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Introduction

Li et al. license plate detection and recognition method

Hui Li , Peng Wang, and Chunhua Shen proposed a license plate
detection and recognition method [6]
Detection: Find license plates in an input image
Recognition: Read license plate characters/labels
Takes an image as an input
Simultaneously (Jointly-connected)
End-to-end computation
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Introduction

The Model Structure by Li et al.
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Background Information Artificial Neural Networks

Neural Networks

What are neural networks?
Artificial neural networks (ANNs)
Combination of nodes, or artificial neurons that connect together,
forming node layers
They allow computer programs to recognize patterns and solve
common problems in different fields such as AI, machine learning,
and deep learning.
Each node contains an input, at least one “hidden” layer, and one
output layer
Deep neural networks (DNNs): ANNs with many hidden layer
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Background Information Artificial Neural Networks

Neural Networks - Visual
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Background Information Artificial Neural Networks

Passing Data Through Neural Networks

Every node in a layer is connected to all the nodes in the next layer
Every connection (arrow) transfers the output of the previous unit
as input to the receiving unit
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Background Information Artificial Neural Networks

Passing Data Through Neural Networks - cont.

Each connection would have its own “weight” (a value between 0
and 1)
Weights represent the strength of the connections between the
units
The weight value would be multiplied by the value from the
previous (output) unit, sending the multiplication result to the next
unit as its input.
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Background Information Artificial Neural Networks

ANN Training

Neural networks need to be trained in order to perform better
Training is done by using specific algorithms that find the sets of
weights that would map inputs to outputs at most efficiency
possible.
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Background Information Convolutional Neural Networks

Convolutional Neural Networks (CNNs)

Derived from ANNs
Superior performance with image inputs
Convert images into numeric values (matrices)
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Background Information Convolutional Neural Networks

CNN Layer Types

CNNs have 3 layer types:
Convolutional Layer(s)
Pooling Layer(s)
Fully-connected (FC) Layer(s)
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Background Information Convolutional Neural Networks

Convolutional Layer(s) - CNN Layer Type

Convolutional layers tend to be at the front of a network
Allowing network to look for specific patterns
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Background Information Convolutional Neural Networks

Convolutional Layer(s) - Looking for Specific Patterns

3 components required:
Input data (e.g. an image)
Filter/kernel (extracts specific features, such as edges from the
input data)
Feature map (the output from using a filter)
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Background Information Convolutional Neural Networks

Convolutional Layer(s) - Filter

2-dimensional array
Scan for features in an input (convolution)
3× 3 (matrix) size is most common
Filter is applied to an area of image
Matrix values of filter × matrix values of area covered by filter (dot
product)
Dot product sent to output array
Filter shifts
Process repeated over entire image
Output: feature map
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Background Information Convolutional Neural Networks

Filter - CNN Layer Type - Visual
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Background Information Convolutional Neural Networks

Filter - CNN Layer Type - Visual
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Background Information Convolutional Neural Networks

Pooling Layer(s) - CNN Layer Type

Perform dimensionality reduction
Scan filter across an input image
Clusters values using aggregation
Giving an output array
Pooling reduces CNN complexity and improves efficiency
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Background Information Region Proposal Network

Region Proposal Network (RPN)

RPN is an algorithm that identifies certain objects in an image,
and places bounding boxes around them.
Those objects are then “proposed” to the next layer connected to
the RPN
Developed by Shaoqing Ren, Kaiming He, Ross Girshick, and
Jian Sun [8].
The detection and recognition of license plates model by Li et al.
is based on RPN
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Background Information Region Proposal Network

Bounding Boxes

Bounding boxes are outline boxes placed around detected objects.
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Background Information Region Proposal Network

RPNs - How They Work

 Region Proposal Network 

Feature 
maps 
from CNN 

Proposed 
regions by 
RPN 
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Background Information Ground-Truth

Ground-Truth

In the context of machine learning, ground-truth refers to checking the
results of machine learning algorithms, against what is known in real
life.
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Background Information Intersection over Union

Intersection over Union (IoU)

A statistic used for measuring the accuracy of object detectors.
Calculated by dividing the area of intersection between the
ground-truth bounding box (Rgt) and the detected bounding box
(Rdet) by the area of their union.

IoU =
area(Rdet ∩Rgt)

area(Rdet ∪Rgt)

Naber (University of Minnesota, Morris) E2E Car Plate Detection and Recognition November ’21 31 / 56



Method

Outline
1 Introduction
2 Background Information

Artificial Neural Networks
Convolutional Neural Networks
Region Proposal Network
Ground-Truth
Intersection over Union

3 Method
Plate Proposal Generation
Region of Interest (RoI) Pooling
License Plate Detection Network
License Plate Recognition Network

4 Testing Results
Detection Performance
Detection and Recognition Speed

5 Conclusion
Naber (University of Minnesota, Morris) E2E Car Plate Detection and Recognition November ’21 32 / 56



Method Plate Proposal Generation

Plate Proposal Generation - Overview
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Method Plate Proposal Generation

Plate Proposal Generation

Li et al. modified the RPN by Ren et al.
They designed 6 different scales for different license plate sizes
With k = 6 anchors at each position of the input feature maps.
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Method Plate Proposal Generation

What Are Anchors?

