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Flight Plans

• Airlines file plans for most

flights.

• Plans include route

waypoints and departure

times.

Image: Fabrizio Gandolfo

(Wikimedia)



Enroute Air Traffic Control

• In the US, Air Route

Traffic Control Centers

are responsible for many

flights at cruise altitude.

• Each center controls large

swaths of airspace.

Image: FAA (ZDC ARTCC)



Areas and Sectors

• Areas and sectors help air

traffic control divide

workload.

• We will consider a single

layer of sectors.



Sectors and Flights

• Flight plans record the

route and time of

departure a flight wants.

• We model the relationship

between sectors and

flights.



Hotspots

• We assume every sector

can hold at most two

aircraft.

• If this capacity is

exceeded, we have a

hotspot.



Linear Programming



Linear Programming

Linear Programming with Two Decision Variables

Minimize x1 + x2 −→ Objective function

subject to −x1 + 2x2 ≤ 2 −→ Constraint 1

x1 + 2x2 ≥ 3 −→ Constraint 2

2x1 − x2 ≤ 4 −→ Constraint 3
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Linear Programming

Minimize x1 + x2
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Linear Programming
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Linear Programming

Minimize x1 + x2
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Integer Programming

Scheduling Problems Require Discrete Variables

• Distinctions such as concurrent and not concurrent are binary.

• The feasible region for a discrete formulation cannot be

continuous.



Integer Programming

Minimize x1 + x2, where x1 and x2 are integers
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Constraint Formulation for Flight

Schedules

Mannino and Sartor, 2018



Route Nodes

Flight g, a route node sequence:

(g, s5), (g, s6), (g, s3), (g, s1)
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Route Nodes

Flight g, a route node sequence:

(g, s5), (g, s6), (g, s3), (g, s1)



Schedules



Schedule Nodes

Entry times for flight f :

t(f, s1) = 20

t(f, s3) = 30

t(f, s4) = 45
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Constraints



Departure Constraint

Flights Cannot Depart Before their Planned

Departure Time

Minimum departure time for flight f : Γf

t(f, s) ≥ Γf



Precedence Constraint

Sector Traversal Time is Fixed for Each Flight

Λ(f, s): Time flight f takes to traverse sector s

t(f, s+1) − t(f, s) = Λ(f, s)

t(f, s2) − t(f, s1) = 10



Hotspot Constraint

No Sector May Be Overburdened

New Notation:

• cs: The capacity c of sector s, given as limit on the

number of flights at once in the sector.

• Fs: The set of flights that traverse s at some point.



The Hotspot Constraint

xs
fg = 1 when flights f and g share sector s.
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The Hotspot Constraint

Sector s, where cs = 2
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The Hotspot Constraint

How is the Hotspot Constraint Broken?
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All pairwise combinations of cs + 1 flights

xsgh + xsgi + xshi ≤ 2
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The Order Constraints

• If flight f leaves s before g enters, ysfg = 1.

• If flight g leaves s before f enters, ysgf = 1.

Constraint: Only one binary quantity may be true for a

pair of flights in given sector

ysfg + ysgf + xs
fg = 1



The Big-M Conjunction

Remember...

ysfg + ysgf + xsfg = 1

Constraint:

(i) t(g, s) − t(f, s+1) ≥ −M(1− ysfg)

(ii) t(f, s) − t(g, s+1) ≥ −M(1− ysgf )

(iii) t(g, s+1) − t(f, s) ≥ −M(1− xsfg)

(iv) t(f, s+1) − t(g, s) ≥ −M(1− xsfg)

where ysfg, y
s
gf , x

s
fg ∈ {0, 1}

Where M simulates ∞
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The Big-M Conjunction

ysfg + ysgf + xsfg = 1

1 + 0 + 0 = 1

Constraint:

(i) t(g, s) − t(f, s+1) ≥ 0

(ii) t(f, s) − t(g, s+1) ≥ −M
(iii) t(g, s+1) − t(f, s) ≥ −M
(iv) t(f, s+1) − t(g, s) ≥ −M
where ysfg, y

s
gf , x

s
fg ∈ {0, 1}

Where M simulates ∞



Graph

Image: Mannino and Sartor, 2018
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Results

Experiments

• 400 simulated sectors

• From 100 up to 300 flights scheduled randomly

• 20 airports

• 30 simulation runs



Results

Comparison of Graph and Big-M Constraint

Formulations

Flights Hotspots
Visited Nodes Time (s)

Graph Big-M Graph Big-M

Median 199 6 116 2203 0.29 0.97

Max 296 15 3, 625 172, 950 1.35 50.61

Min 110 1 0 16, 758 0.05 0.05

Summary of results across 30 trials.
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Additional slides



The Hotspot Constraint

Constraint

∑
{f, g}⊆K

xsfg ≤
(
cs + 1

2

)
− 1

Where

K ⊆ Fs

|K| = cs + 1



Linear Programming

• Concave feasible regions are impossible in linear programs.

• Local minimums are not necessarily global minimums in

concave shapes.
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