 3 12 12 795 31117 0.39 7.38 18.8x
ATM6 127 3 5 5 79 570 0.16 0.17 1.1x
ATM7 115 3 1 1 0 5 0.05 0.05 1.0x
ATM8 120 3 4 4 2 97 0.05 0.10 1.8x
ATM9 131 3 4 4 42 554 0.08 0.16 2.1x
ATM10 143 3 8 8 76 2313 0.18 0.48 2.6x
ATM11 136 3 15 15 371 39300 0.31 14.90 47.3x
ATM12 142 3 9 9 274 1974 0.22 0.57 2.6x
ATM13 139 3 11 11 118 2217 0.19 0.94 5.1x
ATM14 126 3 7 7 60 2182 0.13 0.59 4.6x
ATM15 139 3 9 9 3625 172950 0.88 50.61 57.4x
ATM16 288 5 4 4 47 1579 0.27 0.71 2.6x
ATM17 289 5 9 9 113 12503 0.38 6.05 16.0x
ATM18 278 5 6 6 183 2188 0.37 1.23 3.3x
ATM19 259 5 3 3 0 296 0.15 0.20 1.4x
ATM20 254 5 5 5 55 1977 0.23 1.01 4.3x
ATM21 279 5 6 6 255 4175 0.32 2.10 6.6x
ATM22 287 5 3 3 0 985 0.11 0.32 2.8x
ATM23 259 5 6 6 37 2452 0.25 1.00 4.0x
ATM24 281 5 4 4 161 1350 0.47 0.60 1.3x
ATM25 296 5 4 4 71 1518 0.22 0.60 2.7x
ATM26 275 5 7 7 50 2872 0.41 1.32 3.2x
ATM27 256 5 5 5 464 5042 0.46 1.58 3.5x
ATM28 273 5 6 6 298 1542 0.60 0.91 1.5x
ATM29 274 5 6 6 193 104627 0.53 35.09 66.7x
ATM30 287 5 7 7 1306 9129 0.75 3.10 4.1x

Table 1.Mannino and Sartor [5]. A comparison of the Path&
Cycle formulation (PC) and the standard Big-M formulation
(BF), in run times and visited nodes, for randomly generated
flights in a 400 sector world.
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