They are the center points of bounding boxes
Anchors can be positive or negative
Determined by IoU scores
Anchors with IoU scores less than 0.5 are (usually) considered
negative
Anchors with IoU scores greater than 0.5 are (usually) considered
positive

Li et al. decided:
The IoU score used to determine positive anchors is 0.7 or more
The IoU score used to determine negative anchors is 0.3 or less

Note: More details can be found in the paper.
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Method Plate Proposal Generation

Plate Proposal Generation - cont.

Two 256-dimensional filters (sizes 5× 3 and 3× 1)
Placed simultaneously onto the feature map
Classification scores that indicate probabilities of the anchors as
license plates or not.
Regression values refer to the offsets of anchor boxes to a nearby
ground-truth.

 Region Proposal Network 

Feature 
maps 
from CNN 

Proposed 
regions by 
RPN 
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Method Region of Interest (RoI) Pooling

The Problem of Different Proposal Box Sizes

Proposal boxes output from the RPN come in different sizes
The license detection and recognition networks (in red box) can
only process one box size.
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Method Region of Interest (RoI) Pooling

The Solution: RoI Pooling

RoI pooling is performed to set one size (28× 4) for all anchor
boxes.
RoI pooling requires two inputs; the proposals from RPN and the
feature map from the initial CNN layers.
The output of RoI is known as region features, which will be used
in the next parts of the method by Li et al..
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Method License Plate Detection Network

License Plate Detection Network - Overview
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Method License Plate Detection Network

License Plate Detection Network

The region feature map from RoI pooling is flattened (transformed)
into a 1-dimensional a vector
Then 2 fully connected (FC) layers with 2048 nodes are used to
extract distinct features from the 1-dimensional vector.
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Method License Plate Detection Network

Why is Flattening Done?

To be able to insert this data into an ANN.
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Method License Plate Detection Network

License Plate Detection Network - cont.

The features are then input into two other neural network layers
(one classification and one regression layer)
Giving two outputs
License plate bounding box offsets for each proposal
License plate scores (the probability of each RoI as a plate or
non-plate)
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Method License Plate Recognition Network

License Plate Recognition Network - Overview
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Method License Plate Recognition Network

License Plate Recognition Network

Take feature maps from RoI pooling and integration layer
Inputs them into RNNs
Connectionist temporal classification (CTC) neural networks are
used to deocode license plate characters
Outputting recognized labels (plate numbers)
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Method License Plate Recognition Network

Output - Visual
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Testing Results

Test Results from PKUData Dataset

Li et al. tested their model using 4 datasets:
Car license plates from China, known as CarFlag-Large.
Application-Oriented License Plate (AOLP).
Caltech-cars (Real) 1999.
PKUData by Yuan et al. [11]
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Testing Results Detection Performance

Detection Performance Average

Method Detection Performance Average (%) Detection Speed Per Image (ms) End-to-end Speed Per Image (ms)
Zhou et al. [12] 90.22 475 -

Li et al. (2013) [5] 91.52 672 -
Yuan et al. [11] 97.69 42 -

Li et al. (2019) [Detection Only] [6] 99.51 283 -
Li (2019) et al. [Jointly-trained] [6] 99.73 279 310

Li et al. test compare their method against 3 others
Detection performance done on different images with different
capturing conditions (such as how distant a plate is from the
camera, or the angle at which the image was taken)
Li et al ’s method achieves an average detection ratio of 99.73%
Which is 2% higher than the previous best performance (by Yuan
et al.)
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Testing Results Detection and Recognition Speed

Detection Speed Per Image

Method Detection Performance Average (%) Detection Speed Per Image (ms) End-to-end Speed Per Image (ms)
Zhou et al. [12] 90.22 475 -

Li et al. (2013) [5] 91.52 672 -
Yuan et al. [11] 97.69 42 -

Li et al. (2019) [Detection Only] [6] 99.51 283 -
Li (2019) et al. [Jointly-trained] [6] 99.73 279 310

Detection speed per image is not the fastest (2nd place).
Yuan et al. method is faster due to the use of simple support
vector machines (SVMs) instead of CNNs and RNNs.
Detection and recognition computational speed of Li et al. network
is around 310ms.
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Conclusion

Conclusion

Li et al. proposed a jointly-trained network for simultaneously
recognizing car license plate detection and recognition. The model
achieved good test results, and has high accuracy and efficiency.
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